International
IMPROVING – Posilnenie výskumných kapacít Ústavu materiálového výskumu v Košiciach | |
Improving the research capacity of the Institute of materials research in Košice | |
Program: | FP7 |
Project leader: | prof. RNDr. Dusza Ján, DrSc. |
Duration: | 1.3.2009 – 28.2.2010 |
National
Povrchové inžinierstvo práškových feromagnetických častíc a štruktúra magneticky mäkkých kompozitov | |
Surface engineering of powder ferromagnetic particles and structure of soft magnetic composites | |
Program: | VEGA |
Project leader: | Ing. Bureš Radovan, CSc. |
Annotation: | The project deals with SMC based on powdered ferromagnetics and electro-insulating ceramics in the form of a continuous network. The research of such materials applied in the field of energy conversion is motivated by increasing performance and efficiency, which is achieved by increasing the working frequency of magnetization. The project aims to investigate the structure of ferromagnetic and dielectric particle interfaces, their influence on the formation of microstructure and the functional properties of compacted SMC materials with a focus on the frequency stability of electromagnetic properties. The high variability of the geometrical characteristics of ferromagnetic microparticles and modifications in the distribution of ceramic nanoparticles provide a large scope for increasing the frequency stability of the functional properties of the composite. The analysis of interphases, structural discontinuities and compaction mechanisms will contribute to clarifying the evolution of electromagnetic properties. |
Duration: | 1.1.2024 – 31.12.2026 |
Vplyv mikrovlnného žiarenia na štruktúru a vlastnosti práškových funkčných materiálov | |
Influence of microwave radiation on the structure and properties of powder functional materials | |
Program: | VEGA |
Project leader: | Ing. Bureš Radovan, CSc. |
Annotation: | The subject of research is the interaction of MW radiation with functional powder materials with specific electrical and magnetic properties, especially soft magnetic composites (SMC). The aim of the project is to contribute to the explanation of the mechanisms of densification of the MW processed structure of powder composites based on the primary ferromagnetic component and the secondary dielectric component distributed in the volume of the composite as a network. The structural characteristics will be correlated with the electromagnetic and mechanical properties of MW sintered materials in order to contribute to the explanation of changes in the functional properties induced by the interaction of MW radiation with ferromagnets and dielectrics. It is assumed that fundamental knowledge about the relations of process parameters, structure and physical properties will contribute to the application possibilities of MW PM processing. The contribution can also be expected in the field of structural design of SMC. |
Duration: | 1.1.2021 – 31.12.2023 |
Vývoj nekonvečného termo-mechanického postupu finálneho spracovania izotropnych elektrotechnických ocelí | |
Unconventional thermo-mechanical technology development of final processing of isotropic electrical steels. | |
Program: | VEGA |
Project leader: | Mgr. Petryshynets Ivan, PhD. |
Duration: | 1.1.2021 – 31.12.2023 |
VaTRsEDVFsOAM – Vývoj a testovanie respirátorov s efektívnou degradáciou vírusov filtrami s obsahom antivirotických materiálov | |
Development and Testing of Respirators with Efficient Degradation of Viruses by Filters Containing Antiviral Materials | |
Program: | SRDA |
Project leader: | Ing. Ballóková Beáta, PhD. |
Annotation: | In response to the situation resulting from the spread of the SARS-CoV-2 virus, the research and development performed at workplaces of the Faculty of Mechanical Engineering of the Technical University of Kosice has been partially transformed into research and development of special respirators and filtration materials. The submitted project is focussed on the development and construction of respirators with separable filters without exhalation valves which provide efficient protection against SARS-CoV-2 virus. The aim of the project is the investigation, development and production of respirators with separable filters and the testing of novel filtration materials. Designing and production of the respirator will be carried out while applying biomimetic and ergonomic principles and modern additive manufacturing technologies, and the production of multicomponent filters will be carried out while applying a combination of powder metallurgy technology and electrospinning which will facilitate combining metal filters and polymer nanofibres. Also, ceramic components produced by 3D printing will be used as a protective packaging