Projects

International

MagEIMat – Vývoj nových multifunkčných materiálov pre magnetoelektrické senzory a úložiská digitálnych dát budúcej generácie
Development of novel multifunctional materials for next-generation magnetoelectric sensors and data storage devices
Program: Bilateral – other
Project leader: RNDr. Kovaľ Vladimír, DrSc.
Duration:
Príprava a charakterizácia pokročilých anorganicko-organických polymérnych hybridov pre 3D tlač
Syntesis and characterization of novel organic-inorganic polymeric hybrids for 3D printing
Program: Inter-academic agreement
Project leader: Ing. Bureš Radovan, CSc.
Annotation: Three-dimensional printing is currently largely bound to the use of polymer materials supplied bythe printer manufacturer. This, however, greatly limits the wider application of 3D printing of objects with specific physicochemical and mechanical properties. The primary reason of this limitation is the requirement for biocompatibility, biodegradability, enhancement of anti-corrosion properties, or specific requirements for the mechanical and electrical properties of the resulting products. Consequently, the objective of this project is the synthesis and characterization of novel advancedpolymer composites with inorganic fillers applicable in 3D printing. The aim will be to examine the influence of the size and shape distribution of inorganic fillers on thestructure and physicochemical properties of the newly formulated composites. Increased attentionwill be paid to modifying the macromolecular structure and microstructure at the interface between the organic and inorganic phases and unveiling the induced changes in the macroscopic properties of the infiltrated hybrid materials.
Duration: 1.1.2018 – 31.12.2021
Progresívne metódy úpravy funkčných a mechanických vlastností práškových materiálov
Progressisve methods for treatment of the functional and mechanical properties of powder materials
Program: Inter-academic agreement
Project leader: RNDr. Kovaľ Vladimír, DrSc.
Annotation: Rapidly solidified powder alloys as well as mechanically prepared powder metal alloys have a limited plastic deformation capability. Limited plasticity of the powders leads to their limited form-ability and in some cases prevents compacting of the powder by uniaxial cold pressing. Structural defects typical for mechanically synthesized alloys also cause deterioration of their electrical and magnetic properties. The aim of the project is to investigate the progressive processing methods of mechanically prepared powder alloys in order to improve their compaction, while maintaining or improving their electrical, magnetic and mechanical properties. The project solution can bring original findings, leading to expansion of the usability of fast-solidified and mechanically synthesized alloy powder materials in industry.
Duration: 1.1.2018 – 31.12.2021
WȔRTH – Príprava magneticky mäkkých kompozitov pre priemysel
Preparation of soft magnetic composites for infustrial application
Program: Bilateral – other
Project leader: RNDr. Strečková Magdaléna, PhD.
Annotation: The project focuses on the preparation of soft magnetic composites based on ferromagnetic material and modified polymers. The soft magnetic composite material will be potentialy used for the preparation of miniaturized high temperature templates.
Duration: 1.9.2017 – 31.8.2020
Kompaktizácia magneticky mäkkých práškových materiálov s obmedzenou schopnosťou plastickej deformácie
Compaction of soft magnetic powder materials with limited plastic deformation ability
Program: Inter-academic agreement
Project leader: Ing. Bureš Radovan, CSc.
Annotation: Goal of the project is to investigate the progressive compaction methods to achieve high density and low defectiveness of the structure of soft magnetic materials based on powder FeSi and High entropy alloys. Research is focused on the clarification of densification mechanism in powder soft magnetic materials. Mechanical and magnetic properties of compacted materials will be correlated with parameters of compaction technology. This knowledge will contribute to application of progressive magnetic alloy in technical practice mainly in the field of green energy and transportation industry.
Duration: 1.1.2018 – 31.12.2019
MagElMat – Vývoj nových multifunkčných materiálov pre magnetoelektrické senzory a úložiska digitálnych dát budúcej generácie
Development of novel multifunctional materials for next generation magnetoelectric sensors and data storage devices
Program: Bilateral – other
Project leader: RNDr. Kovaľ Vladimír, DrSc.
