Projects

International

Príprava a charakterizácia pokročilých anorganicko-organických polymérnych hybridov pre 3D tlač
Syntesis and characterization of novel organic-inorganic polymeric hybrids for 3D printing
Program: Inter-academic agreement
Project leader: Ing. Bureš Radovan, CSc.
Annotation: Three-dimensional printing is currently largely bound to the use of polymer materials supplied bythe printer manufacturer. This, however, greatly limits the wider application of 3D printing of objects with specific physicochemical and mechanical properties. The primary reason of this limitation is the requirement for biocompatibility, biodegradability, enhancement of anti-corrosion properties, or specific requirements for the mechanical and electrical properties of the resulting products. Consequently, the objective of this project is the synthesis and characterization of novel advancedpolymer composites with inorganic fillers applicable in 3D printing. The aim will be to examine the influence of the size and shape distribution of inorganic fillers on thestructure and physicochemical properties of the newly formulated composites. Increased attentionwill be paid to modifying the macromolecular structure and microstructure at the interface between the organic and inorganic phases and unveiling the induced changes in the macroscopic properties of the infiltrated hybrid materials.
Duration: 1.1.2018 – 31.12.2021
Progresívne metódy úpravy funkčných a mechanických vlastností práškových materiálov
Progressisve methods for treatment of the functional and mechanical properties of powder materials
Program: Inter-academic agreement
Project leader: RNDr. Kovaľ Vladimír, DrSc.
Annotation: Rapidly solidified powder alloys as well as mechanically prepared powder metal alloys have a limited plastic deformation capability. Limited plasticity of the powders leads to their limited form-ability and in some cases prevents compacting of the powder by uniaxial cold pressing. Structural defects typical for mechanically synthesized alloys also cause deterioration of their electrical and magnetic properties. The aim of the project is to investigate the progressive processing methods of mechanically prepared powder alloys in order to improve their compaction, while maintaining or improving their electrical, magnetic and mechanical properties. The project solution can bring original findings, leading to expansion of the usability of fast-solidified and mechanically synthesized alloy powder materials in industry.
Duration: 1.1.2018 – 31.12.2021
WȔRTH – Príprava magneticky mäkkých kompozitov pre priemysel
Preparation of soft magnetic composites for infustrial application
Program: Bilateral – other
Project leader: RNDr. Strečková Magdaléna, PhD.
Annotation: The project focuses on the preparation of soft magnetic composites based on ferromagnetic material and modified polymers. The soft magnetic composite material will be potentialy used for the preparation of miniaturized high temperature templates.
Duration: 1.9.2017 – 31.8.2020
Kompaktizácia magneticky mäkkých práškových materiálov s obmedzenou schopnosťou plastickej deformácie
Compaction of soft magnetic powder materials with limited plastic deformation ability
Program: Inter-academic agreement
Project leader: Ing. Bureš Radovan, CSc.
Annotation: Goal of the project is to investigate the progressive compaction methods to achieve high density and low defectiveness of the structure of soft magnetic materials based on powder FeSi and High entropy alloys. Research is focused on the clarification of densification mechanism in powder soft magnetic materials. Mechanical and magnetic properties of compacted materials will be correlated with parameters of compaction technology. This knowledge will contribute to application of progressive magnetic alloy in technical practice mainly in the field of green energy and transportation industry.
Duration: 1.1.2018 – 31.12.2019
Funkčné kompozity na báze elastomérnej matrice a anorganických plnív
Functional composites based on elastomer matrix and inorganic filler
Program: Inter-academic agreement
Project leader: Ing. Bureš Radovan, CSc.
Annotation: Advanced functional materials combining required mechanical and electro-magnetic properties currently represent a promising approach in development of new types of sensors. The primary aim of the proposed joint project is formulation of novel functional composites based on elastomer matrix modified by nano-particle fillers. To obtain materials with a broad range of physicochemical properties the polymer matrix, for instance polyurethane based on polybutadiene blocks, will be modified by different types and amounts of metallic nano-particles. Indispensable part of the proposed project is detailed structural and physicochemical characterization of the prepared composite systems. For such task specific correlations between mechanical and electrical properties and the chemical composition of the prepared systems will be primarily studied. Molecular structure will be probed by FTIR and ssNMR techniques while surface morphology will be determined using advanced microscopy. Successful solution of the proposed project requires extensive knowledge transfer between both working groups.
