Projects

National

BioResMat – Vývoj pokročilých materiálov budúcich bioresorbovateľných implantátov
Development of advanced materials for future bioresobable implants
Program: SRDA
Project leader: Ing. Molčanová Zuzana, PhD.
Annotation: Currently, several types of mateials(ceramics, polymers, composites of polymers and ceramics, and metal materials) are used in surgical practise as bone substitutes for traumatic injuries to the human musculoskeletal system. Metal materials mainly include titanium and its alloys, stainless steel, or cobalt-chramium alloys, which provide sufficient support for parts of the body that carry mechanical load during the healing process.The new approach in implantology is the use of bioresorbable materials consisting exclusevely of elements that occur in the human body.The aim of the project is to develop completely new types of biodegradable alloys, whose mechanical properties, biocompatibility, as well as adjustable degradation rate will lead to the develelopment of completely new materials for introcorporeal implants with the least invasive impac on the patient.
Duration: 1.7.2024 – 30.6.2027
BIORES – Výskum a vývoj bioresorbovateľných materiálov na báze Zn a Mg
Research and development of bioresorbable materials for implants on the based of Zn and Mg
Program: VEGA
Project leader: Ing. Ballóková Beáta, PhD.
Annotation: The project aims are to prepare and investigate the properties of new types of metal alloys, which will be made of bioabsorbable elements based on Zn, Ca and Mg prepared by intensive plastic deformation, analysis of micromechanisms of failure in relation to microstructure and basic mechanical and technological properties. To improve the mechanical and chemical properties, these alloys will be microalloyed with elements: Mn, Li, and Ag.The studied elements are naturally present in the human body, and thus the body has natural biocompatibility towards them. Tribological parameters, local mechanical properties as well as electrochemical properties will also be investigated. Studies in the field of the development of corrosion-resistant bioresorbable alloys suggest that this combination of mechanical and chemical properties can be achieved by the appropriate addition of microalloys and the appropriate thermo-mechanical treatments of the alloys.
Duration: 1.1.2023 – 31.12.2025
Vývoj a výskum vysokoentropických zliatin určených na efektívne uskladnenie vodíka
Research and development of highentropy alloys for efficient hydrogen storage
Program: VEGA
Project leader: doc. Ing. Saksl Karel, DrSc.
Annotation: The aim of this project is the development and research of high-entropy alloys – HEA whose primary function will be in hydrogen storage. Commercial use of H2 relies on its efficient and safe storage. One of the most efficient ways to store H2 is chemically bond it to an alloy lattice in a form of metalhydrides. The TiVZrNbHf alloy is capable of storing far greater amounts of H2 up to 210 kg.m-3. The problem of the alloy is its relatively high density of 7.81 g.cm-3, for transport applications. Much higher mass storage capacities are expected to be achieved with other HEA, consisting of lighter elements. In the project, we will design, prepare and fully characterize a series of new HEA with a low density of <7 g.cm-3. Materials that meet the targets of absorption capacity (>2wt% and>220 kgH2/m3), low desorption temperature <140°C and high cyclic absorption/desorption stability (>1000 cycles with a capacity drop of less than 10%). In the project, we will use our knowledge and expertise in the design and preparation of HEA.
Duration: 1.1.2022 – 31.12.2024
NOVEMBER – Vývoj nových 3D materiálov pre post Li-iónové batérie s vysokou energetickou hustotou
Development of novel 3D materials for post lithium ion batteries with high energy density
Program: SRDA
Project leader: Ing. Ballóková Beáta, PhD.
Annotation: The overall objective of NOVEMBER is to prepare and characterize new materials and concepts with self-healing functionalities integrated within the battery cell. These new composite 3-D materials will enable a variety of critical features including fail-safe and self-healing technologies to improve the battery performance, and greatly extended lifetimes. Special emphasis will be on in-operando electrochemical measurements using impedance spectroscopy and structural measurements. Validation of new materials will be done in small laboratory prototypes. This small prototypes are important in order to demonstrate scalability to battery cell production processes. To reach this goal, NOVEMBER has identified three specific objectives: 1. Development of novel high entropy oxides and sulfur based materials with self-healing functionalities. 2. Development of new physico-chemical in-operando techniques and solutions for monitoring of agign and degradation mechanisms 3. Validation and exploitation of the developed materials in prototypes. In summary, this project combines materials research advances and sophisticated in-operando technology development in order to obtain new materials for post Li -ion batteries with enhanced life-time and performances.
Duration: 1.7.2021 – 31.12.2024
HydroHEA – Výskum a vývoj nových vysokoentropických zliatin určených na efektívne uskladnenie vodíka v energetických aplikáciách
Research and development of new high – entropy alloys for efficient hydrogen storage in energy applications
Program: SRDA
Project leader: doc. Ing. Saksl Karel, DrSc.