Annotation: The main goal of the proposed project is to establish and develop a scientific cooperationbetween Slovakia and China in the field of multifunctional materials for advanced applications inmicroelectronics and spintronics. Joining of the research teams from both countries is motivatednot only because of great technological potential of multifunctional materials but also due to thefascinating physics behind their unique properties. Multiferroics, exhibiting simultaneouslyferroelectric and magnetic properties, are among the most attractive multifunctional materials.They allow for controlling the magnetic state of multifunctional devices with an external electric field, and vice versa. The main obstacle is, however, the scarcity of multifunctionalmagnetoelectrics in nature. Currently, single-phase multiferroics are far beyond any practicalapplication, because they only demonstrate useful properties at very low temperatures.Recently, we showed that Aurivillius-type ferroelectrics doped by magnetic atoms can exhibitmultiferroic behavior at room temperature. The origin of magnetism and magnetoelectriccoupling in these materials, however, still needs a proper interpretation and confirmation fromdetailed experimental and theoretical studies. Our aim is to combine research on multiferroicmaterials in Slovakia with activities in China on theoretical modelling of multiferroics to designand prepare single-phase materials with the improved magnetoelectric property at roomtemperature.
Duration: 1.1.2018 – 31.12.2019
Funkčné kompozity na báze elastomérnej matrice a anorganických plnív
Functional composites based on elastomer matrix and inorganic filler
Program: Inter-academic agreement
Project leader: Ing. Bureš Radovan, CSc.
Annotation: Advanced functional materials combining required mechanical and electro-magnetic properties currently represent a promising approach in development of new types of sensors. The primary aim of the proposed joint project is formulation of novel functional composites based on elastomer matrix modified by nano-particle fillers. To obtain materials with a broad range of physicochemical properties the polymer matrix, for instance polyurethane based on polybutadiene blocks, will be modified by different types and amounts of metallic nano-particles. Indispensable part of the proposed project is detailed structural and physicochemical characterization of the prepared composite systems. For such task specific correlations between mechanical and electrical properties and the chemical composition of the prepared systems will be primarily studied. Molecular structure will be probed by FTIR and ssNMR techniques while surface morphology will be determined using advanced microscopy. Successful solution of the proposed project requires extensive knowledge transfer between both working groups.
Duration: 1.1.2016 – 31.12.2017
Príprava a charakterizácia magneticky mäkkých zliatin s vysokou entropiou
Preparation and characterization of soft magnetic high entropy alloys
Program: Inter-academic agreement
Project leader: RNDr. Strečková Magdaléna, PhD.
Annotation: The project will be focused on preparation of soft magnetic alloys materials high energy milling of Fe and Ni with addition of glassy phase stabilizer and with addition of elements supporting nanocrystallization process. Main goal of the project is preparation and haracterization of nanocrystalline or partially amorphous alloys. Task of Czech research team will be echanochemicalpreparation of powder nano-crystalline material. XRD and SEM-EBSD methods will be used forcharacterization and optimization of mechanical milling process. Technology parameters andconditions of preparation of studied nano-crystalline alloys will be defined. Task of Slovak research team is analyses of powder morphology and particle size distribution of prepared powder alloys. Analysis of compressibility, shaping and compaction of selected powders to sample body for electric, magnetic and mechanical tests. Correlation analyse of measured characteristics will beused to obtain the information, which will be important for potential application of studied alloys in technical practice.
Duration: 1.1.2015 – 31.12.2017
Príprava a charakterizácia organicko-anorganických kompozitov na báze polyuretán-X systémov
Preparation and characterisation of organic-inorganic composites based on polyurethan-X systems
Program: Bilateral – other
Project leader: prof. RNDr. Dusza Ján, DrSc.
Duration: 1.1.2012 – 31.12.2014
Štúdium správania sa uhlíkom povlakovaných legovaných práškov počas spekania a modelovanie procesu spekania
Investigation of Behaviour of carbon Coated Alloyed Powders during Sintering and Modelling of the Sintering Process
Program: Inter-academic agreement
Project leader: RNDr. Selecká Marcela, CSc.
Duration: 1.1.2012 – 31.12.2014
Nano-carbon allo – Štúdium procesov povlakovania a tvorby nano-štruktúrneho aktívneho uhlíka pri príprave nízkouhlíkových spekaných súčiastok z práškových zmesí
Study of the Processes of Coating and Formation of Nano-Structured Active Carbon at Processing of Low Alloyed Sintered Steel Components from Powder Mixtures
Program: Bilateral – other
Project leader: RNDr. Selecká Marcela, CSc.