Duration: 1.1.2016 – 31.12.2017
Príprava a charakterizácia magneticky mäkkých zliatin s vysokou entropiou
Preparation and characterization of soft magnetic high entropy alloys
Program: Inter-academic agreement
Project leader: RNDr. Strečková Magdaléna, PhD.
Annotation: The project will be focused on preparation of soft magnetic alloys materials high energy milling of Fe and Ni with addition of glassy phase stabilizer and with addition of elements supporting nanocrystallization process. Main goal of the project is preparation and haracterization of nanocrystalline or partially amorphous alloys. Task of Czech research team will be echanochemicalpreparation of powder nano-crystalline material. XRD and SEM-EBSD methods will be used forcharacterization and optimization of mechanical milling process. Technology parameters andconditions of preparation of studied nano-crystalline alloys will be defined. Task of Slovak research team is analyses of powder morphology and particle size distribution of prepared powder alloys. Analysis of compressibility, shaping and compaction of selected powders to sample body for electric, magnetic and mechanical tests. Correlation analyse of measured characteristics will beused to obtain the information, which will be important for potential application of studied alloys in technical practice.
Duration: 1.1.2015 – 31.12.2017
Príprava a charakterizácia organicko-anorganických kompozitov na báze polyuretán-X systémov
Preparation and characterisation of organic-inorganic composites based on polyurethan-X systems
Program: Bilateral – other
Project leader: prof. RNDr. Dusza Ján, DrSc.
Duration: 1.1.2012 – 31.12.2014
Štúdium správania sa uhlíkom povlakovaných legovaných práškov počas spekania a modelovanie procesu spekania
Investigation of Behaviour of carbon Coated Alloyed Powders during Sintering and Modelling of the Sintering Process
Program: Inter-academic agreement
Project leader: RNDr. Selecká Marcela, CSc.
Duration: 1.1.2012 – 31.12.2014
Nano-carbon allo – Štúdium procesov povlakovania a tvorby nano-štruktúrneho aktívneho uhlíka pri príprave nízkouhlíkových spekaných súčiastok z práškových zmesí
Study of the Processes of Coating and Formation of Nano-Structured Active Carbon at Processing of Low Alloyed Sintered Steel Components from Powder Mixtures
Program: Bilateral – other
Project leader: RNDr. Selecká Marcela, CSc.
Annotation: The aim of the project is development of new ecologically-friendly method of coating of powders based on iron for introduction íof carbon in the form of hydrocarbon CnHm as substitution of graphite. The basic research will be focused on study of processes connected with reactions solidus-solidus and solidus-gas, which are in progress during sintering, namely in Fe-C and Fe-Cr-Mo-C compacts. Optimal conditions of coating will be deternined, data concerning kinetics of the formation of interparticle connection will be obtained and compared with those from calculation and explained micromechanical and diffusion processes. Relationship among microstructure, processing conditions and properties of sintered compacts will be determined. For comparison the specimens with addition of carbon in the form of graphite will be prepared and analysed under the same conditions.
Duration: 1.1.2012 – 31.12.2013
PROSURFMET – Modifikácie povrchových úptav PM nástrojových ocelí
Modifications of Surfacing PM Tool Steels
Program: EUREKA
Project leader: Ing. Jakubéczyová Dagmar, CSc.
Annotation: Improvement of industrial properties of P/M cutting steels by the method of surface treatment of the functional surface (PVD-technologies, duplex coating with plasma nitrided layer as a "support layer" for additional PVD-methods). Realization of surface treatment of PM cutting and forming tools (Vanadis 4, 6, K190). Determination of suitable parameters of thermal deposition processes from the point of view of the coat/surface system behaviour under concrete conditions of loading. Evaluation of microstructure by light and scanning electron microscopy, in close association with image analysis (IA) oriented on surface characteristics (microhardness, adhesion, resistance to wear. Testing of tools under industrial conditions and microstructural analysis after their use.
Project webpage: www.eureka.be
Duration: 1.1.2005 – 31.12.2007
UPLETOOLS – Povrchová úprava ledeburitických PM nástrojových ocelí
Upgrading of ledeburitic type P/M tool steels
Program: EUREKA
Project leader: Ing. Jakubéczyová Dagmar, CSc.
Annotation: The aim of the project is to increase both the surface hardness and the wear resistence, in order to achieve the prolonging of the service time of cutting tools made from the PM high speed steels. The prolonging of the manufacture qualities will be achieved mainly by the plasma nitriding and PVD-coating. The experimental efforts are closely connected with those solved within the frame of the EUREKA E!2060 SURTELEM-project.Within this project,the PM made Vanadis30 – type high speed steel (HSS) has been investigated.Obtained know-how is assimed to be applied to the investigation of the newly developed cobalt containing PM HSS with an unusual chemical composition.