of the used nanofibres and nanoparticles. In order to achieve the project objectives, it will be necessary to carry out the fundamental investigation of filtration efficiencies of the suggested materials with virucidal effects based on copper and ions of silver of zinc. The purpose of the project is to develop and construct testing systems intended for identification of resistance coefficients of newly developed filtration materials, filter permeability using a suitable aerosol, as well as mask penetration through the facepiece contact line. Optimisation of the shape of the respirator facepiece will be based on the analysis of biological parameters of at least 20 human facial scans; this will facilitate elimination of potential infection by particles escaping through the space around the mask. |
Duration: | 16.9.2020 – 31.12.2021 |
Dizajn mikroštruktúry a subštruktúry elektroocelí pre náročné aplikácie v pohonoch elektromobilov | |
The microstructural and substructural design of electrical steels for demanding applications in the electrical cars drives. | |
Program: | VEGA |
Project leader: | Mgr. Petryshynets Ivan, PhD. |
Annotation: | The project is focused on the microstructural and substructural design of high-strength electrical steels intended for rotors and stators of traction motors for electricalcars and cars with hybrid drive. In frame of present project the research will be focused on the design and preparation of high-strength dynamo steels with good strength as well as the magnetic properties. The proposed steel will be designed so that its microstructure and texture parameters show the low watt loss under load in high magnetic fields and mechanical strength provide by ultra-fine precipitates (up to 50nm) or clusters of selected elements based on FeTiP particles responds to the requirements for the extreme mechanical and fatigue loads of the rotor at sudden braking or pulling acceleration. To achieve the selected composite system a sequence of structure creation will be designed and implemented. |
Duration: | 1.1.2018 – 31.12.2020 |
Výskum progresívnych metód úpravy práškových zliatin určených na prípravu magneticky mäkkých kompozitov | |
Investigation of the progressive powder processing methods designated for fabrication of the soft magnetic composite | |
Program: | VEGA |
Project leader: | Ing. Bureš Radovan, CSc. |
Annotation: | Excellent powder soft magnetic materials are characterized by limited compressibility due to shape, size and plastic deformation ability. Compressibility is improved by pressing additives. Additives degrade the magnetic properties and resistivity of the soft magnetic composites. Aim of the project is investigation of the progressivemethods of powder alloy processing with focus on modification of powder particles and dielectric coating formation at their surface. Motivation of modifications are improvement of the compressibility, increase in resistivity of the powder alloy thus improvement of functional and mechanical properties of the composites. The project will contribute to evaluation of the physical and technical possibility to utilize the microwaves and high density electric field in modification of metallic powder. It could be expected preparation of the powder alloy ofwhich physical and technological properties will be suitable for the soft magnetic composites production or potentially 3D printing. |
Duration: | 1.1.2018 – 31.12.2020 |
Vplyv mikroštruktúry TOO v modifikovaných 9Cr oceliach na porušovanie | |
Influence of the HAZ microstructure on degradation of modified 9Cr steels | |
Program: | VEGA |
Project leader: | RNDr. Ševc Peter, PhD. |
Annotation: | The project is focused on the study of the processes operating on the microstructure and substructure levels in modified 9Cr steels and their influence on the failure of the material. Its intention is to investigate the interconnections among the microstructure, substructure, secondary phase precipitation and hydrogen environment influence in the individual parts of the weld HAZ during degradation processes. The research results could be used at the degradation evaluation of the experimental materials and their welds in connection with the research group former projects results performed on the real weld joints from the view of their sensitivity to the failure during the thermal and mechanical straining. |
Duration: | 1.1.2016 – 31.12.2018 |
Termodynamická analýza a modelovanie fázového diagramu ternárneho systému Fe-B-Mn a verifikácia databázy pre termodynamické výpočty komplexných systémov experimentálnou analýzou zliatin typu Fe-B-X-Y (X, Y=V, Cr, C, Mn). | |