Annotation: The aim of the project is development of new ecologically-friendly method of coating of powders based on iron for introduction íof carbon in the form of hydrocarbon CnHm as substitution of graphite. The basic research will be focused on study of processes connected with reactions solidus-solidus and solidus-gas, which are in progress during sintering, namely in Fe-C and Fe-Cr-Mo-C compacts. Optimal conditions of coating will be deternined, data concerning kinetics of the formation of interparticle connection will be obtained and compared with those from calculation and explained micromechanical and diffusion processes. Relationship among microstructure, processing conditions and properties of sintered compacts will be determined. For comparison the specimens with addition of carbon in the form of graphite will be prepared and analysed under the same conditions.
Duration: 1.1.2012 – 31.12.2013
IMPROVING – Posilnenie výskumných kapacít Ústavu materiálového výskumu v Košiciach
Improving the research capacity of the Institute of materials research in Košice
Program: FP7
Project leader: prof. RNDr. Dusza Ján, DrSc.
Duration: 1.3.2009 – 28.2.2010
Manganse powder – Vývoj PM Mn ocelí pre konštrukčné súčiastky
Development of Powder Metallurgy Manganese Steels for Structural Components
Program: NATO
Project leader: RNDr. Selecká Marcela, CSc.
Duration: 1.3.1999 – 28.2.2003

National

Povrchové inžinierstvo práškových feromagnetických častíc a štruktúra magneticky mäkkých kompozitov
Surface engineering of powder ferromagnetic particles and structure of soft magnetic composites
Program: VEGA
Project leader: Ing. Bureš Radovan, CSc.
Annotation: The project deals with SMC based on powdered ferromagnetics and electro-insulating ceramics in the form of a continuous network. The research of such materials applied in the field of energy conversion is motivated by increasing performance and efficiency, which is achieved by increasing the working frequency of magnetization. The project aims to investigate the structure of ferromagnetic and dielectric particle interfaces, their influence on the formation of microstructure and the functional properties of compacted SMC materials with a focus on the frequency stability of electromagnetic properties. The high variability of the geometrical characteristics of ferromagnetic microparticles and modifications in the distribution of ceramic nanoparticles provide a large scope for increasing the frequency stability of the functional properties of the composite. The analysis of interphases, structural discontinuities and compaction mechanisms will contribute to clarifying the evolution of electromagnetic properties.
Duration: 1.1.2024 – 31.12.2026
Bezolovnaté feroelektrické materiály pre efektívne uskladňovanie elektrickej energie
Lead-free ferroelectric materials for energy storage applications
Program: VEGA
Project leader: RNDr. Kovaľ Vladimír, DrSc.
Annotation: The proposed project is devoted to the research and development of novel relaxor-type ferroelectric ceramics.Relaxor ferroelectrics (RFEs) are receiving considerable attention from materials scientists due to their uniqueproperties for energy storage applications. However, dielectric capacitors made of RFEs, although presentingfaster charging/discharging rates and better stability compared with supercapacitors or batteries, are limited inapplications due to their relatively low energy density.The main goal of the project is to design and prepare a lead-free RFE ceramic material with high energy storagedensity and efficiency. A series of structural modifications using cationic substitution on a RFE material will becarried out to enhance the energy storage capabilities of the ceramics. The effect of the chemical substitution onferroelectric phase transitions and formation of polar nanoregions will be investigated in relation to thecompositional disorder and stability of antiferroelectric state.
Duration: 1.1.2023 – 31.12.2025
Katalyzátory pre elektrolýzu vody v membránových elektrolyzéroch.
Catalysts for water splitting in membrane electrolyzers.
Program: VEGA
Project leader: RNDr. Strečková Magdaléna, PhD.
Annotation: Hydrogen is a flexible and clean energy carrier because it offers not only the prospect of large green electricity storage capacities, but also a wide range of industry decarbonisation. The development of hydrogen technology activities has been supported by the European Commission as "A hydrogen strategy for a climate-neutral Europe". Slovakia has developed a national hydrogen strategy and at present, the Hydrogen technology center is being established in Košice with the main concept "Power-to-Gas" using renewable energy sources. Water electrolysis appears to be the most promising technology for hydrogen production. Bimetallic phosphide nanoparticles represent future substitutes for noble-free metals and critical materials in electrolysers and fuel cells. The main challenge of this project is to reduce hydrogen production and at the same time maintain the high efficiency of water electrolysis in membrane electrolysers. The main goal of the project will be dedicated to the improvement of electrode material.
