International
Vplyv disperzných častíc na formovanie štruktúry a vlastností nanokompozitov pripravovaných PVD metódou | |
Effect of dispersion particles on structure formation and properties of nanocomposites prepared by SPD method | |
Program: | Inter-academic agreement |
Project leader: | Prof. Ing. Besterci Michal, DrSc., Dr.h.c. |
Annotation: | The essence of the proposed project is basic research in the field of modelling of severe plastic deformations (SPD), analysis of relation between SPD method (ECAP) and physical and mechanical properties. Attention will be focused on determination of the probable mechanism of the composite nanostructure formation as well as superplasticity conditions of the selected nanostructure systems. Tribological parameters, creep characteristics, local mechanical properties as well as statistical disorientation of grain boundaries will be evaluated. Al-Al4C3 and Mg alloy, Al2O3, will be used as experimental materials. |
Duration: | 1.1.2012 – 31.12.2013 |
National
BIORES – Výskum a vývoj bioresorbovateľných materiálov na báze Zn a Mg | |
Research and development of bioresorbable materials for implants on the based of Zn and Mg | |
Program: | VEGA |
Project leader: | Ing. Ballóková Beáta, PhD. |
Annotation: | The project aims are to prepare and investigate the properties of new types of metal alloys, which will be made of bioabsorbable elements based on Zn, Ca and Mg prepared by intensive plastic deformation, analysis of micromechanisms of failure in relation to microstructure and basic mechanical and technological properties. To improve the mechanical and chemical properties, these alloys will be microalloyed with elements: Mn, Li, and Ag.The studied elements are naturally present in the human body, and thus the body has natural biocompatibility towards them. Tribological parameters, local mechanical properties as well as electrochemical properties will also be investigated. Studies in the field of the development of corrosion-resistant bioresorbable alloys suggest that this combination of mechanical and chemical properties can be achieved by the appropriate addition of microalloys and the appropriate thermo-mechanical treatments of the alloys. |
Duration: | 1.1.2023 – 31.12.2025 |
Vývoj a výskum vysokoentropických zliatin určených na efektívne uskladnenie vodíka | |
Research and development of highentropy alloys for efficient hydrogen storage | |
Program: | VEGA |
Project leader: | doc. Ing. Saksl Karel, DrSc. |
Annotation: | The aim of this project is the development and research of high-entropy alloys – HEA whose primary function will be in hydrogen storage. Commercial use of H2 relies on its efficient and safe storage. One of the most efficient ways to store H2 is chemically bond it to an alloy lattice in a form of metalhydrides. The TiVZrNbHf alloy is capable of storing far greater amounts of H2 up to 210 kg.m-3. The problem of the alloy is its relatively high density of 7.81 g.cm-3, for transport applications. Much higher mass storage capacities are expected to be achieved with other HEA, consisting of lighter elements. In the project, we will design, prepare and fully characterize a series of new HEA with a low density of <7 g.cm-3. Materials that meet the targets of absorption capacity (>2wt% and>220 kgH2/m3), low desorption temperature <140°C and high cyclic absorption/desorption stability (>1000 cycles with a capacity drop of less than 10%). In the project, we will use our knowledge and expertise in the design and preparation of HEA. |
Duration: | 1.1.2022 – 31.12.2024 |
NOVEMBER – Vývoj nových 3D materiálov pre post Li-iónové batérie s vysokou energetickou hustotou | |
Development of novel 3D materials for post lithium ion batteries with high energy density | |
Program: | SRDA |
Project leader: | Ing. Ballóková Beáta, PhD. |
Annotation: | The overall objective of NOVEMBER is to prepare and characterize new materials and concepts with self-healing functionalities integrated within the battery cell. These new composite 3-D materials will enable a variety of critical features including fail-safe and self-healing technologies to improve the battery performance, and greatly extended lifetimes. Special emphasis will be on in-operando electrochemical measurements using impedance spectroscopy and structural measurements. Validation of new materials will be done in small laboratory prototypes. This small prototypes are important in order to demonstrate scalability to battery cell production processes. To reach this goal, NOVEMBER has identified three specific objectives: 1. Development of novel high entropy oxides and sulfur based materials with self-healing functionalities. 2. Development of new physico-chemical in-operando techniques and solutions for monitoring of agign and degradation mechanisms 3. Validation and exploitation of the developed materials in prototypes. In summary, this project combines materials research advances and sophisticated in-operando technology development in order to obtain new materials for post Li -ion batteries with enhanced life-time and performances. |