Duration: 1.1.2002 – 31.12.2004
SURTELEM – Metódy povrchových úprav pre progresívne ledeburitické ocele a tvrdé materiály
Surfacing Techniques for Advanced Ledeburitic Steel and Hard Materials
Program: EUREKA
Project leader: Ing. Jakubéczyová Dagmar, CSc.
Duration: 1.1.1999 – 31.12.2001

National

Povrchové inžinierstvo práškových feromagnetických častíc a štruktúra magneticky mäkkých kompozitov
Surface engineering of powder ferromagnetic particles and structure of soft magnetic composites
Program: VEGA
Project leader: Ing. Bureš Radovan, CSc.
Annotation: The project deals with SMC based on powdered ferromagnetics and electro-insulating ceramics in the form of a continuous network. The research of such materials applied in the field of energy conversion is motivated by increasing performance and efficiency, which is achieved by increasing the working frequency of magnetization. The project aims to investigate the structure of ferromagnetic and dielectric particle interfaces, their influence on the formation of microstructure and the functional properties of compacted SMC materials with a focus on the frequency stability of electromagnetic properties. The high variability of the geometrical characteristics of ferromagnetic microparticles and modifications in the distribution of ceramic nanoparticles provide a large scope for increasing the frequency stability of the functional properties of the composite. The analysis of interphases, structural discontinuities and compaction mechanisms will contribute to clarifying the evolution of electromagnetic properties.
Duration: 1.1.2024 – 31.12.2026
FUCO – Funkčné vlastnosti kompaktovaných kompozitov na báze magnetických častíc s povrchovo modifikovanými vlastnosťami
Functional properties of compacted composites based on magnetic particles with surface-modified properties.
Program: SRDA
Project leader: Ing. Bureš Radovan, CSc.
Annotation: The project is focused on the experimental and theoretical research of the soft magnetic composites in order to improve their functional properties. Magnetic powder composite systems will be prepared by advanced innovative chemical and mechano-chemical routes and powder metallurgy techniques not yet used by default. The series of composite samples will be prepared with insulated ferromagnetic particles of different morphology and properties with properly selected dielectric phases. The expected results will bring the novel advanced materials intensifying the application potential in electrical engineering as well as extend the theoretical modeling the magnetization processes in the soft magnetic composites and build up the database with the data structure utilizable for the application of artificial intelligence in the development of novel materials.
Project webpage: http://www.imr.saske.sk/project/fuco/index.html
Duration: 1.7.2021 – 30.6.2025
Vplyv mikrovlnného žiarenia na štruktúru a vlastnosti práškových funkčných materiálov
Influence of microwave radiation on the structure and properties of powder functional materials
Program: VEGA
Project leader: Ing. Bureš Radovan, CSc.
Annotation: The subject of research is the interaction of MW radiation with functional powder materials with specific electrical and magnetic properties, especially soft magnetic composites (SMC). The aim of the project is to contribute to the explanation of the mechanisms of densification of the MW processed structure of powder composites based on the primary ferromagnetic component and the secondary dielectric component distributed in the volume of the composite as a network. The structural characteristics will be correlated with the electromagnetic and mechanical properties of MW sintered materials in order to contribute to the explanation of changes in the functional properties induced by the interaction of MW radiation with ferromagnets and dielectrics. It is assumed that fundamental knowledge about the relations of process parameters, structure and physical properties will contribute to the application possibilities of MW PM processing. The contribution can also be expected in the field of structural design of SMC.
Duration: 1.1.2021 – 31.12.2023
Výskum progresívnych metód úpravy práškových zliatin určených na prípravu magneticky mäkkých kompozitov
Investigation of the progressive powder processing methods designated for fabrication of the soft magnetic composite
Program: VEGA
Project leader: Ing. Bureš Radovan, CSc.
Annotation: Excellent powder soft magnetic materials are characterized by limited compressibility due to shape, size and plastic deformation ability. Compressibility is improved by pressing additives. Additives degrade the magnetic properties and resistivity of the soft magnetic composites. Aim of the project is investigation of the progressivemethods of powder alloy processing with focus on modification of powder particles and dielectric coating formation at their surface. Motivation of modifications are improvement of the compressibility, increase in resistivity of the powder alloy thus improvement of functional and mechanical properties of the composites. The project will contribute to evaluation of the physical and technical possibility to utilize the microwaves and high density electric field in modification of metallic powder. It could be expected preparation of the powder alloy ofwhich physical and technological properties will be suitable for the soft magnetic composites production or potentially 3D printing.