Duration: 1.1.2023 – 31.12.2025
FUCO – Funkčné vlastnosti kompaktovaných kompozitov na báze magnetických častíc s povrchovo modifikovanými vlastnosťami
Functional properties of compacted composites based on magnetic particles with surface-modified properties.
Program: SRDA
Project leader: Ing. Bureš Radovan, CSc.
Annotation: The project is focused on the experimental and theoretical research of the soft magnetic composites in order to improve their functional properties. Magnetic powder composite systems will be prepared by advanced innovative chemical and mechano-chemical routes and powder metallurgy techniques not yet used by default. The series of composite samples will be prepared with insulated ferromagnetic particles of different morphology and properties with properly selected dielectric phases. The expected results will bring the novel advanced materials intensifying the application potential in electrical engineering as well as extend the theoretical modeling the magnetization processes in the soft magnetic composites and build up the database with the data structure utilizable for the application of artificial intelligence in the development of novel materials.
Project webpage: http://www.imr.saske.sk/project/fuco/index.html
Duration: 1.7.2021 – 30.6.2025
Vplyv mikrovlnného žiarenia na štruktúru a vlastnosti práškových funkčných materiálov
Influence of microwave radiation on the structure and properties of powder functional materials
Program: VEGA
Project leader: Ing. Bureš Radovan, CSc.
Annotation: The subject of research is the interaction of MW radiation with functional powder materials with specific electrical and magnetic properties, especially soft magnetic composites (SMC). The aim of the project is to contribute to the explanation of the mechanisms of densification of the MW processed structure of powder composites based on the primary ferromagnetic component and the secondary dielectric component distributed in the volume of the composite as a network. The structural characteristics will be correlated with the electromagnetic and mechanical properties of MW sintered materials in order to contribute to the explanation of changes in the functional properties induced by the interaction of MW radiation with ferromagnets and dielectrics. It is assumed that fundamental knowledge about the relations of process parameters, structure and physical properties will contribute to the application possibilities of MW PM processing. The contribution can also be expected in the field of structural design of SMC.
Duration: 1.1.2021 – 31.12.2023
FEGAFAB – Development of technology for the manufacture of FeGa-based alloys for high-frequency devices.
Development of technology for the manufacture of FeGa-based alloys for high-frequency devices.
Program: MoRePro
Project leader: Ing. Milyutin Vasily, PhD
Annotation: The iron-gallium alloy has the great prospect of widespread use in industry, as a material for the production of modern smart systems, including those operating at elevated temperatures, mechanical loads, and high frequency magnetization fields. This is due to the number of unique functional characteristics, namely, large tetragonal magnetostriction in small magnetic fields, weak hysteresis, high Curie temperature and weak dependence of properties on temperature, moreover, this alloy has relatively good mechanical properties, which makes it possible to produce thin sheets from it for use in high-frequency devices, such as ultrasound transducers and dispersants. For this purpose, it is necessary to create a given crystallographic texture and microstructure by selecting the optimal modes of rolling and annealing, which is impossible without comprehensive studies of the patterns of structural evolution in this alloy. Despite the good mechanical properties compared to, for example, Terfenol-D, the problem of FeGa double alloy is low plasticity, which can lead to cracking during rolling, which makes it difficult to manufacture sheets of this alloy in industrial conditions. The first way to solve this problem in the project is small additions of alloying elements, which lead to a significant increase in plasticity. We will study the processes of structure and crystallographic texture formation in double and doped alloys, their correlation with the modes of thermomechanical processing, the establishment of the physical causes of such a correlation. The second way is use of new achievements of powder metallurgy for FeGa compaction. This will significantly reduce magnetic loses without the need for thin sheet, but at the same time reduce magnetostriction, our task is find a balance. The purpouse of the project is comprehensive study of the structure formation processes in the FeGa alloy under different conditions and the development of optimal fabrication regimes.
Duration: 15.10.2020 – 14.10.2023
Inovatívne postupy vo výskume a vývoji nových feroických materiálov s využitím komplexnej impedančnej spektroskopie
Innovative approaches to research and development of novel ferroic materials by using complex impedance spectroscopy
Program: VEGA
Project leader: RNDr. Kovaľ Vladimír, DrSc.