Duration: | 1.7.2021 – 31.12.2024 |
HydroHEA – Výskum a vývoj nových vysokoentropických zliatin určených na efektívne uskladnenie vodíka v energetických aplikáciách | |
Research and development of new high – entropy alloys for efficient hydrogen storage in energy applications | |
Program: | SRDA |
Project leader: | doc. Ing. Saksl Karel, DrSc. |
Annotation: | The presented project aims to development and research of metal hydride materials of the latest generation – highentropyalloys, which report the highest volumetric storage capacity of hydrogen among all materials used so far.We intend to utilize these materials in metal hydride tanks of hydrogen compressors, which are being developed inSlovakia by the project cooperating organisation – FME TUKE.In June 2020, the European Commission presented the Union\’s hydrogen strategy, which states that hydrogen andthe hydrogen economy are among the key technologies for the future of industry in the EU.The presented project aims to meet the goal of efficient and safe hydrogen storage. Up to date studies show thehighest volumetric hydrogen storage capacity of 150 kg/m3, out of all conventional alloys, is reached by Mg2FeH6metal hydride. In 2016, Sahlberg et al. in a publication entitled "Superior hydrogen storage in high entropy alloys"confirmed that the high-entropy alloy TiVZrNbHf can store an incredible "superior" of 210 kg/m3 of hydrogen in itsstructure with a ratio of hydrogen atoms to metal (H / M) 2.5. However, the problem of the alloy is its relatively high density of 7.81 g/cm3, which makes it too high for transport applications. In the project, we will design, prepare andfully characterize a series of completely new high-entropy materials with a low density <7 g/cm3. Materials thatmeet the targets of absorption capacity (> 2 wt% and> 220 kg H2/m3), low desorption temperature (<140C) andhigh cyclic absorption / desorption stability (> 1000 cycles with capacity drop of less than 10%) we will patent. Thealloys will also be tested in a hydrogen compressor, which will undoubtedly contribute to the further evaluation ofthe outputs of this project. In the project we will use our long-term knowledge and expertise in the design,preparation and characterization of high-entropy alloys. |
Duration: | 1.7.2021 – 30.6.2024 |
BiAll-2 – Vývoj nových bioresorbovateľných zliatin pre vnútrotelové implantáty | |
Development of new bioresorbable alloys for intracorporeal implants | |
Program: | SRDA |
Project leader: | Ing. Molčanová Zuzana, PhD. |
Annotation: | The main goal of submitted project is to develop the new bioresorbable alloys Ca-Mg-Zn-NN and Ca-Mg-Sr-NNwith controlled rate of biodegradation (NN are solid solution strengthening and stabilizing elements). Developed alloys will be preferentially dedicated to fabrication of intracorporal implants for bone tissue engineering field. Members of project research team are highly focused on the investigation of these alloys systems since 2014. Essential and logical continuity of research activities are moving towards to experimental outputs into medical practice. However, this requires a large-scale investments of research capabilities to enhance the plastic deformability of alloys, while maintain their excellent strength properties and slow dissolution rate. Taking into account that healing of traumatic injuries needs different time of implant mechanical support, the great ambition of the project is to prepare alloys with possibility of controlling their dissolution rate. Another research point with hugepotential of success is handling and mastering of 3D printing of well -defined intracorporal implants from proposed alloys. One of the final research tasks will be in-vivo testing of implants dissolution in the environment of animals bone tissue and continuous monitoring of their degredation rate. Several state-of-the-art experimental techniques, such as HR-TEM microscopy or experiments using synchrotron and neutron diffraction techniques, will be used to study the atomic structure and microstructure of materials to meet the project objectives. Modern techniques of selective laser sintering and/or melting will be used for the production of final implants. The achieved outputs of the project research programme will be adapted by contracted private company Biomedical Engineering s.r.o. and displayed into clinical practice. |