Annotation: The presented project aims to development and research of metal hydride materials of the latest generation – highentropyalloys, which report the highest volumetric storage capacity of hydrogen among all materials used so far.We intend to utilize these materials in metal hydride tanks of hydrogen compressors, which are being developed inSlovakia by the project cooperating organisation – FME TUKE.In June 2020, the European Commission presented the Union\’s hydrogen strategy, which states that hydrogen andthe hydrogen economy are among the key technologies for the future of industry in the EU.The presented project aims to meet the goal of efficient and safe hydrogen storage. Up to date studies show thehighest volumetric hydrogen storage capacity of 150 kg/m3, out of all conventional alloys, is reached by Mg2FeH6metal hydride. In 2016, Sahlberg et al. in a publication entitled "Superior hydrogen storage in high entropy alloys"confirmed that the high-entropy alloy TiVZrNbHf can store an incredible "superior" of 210 kg/m3 of hydrogen in itsstructure with a ratio of hydrogen atoms to metal (H / M) 2.5. However, the problem of the alloy is its relatively high density of 7.81 g/cm3, which makes it too high for transport applications. In the project, we will design, prepare andfully characterize a series of completely new high-entropy materials with a low density <7 g/cm3. Materials thatmeet the targets of absorption capacity (> 2 wt% and> 220 kg H2/m3), low desorption temperature (<140C) andhigh cyclic absorption / desorption stability (> 1000 cycles with capacity drop of less than 10%) we will patent. Thealloys will also be tested in a hydrogen compressor, which will undoubtedly contribute to the further evaluation ofthe outputs of this project. In the project we will use our long-term knowledge and expertise in the design,preparation and characterization of high-entropy alloys.
Duration: 1.7.2021 – 30.6.2024
BiAll-2 – Vývoj nových bioresorbovateľných zliatin pre vnútrotelové implantáty
Development of new bioresorbable alloys for intracorporeal implants
Program: SRDA
Project leader: Ing. Molčanová Zuzana, PhD.
Annotation: The main goal of submitted project is to develop the new bioresorbable alloys Ca-Mg-Zn-NN and Ca-Mg-Sr-NNwith controlled rate of biodegradation (NN are solid solution strengthening and stabilizing elements). Developed alloys will be preferentially dedicated to fabrication of intracorporal implants for bone tissue engineering field. Members of project research team are highly focused on the investigation of these alloys systems since 2014. Essential and logical continuity of research activities are moving towards to experimental outputs into medical practice. However, this requires a large-scale investments of research capabilities to enhance the plastic deformability of alloys, while maintain their excellent strength properties and slow dissolution rate. Taking into account that healing of traumatic injuries needs different time of implant mechanical support, the great ambition of the project is to prepare alloys with possibility of controlling their dissolution rate. Another research point with hugepotential of success is handling and mastering of 3D printing of well -defined intracorporal implants from proposed alloys. One of the final research tasks will be in-vivo testing of implants dissolution in the environment of animals bone tissue and continuous monitoring of their degredation rate. Several state-of-the-art experimental techniques, such as HR-TEM microscopy or experiments using synchrotron and neutron diffraction techniques, will be used to study the atomic structure and microstructure of materials to meet the project objectives. Modern techniques of selective laser sintering and/or melting will be used for the production of final implants. The achieved outputs of the project research programme will be adapted by contracted private company Biomedical Engineering s.r.o. and displayed into clinical practice.
Duration: 1.7.2021 – 30.6.2024
THERMAGS – Termoelektrický materiál Ag2S ako ekologický konvektor tepla ľudského tela na elektrinu
Thermoelectric material Ag2S as green converter of heat from human body into electricity
Program: SRDA
Project leader: doc. Ing. Saksl Karel, DrSc.
Annotation: A carbon neutral society demands the development of efficient and energy saving technologies. Efficient thermoelectric devices have great potential to convert the waste heat from power plants, automotive engines, andindustrial processes into fruitful electricity. Another natural source of heat is our body. As the heat released by the human body is given for “free” wearable renewable energy generators (or harvesters) have potential to trigger revolution in the electronics industry in 21st century. For example, bendable, scalable, portable, and lightweight thermoelectrics can in future sourced flexible displays, medical image sensors, smart wearables, and large-area epapers to name a few. To date, state-of-the-art thermoelectrics is based on inorganic semiconductors that afford high electron mobility but lack in mechanical flexibility. By contrast, organic materials are amply flexible but low in electrical mobility and power output; the inorganic-organic hybrid design is a viable material-level option but has critical device-level issues for practical application. In flexible full-inorganic devices made of such Ag2S-based materials, high electrical mobility yielded a normalized maximum power density up to 0.08 W•m-1 near room temperature under a temperature difference of 20 K, orders of magnitude higher than organic devices and organic-inorganic hybrid devices. These results promised an emerging paradigm and market of wearable thermoelectrics.
Duration: 1.1.2022 – 31.12.2023
AdArmy – Prídavná flexibilná balistická nanokompozitná ochrana horných a doných končatín
Program: Other projects
Project leader: Ing. Puchý Viktor, PhD.
Duration: 1.1.2023 – 30.11.2023
FotDekont – Progresívne fotokatalytické materiály pre biologickú a chemickú dekontamináciu
Program: Other projects
Project leader: Mgr. Shepa Ivan, PhD.