Annotation: Ferroelectric and multiferroic (e.g., magnetoelectric) materials have received extensive attention in the last few decades, primarily because of their numerous potential applications in microelectronics and spintronics. Ferroic ceramics, however, suffer usually from high losses, leakage currents and low polarization (ferroelectric and/or magnetic) due to grain boundary effects and interfacial polarization phenomena. These microstructural featuresimpede largely commercial viability of electro-active ceramics. The main goal of the proposed project is to employ the AC complex impedance technique for probing the electrical properties of functional ceramics and reveal the correlation between the microstructural features and conductivity phenomena in grain boundary and/or interfacial layer dominated materials. Understanding the structure-property relationship would allow designing novel (multi-) functional materials with improved dielectric and (multi-) ferroic properties.
Duration: 1.1.2020 – 31.12.2022
Vývoj elektródového materiálu na báze uhlíkových vlákien dopovaných fosfidmi kovov pre elektrokatalýzu vodíka.
Development of electrode materials based carbon fibers doped with metal phosphides for electrocatalysis of hydrogen evolution reaction.
Program: VEGA
Project leader: RNDr. Strečková Magdaléna, PhD.
Annotation: Hydrogen produced from renewable energy sources is considered to be a fuel of the future that has the potentialto reduce the energy dependence of developed countries on oil imports and to improve the quality of human life.Hydrogen produced from electrolysis of water could be a sustainable source of energy. However the simple,efficient, and secure methods of hydrogen retrieval must be developed before it can be recognized as aneconomically significant resource with an exceptional energy potential. The project is devoted to the preparationof new catalysts for the effective hydrogen evolution from water. The porous carbon fibers modified with metallicnanoparticles and metallic phosphide nanoparticles will be prepared by needle-less elektrospinning technologyfrom the free surface of polymers, to catalyze the production of hydrogen at low overpotential.The outcomes ofthe project will be design of a compact electrode composed of modified carbon fibers that would effectivelycatalyse hydrogen evolution.
Duration: 1.1.2020 – 31.12.2022
Výskum progresívnych metód úpravy práškových zliatin určených na prípravu magneticky mäkkých kompozitov
Investigation of the progressive powder processing methods designated for fabrication of the soft magnetic composite
Program: VEGA
Project leader: Ing. Bureš Radovan, CSc.
Annotation: Excellent powder soft magnetic materials are characterized by limited compressibility due to shape, size and plastic deformation ability. Compressibility is improved by pressing additives. Additives degrade the magnetic properties and resistivity of the soft magnetic composites. Aim of the project is investigation of the progressivemethods of powder alloy processing with focus on modification of powder particles and dielectric coating formation at their surface. Motivation of modifications are improvement of the compressibility, increase in resistivity of the powder alloy thus improvement of functional and mechanical properties of the composites. The project will contribute to evaluation of the physical and technical possibility to utilize the microwaves and high density electric field in modification of metallic powder. It could be expected preparation of the powder alloy ofwhich physical and technological properties will be suitable for the soft magnetic composites production or potentially 3D printing.
Duration: 1.1.2018 – 31.12.2020
MACOMA – Dizajn štruktúry a funkčných vlastností magneticky mäkkých kompozitných materiálov na báze 3-d prechodných kovov
Design of the structure and the functional properties of soft magnetic 3-d transitions metals based composites
Program: SRDA
Project leader: Ing. Bureš Radovan, CSc.
Annotation: The project focuses on structure and functional properties design of 3-d transition metals based soft magnetic composite materials, in which will be carried out the experimental research of functional properties of advanced materials with heterogeneous structure consisting of isolated ferromagnetic particles. Magnetic micro- and nanocomposite systems will be prepared using advanced powder metallurgy method and current chemical processes. The research will be focused on explanation of the interface influence on the electric, magnetic and mechanical properties investigated magnetic composite materials. Expected results extend the potential for application of advanced soft magnetic materials suitable for use in a medium frequencies, where ferrites are currently used.
Duration: 1.7.2016 – 31.12.2019
Multifunkčné keramické materiály Aurivilliového typu pre pokročilé magnetoelektrické pamäťové zariadenia a senzory
Multifunctional Aurivillius-type magnetoelectrics for advanced data storage and sensor applications
Program: VEGA
Project leader: RNDr. Kovaľ Vladimír, DrSc.