Duration: 1.1.2018 – 31.12.2020
MACOMA – Dizajn štruktúry a funkčných vlastností magneticky mäkkých kompozitných materiálov na báze 3-d prechodných kovov
Design of the structure and the functional properties of soft magnetic 3-d transitions metals based composites
Program: SRDA
Project leader: Ing. Bureš Radovan, CSc.
Annotation: The project focuses on structure and functional properties design of 3-d transition metals based soft magnetic composite materials, in which will be carried out the experimental research of functional properties of advanced materials with heterogeneous structure consisting of isolated ferromagnetic particles. Magnetic micro- and nanocomposite systems will be prepared using advanced powder metallurgy method and current chemical processes. The research will be focused on explanation of the interface influence on the electric, magnetic and mechanical properties investigated magnetic composite materials. Expected results extend the potential for application of advanced soft magnetic materials suitable for use in a medium frequencies, where ferrites are currently used.
Duration: 1.7.2016 – 31.12.2019
Vývoj mikroštruktúry a vlastnosti funkčných kompozitov založených na progresívnych magneticky mäkkých zliatinách
Microstructure development and properties of functional composites based on progressive soft magnetic alloys
Program: VEGA
Project leader: Ing. Bureš Radovan, CSc.
Duration: 1.1.2015 – 31.12.2017
PROMALLOY – Progresívne magneticky mäkké materiály na báze viaczložkových zliatin
Progresive soft magnetic materials base on multicomponent alloys
Program: SRDA
Project leader: RNDr. Strečková Magdaléna, PhD.
Annotation: Perspective soft magnetic composites (SMCs) for various electrotechnical applications are designed as ferromagnetic powder particles coated by very thin dielectric layer. The basic parameters of such prepared SMCs are low coercivity, high value of saturation magnetization and of complex permeability. One of the most important electrical parameter is the high value of specific resistivity, which is ensured by a minimum content of appropriately selected electrical insulating coating with respect to the individual ferromagnetic powder particles completely isolated from each other. The present project is concerned with preparation and overall characterization of SMCs from i) preparation of a ferromagnetic material, ii) through the chemical synthesis of dielectric coatings and the coating process on powder particles, iii) up to final characterization of magnetic, electrical and mechanical properties of the prepared SMCs. Soft magnetic powder material (SMM) will be represented by Permalloy-type alloy (NiFe) with addition of suitable additives prepared by high energetic milling. SMM will be characterized from the microstructure and morphology point of view by use of SEM an XRD analysis. The resulting structural characteristics will be confronted with magnetic properties. The excellent SMM will be selected from prepared alloying powder and further coated by electrically insulating layer. Theprepared core/shell powders will be compacted by powder metallurgical methods (cold uniaxial pressing) and finally heat treatment. The final SMCs will be characterized from material, electrical and last but not least magnetic point of view with regard to a design of functional SMCs for the applications at moderately high frequencies.
Duration: 1.1.2015 – 31.12.2015
MIKROMATEL – Progresívna technológia prípravy mikrokompozitných materiálov pre elektrotechniku
Advanced technology of preparation of micro-composite materials for electrotechnics
Program: EU Structural Funds Research & Development
Project leader: Ing. Bureš Radovan, CSc.
Project webpage: http://www.imr.saske.sk/project/mikromatel/index.html
Duration: 1.12.2010 – 31.3.2015
Príprava, mikroštruktúra a vlastnosti magnetických kompozitov na báze práškového železa.
Preparation, microstructure and properties of magnetic composites based on iron powders.
Program: VEGA
Project leader: Ing. Bureš Radovan, CSc.
Annotation: The aim of the project is the study of correlation of powder morphology,microstructure and properties of SMC.Composite powders prepared by chemical methods will be compacted using advanced technology of microwave sintering.Project will focus on:a)study of methods for preparation of composite powders related to their physical and technological properties b)study of the influence of modern compaction methods on microstructure of SMC in comparison with conventional pressing and sintering c)study of changes in electric,magnetic and mechanical properties of composites in dependence on technology of preparation d)correlation of technological parameters,morphology,microstructure a physical properties of SMC.Methods:quantification of morphology and microstructure using image analysis stereology;analysis of electric and mechanical properties.Project will help to explain the microstructure development patterns and nature of changes in the properties of SMC with the aim to achieve homogeneity and isotropy of properties.