Duration: 7.2.2023 – 30.11.2023
VaTRsEDVFsOAM – Vývoj a testovanie respirátorov s efektívnou degradáciou vírusov filtrami s obsahom antivirotických materiálov
Development and Testing of Respirators with Efficient Degradation of Viruses by Filters Containing Antiviral Materials
Program: SRDA
Project leader: Ing. Ballóková Beáta, PhD.
Annotation: In response to the situation resulting from the spread of the SARS-CoV-2 virus, the research and development performed at workplaces of the Faculty of Mechanical Engineering of the Technical University of Kosice has been partially transformed into research and development of special respirators and filtration materials. The submitted project is focussed on the development and construction of respirators with separable filters without exhalation valves which provide efficient protection against SARS-CoV-2 virus. The aim of the project is the investigation, development and production of respirators with separable filters and the testing of novel filtration materials. Designing and production of the respirator will be carried out while applying biomimetic and ergonomic principles and modern additive manufacturing technologies, and the production of multicomponent filters will be carried out while applying a combination of powder metallurgy technology and electrospinning which will facilitate combining metal filters and polymer nanofibres. Also, ceramic components produced by 3D printing will be used as a protective packaging of the used nanofibres and nanoparticles. In order to achieve the project objectives, it will be necessary to carry out the fundamental investigation of filtration efficiencies of the suggested materials with virucidal effects based on copper and ions of silver of zinc. The purpose of the project is to develop and construct testing systems intended for identification of resistance coefficients of newly developed filtration materials, filter permeability using a suitable aerosol, as well as mask penetration through the facepiece contact line. Optimisation of the shape of the respirator facepiece will be based on the analysis of biological parameters of at least 20 human facial scans; this will facilitate elimination of potential infection by particles escaping through the space around the mask.
Duration: 16.9.2020 – 31.12.2021
Vývoj nových biodegradovateľných kovových zliatin určených pre medicínske aplikácie
Development of new biodegradable metal alloys for medical applications
Program: VEGA
Project leader: doc. Ing. Saksl Karel, DrSc.
Annotation: In the submitted project we would like to prepare and investigate ultralight amorphous alloys (metallic glasses) which will be produced only from bioabsorbable elements (Ca, Mg, Zn, Sr, Si, Zr and Li). These elements are present in the human body and they are naturally tolerated by the human body.These amorphous alloys are applied in the field of medicine to prepare intracorporeal implants with controlled dissolution in the body of a patient. During the project our research team will design a brand new amorphous alloys. We will perform analysis of their atomic structures, tests of thermal stability, critical casting thickness, mechanical properties, corrosion resistance in environment similar to the human body fluids and cytotoxicity of the osteoblastic cells on the alloys surface. During the evaluation of new alloys we use our knowledge in field of detail study of atomic structure upon highly disorered materials.
Duration: 1.1.2019 – 31.12.2021
SEMOD-75 – Nanokompozitný materiál pre balistickú ochranu
Nanocomposite material for balistic protection
Program: Other projects
Project leader: Ing. Puchý Viktor, PhD.
Duration: 1.5.2019 – 31.8.2021
BiAll – Vývoj nových biodegradovateľných kovových zliatin určených pre medicínske a protetické aplikácie
Development of new biodegradable metal alloys for medical and prosthetic applications
Program: SRDA
Project leader: doc. Ing. Saksl Karel, DrSc.
Annotation: In the submitted project we aim to prepare and investigate ultralight amorphous alloys been made exclusively from bioabsorbable elements (Ca, Mg, Zn, Sr, Si, Zr, Li), existing in human body and to which the body has inherent tolerance. Applications of these materials are foreseen in the field of medicine – for implants with targeted dissolution in patient body. Metallic glasses based on bioresorbable chemical elements are interesting due to the unique combination of properties: very low density, Young’s modulus and hardness similar to human bones and toughness exeeding 300MPa. During the poject we will made series of new alloys not presented up to date on which we will characterise atomic structure, thermal stability in addition to functional properties as: mechanical, electrical conductivity, corrosion resistance in enviroments similar to human body solutions as well as cytotoxicity of the osteoblastic cells on their surfaces. Determination of atomic structure of highly disordered materials belongs to the most complicated experimentally theoretical procedures in materials research and in condensed matter physics. Within the project we plan to do also very ambitious experiments on X-ray free electron laser aiming to study dynamics of the solid state systems sampled in femtosecond timescales by X-ray photon correlation spectroscopy. Goals of this project are highly ambitious but achiavable will require application of the most sophisticated methods applied today in material research. The previous experiences of the research team proved by more than 70 scientific papers published in most prestigious scientific journals like Nature Physics, Physical Review Letters, Applied Physics Letters etc. we believe guarantees their fulfilment.
Duration: 1.8.2018 – 30.6.2021
AddArmy – Prídavná flexibilná balistická nanokompozitná ochrana horných a dolných končatín
Program: Other projects
Project leader: Ing. Puchý Viktor, PhD.
Duration: 1.3.2023 – 0.0.0000