International
Progresívne metódy úpravy funkčných a mechanických vlastností práškových materiálov | |
Progressisve methods for treatment of the functional and mechanical properties of powder materials | |
Program: | Inter-academic agreement |
Project leader: | RNDr. Kovaľ Vladimír, DrSc. |
Annotation: | Rapidly solidified powder alloys as well as mechanically prepared powder metal alloys have a limited plastic deformation capability. Limited plasticity of the powders leads to their limited form-ability and in some cases prevents compacting of the powder by uniaxial cold pressing. Structural defects typical for mechanically synthesized alloys also cause deterioration of their electrical and magnetic properties. The aim of the project is to investigate the progressive processing methods of mechanically prepared powder alloys in order to improve their compaction, while maintaining or improving their electrical, magnetic and mechanical properties. The project solution can bring original findings, leading to expansion of the usability of fast-solidified and mechanically synthesized alloy powder materials in industry. |
Duration: | 1.1.2018 – 31.12.2021 |
National
Povrchové inžinierstvo práškových feromagnetických častíc a štruktúra magneticky mäkkých kompozitov | |
Surface engineering of powder ferromagnetic particles and structure of soft magnetic composites | |
Program: | VEGA |
Project leader: | Ing. Bureš Radovan, CSc. |
Annotation: | The project deals with SMC based on powdered ferromagnetics and electro-insulating ceramics in the form of a continuous network. The research of such materials applied in the field of energy conversion is motivated by increasing performance and efficiency, which is achieved by increasing the working frequency of magnetization. The project aims to investigate the structure of ferromagnetic and dielectric particle interfaces, their influence on the formation of microstructure and the functional properties of compacted SMC materials with a focus on the frequency stability of electromagnetic properties. The high variability of the geometrical characteristics of ferromagnetic microparticles and modifications in the distribution of ceramic nanoparticles provide a large scope for increasing the frequency stability of the functional properties of the composite. The analysis of interphases, structural discontinuities and compaction mechanisms will contribute to clarifying the evolution of electromagnetic properties. |
Duration: | 1.1.2024 – 31.12.2026 |
Bezolovnaté feroelektrické materiály pre efektívne uskladňovanie elektrickej energie | |
Lead-free ferroelectric materials for energy storage applications | |
Program: | VEGA |
Project leader: | RNDr. Kovaľ Vladimír, DrSc. |
Annotation: | The proposed project is devoted to the research and development of novel relaxor-type ferroelectric ceramics.Relaxor ferroelectrics (RFEs) are receiving considerable attention from materials scientists due to their uniqueproperties for energy storage applications. However, dielectric capacitors made of RFEs, although presentingfaster charging/discharging rates and better stability compared with supercapacitors or batteries, are limited inapplications due to their relatively low energy density.The main goal of the project is to design and prepare a lead-free RFE ceramic material with high energy storagedensity and efficiency. A series of structural modifications using cationic substitution on a RFE material will becarried out to enhance the energy storage capabilities of the ceramics. The effect of the chemical substitution onferroelectric phase transitions and formation of polar nanoregions will be investigated in relation to thecompositional disorder and stability of antiferroelectric state. |
Duration: | 1.1.2023 – 31.12.2025 |
FUCO – Funkčné vlastnosti kompaktovaných kompozitov na báze magnetických častíc s povrchovo modifikovanými vlastnosťami | |
Functional properties of compacted composites based on magnetic particles with surface-modified properties. | |
Program: | SRDA |
Project leader: | Ing. Bureš Radovan, CSc. |
Annotation: | The project is focused on the experimental and theoretical research of the soft magnetic composites in order to improve their functional properties. Magnetic powder composite systems will be prepared by advanced innovative chemical and mechano-chemical routes and powder metallurgy techniques not yet used by default. The series of composite samples will be prepared with insulated ferromagnetic particles of different morphology and properties with properly selected dielectric phases. The expected results will bring the novel advanced materials intensifying the application potential in electrical engineering as well as extend the theoretical modeling the magnetization processes in the soft magnetic composites and build up the database with the data structure utilizable for the application of artificial intelligence in the development of novel materials. |
Project webpage: | http://www.imr.saske.sk/project/fuco/index.html |
Duration: | 1.7.2021 – 30.6.2025 |
Príprava hybridných kompozitných materiálov a charakterizácia štruktúry a magnetických vlastností v širšom intervale teplôt | |
Preparation of hybrid composites and characterization of structure and magnetic properties at a wider temperature range | |
Program: | VEGA |
Project leader: | RNDr. Birčáková Zuzana, PhD. |
Annotation: | The project is focused on the preparation of new progressive composites, on the research of the structure and magnetic properties of materials composed of ferromagnetic, ferrimagnetic and insulating components. The resulting solid composite material will be formed by compression. The research will focus on explaining the influence of ferromagnetic and ferrimagnetic magnetic structure of composites and magnetic interactions on electromagnetic properties under different physical conditions. The aim is to determine the relationships between magnetic parameters, particle size, thickness of ferromagnetic and other insulating coatings and to prepare a hybrid composite material with verygood magnetic properties. The research results have the ambition to expand the application potential of composite materials for electrical engineering. |
