Projects

National

LiNUS – Vývoj pokročilej odľahčenej nanoštruktúrovanej ocele a jej výroby prostredníctvom jednoduchého tepelného spracovania pre náročné pevnostné aplikácie.
Development of advanced lightweight nanostructured steel and its manufacturing-easy heat processing for ultrahigh-strength applications
Program: SRDA
Project leader: Prof. Ing. Iefremenko Vasyl, DrSc.
Annotation: The project is aimed at the development of novel cost-saving steel for ultrahigh-strength applications (ultimatetensile stress not less than 2000 MPa under acceptable ductility/impact toughness) and the technology of its hotdeformation and heat treatment which can be easily integrated into the production lines present at the metallurgicalplants. The steel will not comprise the expensive alloying elements (Ni, Cr, Co, Mo, V), in contrast, due to using thecheaper elements (such as Mn, Si, and Al which are lighter than Fe) it will acquire the lightweight feature. The mainobjective will be reached through the formation of a multi-phase "smart" structure that can respond to the externalload by TRIP/TWIP effects leading to self-strengthening and stress relaxation. This structure will be developed bymeans of appropriate chemical composition selection and the novel processing route design based on newtechnological approaches and solutions allowing for a reduction of the processing duration, energy consumptionand using conventional "easy-in-operation" equipment. The results of the project will have a direct positive impacton the metallurgical sector as well as on the users of ultrahigh-strength steels (machine-building, constructionsector) which will benefit from the reduction of steel cost and use the production-easy (time-saving) processingtechnology.
Duration: 1.7.2024 – 31.12.2027
Výskum odolnosti a prevencie moderných konštrukčných materiálov voči vodíkovému krehnutiu
Research of the resistance and prevention of modern structural materials against hydrogen embrittlement
Program: VEGA
Project leader: Ing. Falat Ladislav, PhD.
Annotation: The aim of the project is to investigate the susceptibility to hydrogen embrittlement (HE) of structural metallicmaterials based on Fe (i.e. modern grades of carbon and alloy steels) as well as selected alloys or compositesbased on non-ferrous metals (e.g. Al, Cu, Mg, etc.) by the method of electrochemical hydrogen charging andmechanical testing in laboratory conditions. The microstructural conditionality of hydrogen embrittlement will be investigated on defined material states with characteristic microstructural parameters (grain size, phase composition, etc.). The possibilities of HE prevention will be investigated using available methods of surface modification (layers and coatings, surface alloying, formation of gradient structures, etc.) of basic materials inorder to apply a barrier effect against hydrogen permeability.
Duration: 1.1.2022 – 31.12.2025
00061 – Štipendiá pre excelentných výskumníkov ohrozených vojnovým konfkliktom na Ukrajine
Program: Plán obnovy EÚ
Project leader: Mgr. Petryshynets Ivan, PhD.
Duration: 1.10.2022 – 30.9.2025
Ino-Clad – Inovatívne prístupy pri obnove funkčných povrchov laserovým naváraním
Innovative approaches to the restoration of functional surfaces by laser weld overlaying
Program: SRDA
Project leader: RNDr. Džupon Miroslav, PhD.
Annotation: The project is focused on the restoration of functional surfaces by laser weld overlying. Innovative approaches willbe applied in the restoration of functional parts of molds for high-pressure die casting of aluminum alloys. Laserweld overlaying technology will be used for the formation of restoration layers in order to significantly reduce thenegative impact of the introduced heat on the quality of sub-weld layers. Newly designed additional materialsbased on Co, Ni, Fe with the presence of dispersed abrasion-resistant precipitates will be used. Additionalmaterials for laser welding will be used in the form of wires made of Uddeholm Dievar and Maraging. For bettervariability of the chemical composition, powder additives based on Fe with the addition of B, Ti, Nb, Mo, V and Wwill also be used to create weld overlays. The optimal method of heat treatment of weld overlays will be proposed.Research will further focus on microtexturing the surface of molded parts by low-energy laser radiation usinginnovative engraving surface treatment methods (LBT and EBT) in order to ensure a smooth distribution of theseparating agent on the mold surface. Experimental work will be focused on modifying the microgeometry of thesurface of new and renovated shaped parts of molds so that in the phase of "run-in of the mold" a compact layer ofthe separating agent is created to increase the technological life of molds. PVD and PE-CVD technologies will beused for this purpose.
Duration: 1.7.2021 – 30.6.2024
Vývoj nekonvečného termo-mechanického postupu finálneho spracovania izotropnych elektrotechnických ocelí
Unconventional thermo-mechanical technology development of final processing of isotropic electrical steels.
Program: VEGA
Project leader: Mgr. Petryshynets Ivan, PhD.
Duration: 1.1.2021 – 31.12.2023