Thermodynamic analysis and modelling of phase diagram for Fe-B-Mn ternary system and verification database for thermodynamic calculations of complex systems by experimental analysis of Fe-B-X-Y (X,Y=V, Cr, C, Mn) alloys. | |
Program: | VEGA |
Project leader: | RNDr. Homolová Viera, PhD. |
Annotation: | The project links to the previous projects dealing with modelling of Fe-B-X (X= V, Cr, C) ternary systems. It is focused on the study of the phases and phase eqiulibria in Fe-B-Mn ternary system. The research results contribute to the knowledge on phases existence, their chemical composition, structure and eqiulibria in the mentioned system. The main goal of the project is creation reliable parameter database for thermodynamic calculations in Fe-B-Mn ternary system by Calphad method. This database contributes to the creation of complex thermodynamic parameter database allowing more exact phase equilibria predictions for wide range of systems.Another task of the project is the experimental investigation of quaternary alloys of the Fe-B-X-Y (X, Y=V, Cr, C, Mn) type which will be used for the verification of our complex database. The complex database will be createdby merging of the databases of the Fe-B-Mn system, Fe-B-X (X= V, Cr, C) ternary systems and other existing databases. |
Duration: | 1.1.2015 – 31.12.2017 |
Vývoj mikroštruktúry a vlastnosti funkčných kompozitov založených na progresívnych magneticky mäkkých zliatinách | |
Microstructure development and properties of functional composites based on progressive soft magnetic alloys | |
Program: | VEGA |
Project leader: | Ing. Bureš Radovan, CSc. |
Duration: | 1.1.2015 – 31.12.2017 |
Príprava, mikroštruktúra a vlastnosti magnetických kompozitov na báze práškového železa. | |
Preparation, microstructure and properties of magnetic composites based on iron powders. | |
Program: | VEGA |
Project leader: | Ing. Bureš Radovan, CSc. |
Annotation: | The aim of the project is the study of correlation of powder morphology,microstructure and properties of SMC.Composite powders prepared by chemical methods will be compacted using advanced technology of microwave sintering.Project will focus on:a)study of methods for preparation of composite powders related to their physical and technological properties b)study of the influence of modern compaction methods on microstructure of SMC in comparison with conventional pressing and sintering c)study of changes in electric,magnetic and mechanical properties of composites in dependence on technology of preparation d)correlation of technological parameters,morphology,microstructure a physical properties of SMC.Methods:quantification of morphology and microstructure using image analysis stereology;analysis of electric and mechanical properties.Project will help to explain the microstructure development patterns and nature of changes in the properties of SMC with the aim to achieve homogeneity and isotropy of properties. |
Duration: | 1.1.2012 – 31.12.2014 |
Termodynamický opis systémov B-Cr a Fe-B-Cr | |
Thermodynamic description of B-Cr and Fe-B-Cr systems | |
Program: | VEGA |
Project leader: | RNDr. Homolová Viera, PhD. |
Annotation: | The project connects with the project:"Thermodynamic analysis of binary and ternary systems with boron" and deals with study of phases and phase equlibria in Fe-B-Cr system and in B-Cr subsystem. Main goal of the project is the development of reliable database of parameters for thermodynamic calculations for Fe-B-Cr ternary system and the extension of knowledge on the existence of chromium borides, their chemical composition, structures and phase equilibria in the investigated systems. This system is one of subsystems of complex steels containing boron, including white iron, austenitic stainless steels, hard layers, number of soft magnetic alloys etc. The new-created database contributes to the development and reassessment of extensive database of thermodynamic parameters for prediction of phase equilibria for wide range of systems. Achieved data alow the application of thermodynamic and kinetic modelling at the study and development of new materials, as well. |
Duration: | 1.1.2012 – 31.12.2014 |
Iniciácia, subkritický rast, koalescencia a šírenie mikrotrhlín pri únavovom namáhaní spekaných Fe-Cr-Mn-Mo ocelí | |
Initiation, Subcritical Growth, Coalescence and Propagation of Fatigue Microcracks in Sintered Fe-Cr-Mn-Mo-C Steels | |
Program: | VEGA |
Project leader: | doc. Ing. Dudrová Eva, CSc. |