Duration: 1.1.2012 – 31.12.2014
MAGCOMP – Mikroštruktúra a vlastnosti mikro a nano-kompozitných materiálov pre stredofrekvenčné magnetické aplikácie
Microstructure and properties of poder micro and nano-composite materials for middle frequency aplications
Program: SRDA
Project leader: doc. Ing. Dudrová Eva, CSc.
Annotation: The main goal of the project is preparation of isotropic PM micro- and nano-composite materials with optimal distribution of insulation compound with favourable complex of magnetic and mechanical properties for middle frequency magnetic applications. Preparation of powder composite magnetic materials by chemical way will be realized: a) „nanocasting“ of magnetic particles in porous matrix, b) sol-gel method resulted to the preparation of Fe/SiO2 nicro and nanoparticles with core/shell“ structure. Also hybrid composites „inorganic/polymer“ will be prepared based on coated microparticles. Prepared powders will be compacted into shape of cylinder, ring and prism by application of simple cycle of cold pressing and thermal treatment by microwave heating to achieve needful structure and strength, elimination of distortion in Fe lattice and residual stresses. The project proposal imposes interdisciplinary approach of analysis of physical-chemical properties in dependence on size of structural elements of investigated materials. Applied methods will provide knowledge about properties of investigated structures those up to no were not enough examined by these methods. Magneto-structural correlation and magnetic interactions in materials with different degree of size of magnetic active compounds will be explained. Explanation of magnetic interactions will lead to the explanation of macroscopic parameters in direct and alternating magnetic fields under different physical conditions.
Project webpage: http://www.imr.saske.sk/project/magcomp/index.htm
Duration: 1.5.2011 – 31.10.2014
Štúdium kompaktizácie mikrokompozitných materiálov na báze Fe práškov
Compaction of microcomposite materials based on iron powder
Program: VEGA
Project leader: Ing. Bureš Radovan, CSc.
Annotation: The project objective is study microcomposite materials (MM) compaction with special physical properties based on Fe and Fe alloyed powders with insulation coated layer based on inorganic or organic compounds. Conventional and innovated methods of pressing and sintering will be used. Key attention will be focused on a) study of morphological, microstructural and chemical changes in relation to pressure and temperature as main compaction parameters, b) quantification of MM microstructure, c) explanation of processes performing in interphase regions during compaction, d) correlation of compaction parameters, microstructure and properties of MM. Methodics: quantification of compressibility and sinterability, LOM, SEM+EDS, image analysis, stochastic stereological methods, mechanical,electrical and magnetic properties. It is expected that project will contribute to explanation of compaction patterns of MM with goal to achieve homogeneous and defective free microstructure and isotropic materials properties
Duration: 1.1.2009 – 31.12.2011
MICOMAT – Kompaktizácia, mikroštruktúra a vlastnosti mikrokompozitných materiálov na báze povlakovaných Fe práškov.
Compactizing, Microstructure an Properties of Microcomposite Materials based on Coated Fe Powders
Program: SRDA
Project leader: doc. Ing. Dudrová Eva, CSc.
Annotation: The objective of the project is an investigation of compactizing, microstructure development and properties of microcomposite materials based on metal, ceramic, and polymer coated Fe powders using conventional and innovative techniques of forming and sintering. The research will be focused on the deformation and diffusion processes related to mechanical and chemical interactions during compactizing (forming and sintering). The aim is a) to identify the morphological, chemical and microstructural changes of coating/substrate interfaces relevant to the acting of the pressure and heat during the compactizing, b) to identify the microstructure composition of sintered microcomposite materials, c) to explain micromechanical and diffusion processes realised during the stages of compactizing, d) to analyse the properties of studied microcomposite materials, e) to determine the relationship between the compactizing parameters, microstructure and properties (mechanical, electrical, magnetical) of studied microcomposite materials. Studied systems: coating/substrate: Cu-Ni-X/Fe, Al2O3/Fe, FePO4/Fe, Somaloy. Processing methods: single and multistep cold pressing, sintering with continual monitoring of furnace atmosphere, warm compaction with thermosetting resins. Evaluation methods: compressibility, sinterability, LOM, SEM+EDS, X-ray analyses, digital image and statistical analysis of microstructure, mechanical, electrical, magnetic properties
Duration: 1.9.2008 – 31.12.2010
Štúdium charakteristík PVD povlakov na nástrojových oceliach pripravených práškovou metalurgiou a ich
Study of Characteristics of PVD Coatings on the Tool Steels prepared by Powder Metallurgy and their Behaviour
Program: VEGA
Project leader: Ing. Jakubéczyová Dagmar, CSc.