Annotation: The purpose of the proposed project is to design and prepare novel single-phase Aurivillius-type ceramic materials with improved multiferroic properties at and above room temperature. The research is motivated by the great potential of these materials for non-volatile data storage, transducers, sensors, and many other future device applications. Bismuth-layered structure ferroelectrics, doped on the A- and B- sites by magnetic cations, will be synthesized by solid-state reaction. An innovative method of microwave heating will be introduced along with conventional sintering in processing of ceramics in order to produce at the reduced sintering temperature and time phase pure multifunctional magnetoelectrics with improved properties. The effects of the rare-earth (RE) substitution at Bi sites and modulation of the number of perovskite layers on the crystal structure, microstructure, and electrical and magnetic properties of Aurivillius phase ceramics in the Bi4Ti3O12-(Bi,RE)FeO3 system will be investigated.
Duration: 1.1.2017 – 31.12.2019
Nízkorozmerné systémy pre elektródové a magnetické materiály využité v zelených technológiách
Lowdimensional systems in electrode and magnetic materials potentially applied in green technologies.
Program: VEGA
Project leader: RNDr. Strečková Magdaléna, PhD.
Annotation: The growing demand for energy and depletion of primary fossil energy resources causes an increasing pressure on use of alternative energy sources in larger scale. The project will be focused on the preparation and development of technologies producing 1D and 2D nanostructures. The carbon fibers incorporating metalnanoparticles represent a prospective materials for catalytic hydrogen evolution. Ferrite thin films and nanofibers are potentially useful for the preparation of soft magnetic composites with low eddy currents and total current losses during magnetization. The needle-less electrospinning technology will be used for fibers production due to cheap, user friendly and production of fibers in a wider scale. The thin ferrite films will be prepared by sol-gel method. The main aim of project concentrates on the effect of input parameters of the solutions influence the finalfunction properties of prepared fibers and films.
Duration: 1.1.2017 – 1.12.2019
Vývoj mikroštruktúry a vlastnosti funkčných kompozitov založených na progresívnych magneticky mäkkých zliatinách
Microstructure development and properties of functional composites based on progressive soft magnetic alloys
Program: VEGA
Project leader: Ing. Bureš Radovan, CSc.
Duration: 1.1.2015 – 31.12.2017
PROMALLOY – Progresívne magneticky mäkké materiály na báze viaczložkových zliatin
Progresive soft magnetic materials base on multicomponent alloys
Program: SRDA
Project leader: RNDr. Strečková Magdaléna, PhD.
Annotation: Perspective soft magnetic composites (SMCs) for various electrotechnical applications are designed as ferromagnetic powder particles coated by very thin dielectric layer. The basic parameters of such prepared SMCs are low coercivity, high value of saturation magnetization and of complex permeability. One of the most important electrical parameter is the high value of specific resistivity, which is ensured by a minimum content of appropriately selected electrical insulating coating with respect to the individual ferromagnetic powder particles completely isolated from each other. The present project is concerned with preparation and overall characterization of SMCs from i) preparation of a ferromagnetic material, ii) through the chemical synthesis of dielectric coatings and the coating process on powder particles, iii) up to final characterization of magnetic, electrical and mechanical properties of the prepared SMCs. Soft magnetic powder material (SMM) will be represented by Permalloy-type alloy (NiFe) with addition of suitable additives prepared by high energetic milling. SMM will be characterized from the microstructure and morphology point of view by use of SEM an XRD analysis. The resulting structural characteristics will be confronted with magnetic properties. The excellent SMM will be selected from prepared alloying powder and further coated by electrically insulating layer. Theprepared core/shell powders will be compacted by powder metallurgical methods (cold uniaxial pressing) and finally heat treatment. The final SMCs will be characterized from material, electrical and last but not least magnetic point of view with regard to a design of functional SMCs for the applications at moderately high frequencies.
Duration: 1.1.2015 – 31.12.2015
MIKROMATEL – Progresívna technológia prípravy mikrokompozitných materiálov pre elektrotechniku
Advanced technology of preparation of micro-composite materials for electrotechnics
Program: EU Structural Funds Research & Development
Project leader: Ing. Bureš Radovan, CSc.
Project webpage: http://www.imr.saske.sk/project/mikromatel/index.html
Duration: 1.12.2010 – 31.3.2015
Príprava, mikroštruktúra a vlastnosti magnetických kompozitov na báze práškového železa.
Preparation, microstructure and properties of magnetic composites based on iron powders.