Duration: | 1.1.2020 – 31.12.2023 |
Vplyv mikrovlnného žiarenia na štruktúru a vlastnosti práškových funkčných materiálov | |
Influence of microwave radiation on the structure and properties of powder functional materials | |
Program: | VEGA |
Project leader: | Ing. Bureš Radovan, CSc. |
Annotation: | The subject of research is the interaction of MW radiation with functional powder materials with specific electrical and magnetic properties, especially soft magnetic composites (SMC). The aim of the project is to contribute to the explanation of the mechanisms of densification of the MW processed structure of powder composites based on the primary ferromagnetic component and the secondary dielectric component distributed in the volume of the composite as a network. The structural characteristics will be correlated with the electromagnetic and mechanical properties of MW sintered materials in order to contribute to the explanation of changes in the functional properties induced by the interaction of MW radiation with ferromagnets and dielectrics. It is assumed that fundamental knowledge about the relations of process parameters, structure and physical properties will contribute to the application possibilities of MW PM processing. The contribution can also be expected in the field of structural design of SMC. |
Duration: | 1.1.2021 – 31.12.2023 |
Inovatívne postupy vo výskume a vývoji nových feroických materiálov s využitím komplexnej impedančnej spektroskopie | |
Innovative approaches to research and development of novel ferroic materials by using complex impedance spectroscopy | |
Program: | VEGA |
Project leader: | RNDr. Kovaľ Vladimír, DrSc. |
Annotation: | Ferroelectric and multiferroic (e.g., magnetoelectric) materials have received extensive attention in the last few decades, primarily because of their numerous potential applications in microelectronics and spintronics. Ferroic ceramics, however, suffer usually from high losses, leakage currents and low polarization (ferroelectric and/or magnetic) due to grain boundary effects and interfacial polarization phenomena. These microstructural featuresimpede largely commercial viability of electro-active ceramics. The main goal of the proposed project is to employ the AC complex impedance technique for probing the electrical properties of functional ceramics and reveal the correlation between the microstructural features and conductivity phenomena in grain boundary and/or interfacial layer dominated materials. Understanding the structure-property relationship would allow designing novel (multi-) functional materials with improved dielectric and (multi-) ferroic properties. |
Duration: | 1.1.2020 – 31.12.2022 |
Histes – Vývoj vysoko-legovaných izotrópnych elektro ocelí pre trakčné motory elektromobilov | |
Development of high-alloy isotropic electrical steels for traction engines of electric vehicles | |
Program: | SRDA |
Project leader: | RNDr. Kováč František, CSc. |
Annotation: | In this project, for the production of high strength electrical steel type “finish”, we aim to propose an original concept of chemical composition and microstructural design with the desirable crystallographic texture which would beprovided a combination of excellent electro-magnetic and high strength properties. The strength properties will be provided by high alloying of steels which are based on substituents elements with Si content from 3 to 3,5 wt.%, Alcontent from 0,5 to 1,5 wt.%, Cu content up to 0,5 wt.%, and P content up 0,10 wt.%. The low value of watt losses and high level of magnetic induction will be achieved by means of coarse-grained columnar or coarse-grained equiaxial microstructure with average grain size in the range from 150 to 300μm and with increased intensity of cube and Goss texture components at the expense of deformation texture. The evolution of the final microstructure will be based on the use of the strain-induced growth of ferrite grains through the thickness of the sheet from itssurface to the central part. At the same time, we want to eliminate the liability to the brittle failure of materials during the cold rolling. It will be realised by optimization of previous thermal deformation exposures in the hot rollingprocess as well as optimization of deformation process of cold rolling with "tailor-made" parameters of rolled steel.The development steel will be used in traction engines of electric vehicles and in high-speed electric motors withhigh requirement for the power. |
Duration: | 1.7.2019 – 30.6.2022 |
Výskum progresívnych metód úpravy práškových zliatin určených na prípravu magneticky mäkkých kompozitov | |
Investigation of the progressive powder processing methods designated for fabrication of the soft magnetic composite | |
Program: | VEGA |
Project leader: | Ing. Bureš Radovan, CSc. |
Annotation: | Excellent powder soft magnetic materials are characterized by limited compressibility due to shape, size and plastic deformation ability. Compressibility is improved by pressing additives. Additives degrade the magnetic properties and resistivity of the soft magnetic composites. Aim of the project is investigation of the progressivemethods of powder alloy processing with focus on modification of powder particles and dielectric coating formation at their surface. Motivation of modifications are improvement of the compressibility, increase in resistivity of the powder alloy thus improvement of functional and mechanical properties of the composites. The project will contribute to evaluation of the physical and technical possibility to utilize the microwaves and high density electric field in modification of metallic powder. It could be expected preparation of the powder alloy ofwhich physical and technological properties will be suitable for the soft magnetic composites production or potentially 3D printing. |
Duration: | 1.1.2018 – 31.12.2020 |