Annotation: Study of the effect of the non-coated and coated inserts (VANADIS30 and S390 grades), prepared by powder metallurgy (PM), on the service life at machining of selected sintered materials based on iron. Single- and multilayered coatings based on TiN will be deposited by the PVD method. Complex analysis of the coating/substrate system, microstructural composition of deposited coatings and determination of mechanical and technological properties of the coated system. Detailed analysis of the failure of tools and PM workpiecesmainly in the area of their contact. Explanation of physical and tribological relationships between the material of sintered workpiece and the cutting tools. The results will be a contribution to the knowledge about themachinability of sintered materials by the coated PM cutting tools.
Duration: 1.1.2008 – 31.12.2010
Tribologické aspekty porušovania spekaných materiálov s dôrazom na kontaktnú únavu a opotrebenie.
Tribologic aspects of sintered materials failures as a result of rolling contact fatigue and wear
Program: VEGA
Project leader: Ing. Jakubéczyová Dagmar, CSc.
Annotation: The subject of project is to study the behavior of classical sintered ferritic materials with the density cca 7g.cm-3 under contact fatigue and wear conditions. Sintered materials, by their specific structure (presence of pores ), are known for their different responses to different forms of stresses. These facts along with theintensive expansion in production of spareparts on the basis of sintered materials, mostly in automotive industry, call for both basic research and systematic monitoring of attributes affecting service life of materials under stress. The results achieved will widen the area of knowledge in this field and assist in establishing the priorities of main directions of basic or applied research.
Duration: 1.1.2008 – 31.12.2010
Štúdium povlakovaných povrchových vrstiev nástrojových ocelí pripravených práškovou metalurgiou
Study of coated surface layers of tool steels prepared by powder metallurgy
Program: VEGA
Project leader: Ing. Jakubéczyová Dagmar, CSc.
Annotation: Study of surface layers of PM tool steels by application of coating with PVD-technologies, duplex coating (plasma nitrided layer as a "support layer" for additional PVD-methods) with the aim of an improvement of their functional properties. Surface treatment of tools made from PM steels – machining tools (HSS-S590-Vanadis 30), cutting and forming tools (Vanadis 4 a 6, K190). Determination of suitable parameters of thermal deposition processes from the point of view of the coat/surface system behaviour under specific loading conditions. Microstructure evaluation by light and scanning electron microscopy, in connection with image analysis (IA) oriented on the surface characteristics (microhardness, adhesion, wear resistance).
Duration: 1.1.2005 – 1.12.2007
Povrchová úprava práškovej rýchloreznej ocele
Surface treatment of high speed steel prepared by powder metallurgy
Program: VEGA
Project leader: Ing. Jakubéczyová Dagmar, CSc.
Annotation: The aims of the proposed project can be characterised as follows; a complex analysis of the materials developed during previous projects solving, consolidated by hot isostatic pressing (HIP) technology with optimised microstructure, heat treatment and excellent mechanical properties including the microstructure evaluation depending on production process conditions, intermediate product refinement and final high speed cutting tool – cutting inserts taps. The selected materials – powder high speed steel alloyed by Co and Nb resp. vanadis 30 type – will be surface treated by plasma nitridation in order to achieve higher hardness, toughness and wear resistance. The appropriate thickness of nitride coating will be defined at different time-temperature conditions and documented by microstructural analysis. The wear resistance, hardness, ultimate strength, toughness and cutting edge durability tests will be realised.
Duration: 1.1.2002 – 31.12.2004
Zákonitosti vzťahov medzi mikroštruktúrou a vlastnosťami nekonvenčných rýchlorezných ocelí vyrobených cestou práškovej metalurgie
Regularities of relationship between microstructure and properties of unconventional high speed steels produced via powder metallurgy
Program: VEGA
Project leader: Ing. Jakubéczyová Dagmar, CSc.
Annotation: The aim of the scientific project is to study the relationship between technology conditions, microstructure and properties of newly developed unconventional high-speed steels (HSS) prepared via progressive powder metallurgy (PM) techniques. The starting chemically modified powder with addition of microcrystalline powders will be produced under rapid solidification (RS) conditions using nitrogen atomising of melt into nitrogen and consolidated. There will be determined the relationship between chemical composition, microstructure and cutting properties.
Duration: 1.1.1999 – 31.12.2001