Program: VEGA
Project leader: Ing. Bureš Radovan, CSc.
Annotation: The aim of the project is the study of correlation of powder morphology,microstructure and properties of SMC.Composite powders prepared by chemical methods will be compacted using advanced technology of microwave sintering.Project will focus on:a)study of methods for preparation of composite powders related to their physical and technological properties b)study of the influence of modern compaction methods on microstructure of SMC in comparison with conventional pressing and sintering c)study of changes in electric,magnetic and mechanical properties of composites in dependence on technology of preparation d)correlation of technological parameters,morphology,microstructure a physical properties of SMC.Methods:quantification of morphology and microstructure using image analysis stereology;analysis of electric and mechanical properties.Project will help to explain the microstructure development patterns and nature of changes in the properties of SMC with the aim to achieve homogeneity and isotropy of properties.
Duration: 1.1.2012 – 31.12.2014
MAGCOMP – Mikroštruktúra a vlastnosti mikro a nano-kompozitných materiálov pre stredofrekvenčné magnetické aplikácie
Microstructure and properties of poder micro and nano-composite materials for middle frequency aplications
Program: SRDA
Project leader: doc. Ing. Dudrová Eva, CSc.
Annotation: The main goal of the project is preparation of isotropic PM micro- and nano-composite materials with optimal distribution of insulation compound with favourable complex of magnetic and mechanical properties for middle frequency magnetic applications. Preparation of powder composite magnetic materials by chemical way will be realized: a) „nanocasting“ of magnetic particles in porous matrix, b) sol-gel method resulted to the preparation of Fe/SiO2 nicro and nanoparticles with core/shell“ structure. Also hybrid composites „inorganic/polymer“ will be prepared based on coated microparticles. Prepared powders will be compacted into shape of cylinder, ring and prism by application of simple cycle of cold pressing and thermal treatment by microwave heating to achieve needful structure and strength, elimination of distortion in Fe lattice and residual stresses. The project proposal imposes interdisciplinary approach of analysis of physical-chemical properties in dependence on size of structural elements of investigated materials. Applied methods will provide knowledge about properties of investigated structures those up to no were not enough examined by these methods. Magneto-structural correlation and magnetic interactions in materials with different degree of size of magnetic active compounds will be explained. Explanation of magnetic interactions will lead to the explanation of macroscopic parameters in direct and alternating magnetic fields under different physical conditions.
Project webpage: http://www.imr.saske.sk/project/magcomp/index.htm
Duration: 1.5.2011 – 31.10.2014
Iniciácia, subkritický rast, koalescencia a šírenie mikrotrhlín pri únavovom namáhaní spekaných Fe-Cr-Mn-Mo ocelí
Initiation, Subcritical Growth, Coalescence and Propagation of Fatigue Microcracks in Sintered Fe-Cr-Mn-Mo-C Steels
Program: VEGA
Project leader: doc. Ing. Dudrová Eva, CSc.
Annotation: The project objective is a microscopic study of initiation, subcritical growth and coalescence of microcracks andcrack propagation in fatigue loading of Powder Metallurgy Fe-Cr-Mn-Mo-C alloys. These will be based onFe-Cr-Mo prealloyed powders with additions of Fe-Mn-C master alloy powder such as to sinter with a transientliquid phase. The main topics: a) effect of master alloy addition and sintering conditions on microstructure andfatigue properties; b) microscopic analysis of fatigue failure stages at selected stress amplitudes and increasingnumber of cycles up to failure; calculation of the microstructural stress intensity factors Ka; c) modelling of shortcrack behaviour, measurement and calculation of critical crack sizes; d) correlation of chemical composition,processing parameters and microstructure with failure micromechanisms and macromechanical fatigueproperties. It is expected that original knowledge about these relations in sintered steels will be attained.
Duration: 1.1.2009 – 31.12.2011
Štúdium kompaktizácie mikrokompozitných materiálov na báze Fe práškov
Compaction of microcomposite materials based on iron powder
Program: VEGA
Project leader: Ing. Bureš Radovan, CSc.