Annotation: | The project objective is a microscopic study of initiation, subcritical growth and coalescence of microcracks andcrack propagation in fatigue loading of Powder Metallurgy Fe-Cr-Mn-Mo-C alloys. These will be based onFe-Cr-Mo prealloyed powders with additions of Fe-Mn-C master alloy powder such as to sinter with a transientliquid phase. The main topics: a) effect of master alloy addition and sintering conditions on microstructure andfatigue properties; b) microscopic analysis of fatigue failure stages at selected stress amplitudes and increasingnumber of cycles up to failure; calculation of the microstructural stress intensity factors Ka; c) modelling of shortcrack behaviour, measurement and calculation of critical crack sizes; d) correlation of chemical composition,processing parameters and microstructure with failure micromechanisms and macromechanical fatigueproperties. It is expected that original knowledge about these relations in sintered steels will be attained. |
Duration: | 1.1.2009 – 31.12.2011 |
Štúdium kompaktizácie mikrokompozitných materiálov na báze Fe práškov | |
Compaction of microcomposite materials based on iron powder | |
Program: | VEGA |
Project leader: | Ing. Bureš Radovan, CSc. |
Annotation: | The project objective is study microcomposite materials (MM) compaction with special physical properties based on Fe and Fe alloyed powders with insulation coated layer based on inorganic or organic compounds. Conventional and innovated methods of pressing and sintering will be used. Key attention will be focused on a) study of morphological, microstructural and chemical changes in relation to pressure and temperature as main compaction parameters, b) quantification of MM microstructure, c) explanation of processes performing in interphase regions during compaction, d) correlation of compaction parameters, microstructure and properties of MM. Methodics: quantification of compressibility and sinterability, LOM, SEM+EDS, image analysis, stochastic stereological methods, mechanical,electrical and magnetic properties. It is expected that project will contribute to explanation of compaction patterns of MM with goal to achieve homogeneous and defective free microstructure and isotropic materials properties |
Duration: | 1.1.2009 – 31.12.2011 |
MICOMAT – Kompaktizácia, mikroštruktúra a vlastnosti mikrokompozitných materiálov na báze povlakovaných Fe práškov. | |
Compactizing, Microstructure an Properties of Microcomposite Materials based on Coated Fe Powders | |
Program: | SRDA |
Project leader: | doc. Ing. Dudrová Eva, CSc. |
Annotation: | The objective of the project is an investigation of compactizing, microstructure development and properties of microcomposite materials based on metal, ceramic, and polymer coated Fe powders using conventional and innovative techniques of forming and sintering. The research will be focused on the deformation and diffusion processes related to mechanical and chemical interactions during compactizing (forming and sintering). The aim is a) to identify the morphological, chemical and microstructural changes of coating/substrate interfaces relevant to the acting of the pressure and heat during the compactizing, b) to identify the microstructure composition of sintered microcomposite materials, c) to explain micromechanical and diffusion processes realised during the stages of compactizing, d) to analyse the properties of studied microcomposite materials, e) to determine the relationship between the compactizing parameters, microstructure and properties (mechanical, electrical, magnetical) of studied microcomposite materials. Studied systems: coating/substrate: Cu-Ni-X/Fe, Al2O3/Fe, FePO4/Fe, Somaloy. Processing methods: single and multistep cold pressing, sintering with continual monitoring of furnace atmosphere, warm compaction with thermosetting resins. Evaluation methods: compressibility, sinterability, LOM, SEM+EDS, X-ray analyses, digital image and statistical analysis of microstructure, mechanical, electrical, magnetic properties |
Duration: | 1.9.2008 – 31.12.2010 |
Tribologické aspekty porušovania spekaných materiálov s dôrazom na kontaktnú únavu a opotrebenie. | |
Tribologic aspects of sintered materials failures as a result of rolling contact fatigue and wear | |
Program: | VEGA |
Project leader: | Ing. Jakubéczyová Dagmar, CSc. |
Annotation: | The subject of project is to study the behavior of classical sintered ferritic materials with the density cca 7g.cm-3 under contact fatigue and wear conditions. Sintered materials, by their specific structure (presence of pores ), are known for their different responses to different forms of stresses. These facts along with theintensive expansion in production of spareparts on the basis of sintered materials, mostly in automotive industry, call for both basic research and systematic monitoring of attributes affecting service life of materials under stress. The results achieved will widen the area of knowledge in this field and assist in establishing the priorities of main directions of basic or applied research. |
Duration: | 1.1.2008 – 31.12.2010 |