Annotation: The project objective is study microcomposite materials (MM) compaction with special physical properties based on Fe and Fe alloyed powders with insulation coated layer based on inorganic or organic compounds. Conventional and innovated methods of pressing and sintering will be used. Key attention will be focused on a) study of morphological, microstructural and chemical changes in relation to pressure and temperature as main compaction parameters, b) quantification of MM microstructure, c) explanation of processes performing in interphase regions during compaction, d) correlation of compaction parameters, microstructure and properties of MM. Methodics: quantification of compressibility and sinterability, LOM, SEM+EDS, image analysis, stochastic stereological methods, mechanical,electrical and magnetic properties. It is expected that project will contribute to explanation of compaction patterns of MM with goal to achieve homogeneous and defective free microstructure and isotropic materials properties
Duration: 1.1.2009 – 31.12.2011
nanoCEXmat – Centrum excelentnosti progresívnych materiálov s nano a submikrónovou štruktúrou
Centrum of advanced materials with nano and submicron sized structure
Program: EU Structural Funds Research & Development
Project leader: prof. RNDr. Dusza Ján, DrSc.
Duration: 20.5.2009 – 30.6.2011
MICOMAT – Kompaktizácia, mikroštruktúra a vlastnosti mikrokompozitných materiálov na báze povlakovaných Fe práškov.
Compactizing, Microstructure an Properties of Microcomposite Materials based on Coated Fe Powders
Program: SRDA
Project leader: doc. Ing. Dudrová Eva, CSc.
Annotation: The objective of the project is an investigation of compactizing, microstructure development and properties of microcomposite materials based on metal, ceramic, and polymer coated Fe powders using conventional and innovative techniques of forming and sintering. The research will be focused on the deformation and diffusion processes related to mechanical and chemical interactions during compactizing (forming and sintering). The aim is a) to identify the morphological, chemical and microstructural changes of coating/substrate interfaces relevant to the acting of the pressure and heat during the compactizing, b) to identify the microstructure composition of sintered microcomposite materials, c) to explain micromechanical and diffusion processes realised during the stages of compactizing, d) to analyse the properties of studied microcomposite materials, e) to determine the relationship between the compactizing parameters, microstructure and properties (mechanical, electrical, magnetical) of studied microcomposite materials. Studied systems: coating/substrate: Cu-Ni-X/Fe, Al2O3/Fe, FePO4/Fe, Somaloy. Processing methods: single and multistep cold pressing, sintering with continual monitoring of furnace atmosphere, warm compaction with thermosetting resins. Evaluation methods: compressibility, sinterability, LOM, SEM+EDS, X-ray analyses, digital image and statistical analysis of microstructure, mechanical, electrical, magnetic properties
Duration: 1.9.2008 – 31.12.2010
Štúdium charakteristík PVD povlakov na nástrojových oceliach pripravených práškovou metalurgiou a ich
Study of Characteristics of PVD Coatings on the Tool Steels prepared by Powder Metallurgy and their Behaviour
Program: VEGA
Project leader: Ing. Jakubéczyová Dagmar, CSc.
Annotation: Study of the effect of the non-coated and coated inserts (VANADIS30 and S390 grades), prepared by powder metallurgy (PM), on the service life at machining of selected sintered materials based on iron. Single- and multilayered coatings based on TiN will be deposited by the PVD method. Complex analysis of the coating/substrate system, microstructural composition of deposited coatings and determination of mechanical and technological properties of the coated system. Detailed analysis of the failure of tools and PM workpiecesmainly in the area of their contact. Explanation of physical and tribological relationships between the material of sintered workpiece and the cutting tools. The results will be a contribution to the knowledge about themachinability of sintered materials by the coated PM cutting tools.
Duration: 1.1.2008 – 31.12.2010
Štúdium povlakovaných povrchových vrstiev nástrojových ocelí pripravených práškovou metalurgiou
Study of coated surface layers of tool steels prepared by powder metallurgy
Program: VEGA
Project leader: Ing. Jakubéczyová Dagmar, CSc.
Annotation: Study of surface layers of PM tool steels by application of coating with PVD-technologies, duplex coating (plasma nitrided layer as a "support layer" for additional PVD-methods) with the aim of an improvement of their functional properties. Surface treatment of tools made from PM steels – machining tools (HSS-S590-Vanadis 30), cutting and forming tools (Vanadis 4 a 6, K190). Determination of suitable parameters of thermal deposition processes from the point of view of the coat/surface system behaviour under specific loading conditions. Microstructure evaluation by light and scanning electron microscopy, in connection with image analysis (IA) oriented on the surface characteristics (microhardness, adhesion, wear resistance).
Duration: 1.1.2005 – 1.12.2007