Duration: | 1.7.2021 – 30.6.2024 |
THERMAGS – Termoelektrický materiál Ag2S ako ekologický konvektor tepla ľudského tela na elektrinu | |
Thermoelectric material Ag2S as green converter of heat from human body into electricity | |
Program: | SRDA |
Project leader: | doc. Ing. Saksl Karel, DrSc. |
Annotation: | A carbon neutral society demands the development of efficient and energy saving technologies. Efficient thermoelectric devices have great potential to convert the waste heat from power plants, automotive engines, andindustrial processes into fruitful electricity. Another natural source of heat is our body. As the heat released by the human body is given for “free” wearable renewable energy generators (or harvesters) have potential to trigger revolution in the electronics industry in 21st century. For example, bendable, scalable, portable, and lightweight thermoelectrics can in future sourced flexible displays, medical image sensors, smart wearables, and large-area epapers to name a few. To date, state-of-the-art thermoelectrics is based on inorganic semiconductors that afford high electron mobility but lack in mechanical flexibility. By contrast, organic materials are amply flexible but low in electrical mobility and power output; the inorganic-organic hybrid design is a viable material-level option but has critical device-level issues for practical application. In flexible full-inorganic devices made of such Ag2S-based materials, high electrical mobility yielded a normalized maximum power density up to 0.08 W•m-1 near room temperature under a temperature difference of 20 K, orders of magnitude higher than organic devices and organic-inorganic hybrid devices. These results promised an emerging paradigm and market of wearable thermoelectrics. |
Duration: | 1.1.2022 – 31.12.2023 |
Vývoj progresívnych disperzne spevnených kompozitov s kovovou matricou pripravených spekaním pomocou pulzného elektrického prúdu | |
Development of progressive dispersion-reinforced metal matrix composites prepared by pulsed electric current sintering | |
Program: | VEGA |
Project leader: | Ing. Puchý Viktor, PhD. |
Duration: | 1.1.2020 – 31.12.2022 |
REDHYBEAR – Výskum a vývoj energeticky úsporného hybridného ložiskového reduktora so zníženým opotrebením pre robotické zariadenia (pre Priemysel 4.0) | |
Research and development of energy saving hybrid bearing reducer with lowered wear rate for robotic equipment (for Industry 4.0) | |
Program: | SRDA |
Project leader: | doc. RNDr. Hvizdoš Pavol, DrSc. |
Duration: | 1.7.2019 – 30.6.2022 |
VaTRsEDVFsOAM – Vývoj a testovanie respirátorov s efektívnou degradáciou vírusov filtrami s obsahom antivirotických materiálov | |
Development and Testing of Respirators with Efficient Degradation of Viruses by Filters Containing Antiviral Materials | |
Program: | SRDA |
Project leader: | Ing. Ballóková Beáta, PhD. |
Annotation: | In response to the situation resulting from the spread of the SARS-CoV-2 virus, the research and development performed at workplaces of the Faculty of Mechanical Engineering of the Technical University of Kosice has been partially transformed into research and development of special respirators and filtration materials. The submitted project is focussed on the development and construction of respirators with separable filters without exhalation valves which provide efficient protection against SARS-CoV-2 virus. The aim of the project is the investigation, development and production of respirators with separable filters and the testing of novel filtration materials. Designing and production of the respirator will be carried out while applying biomimetic and ergonomic principles and modern additive manufacturing technologies, and the production of multicomponent filters will be carried out while applying a combination of powder metallurgy technology and electrospinning which will facilitate combining metal filters and polymer nanofibres. Also, ceramic components produced by 3D printing will be used as a protective packaging of the used nanofibres and nanoparticles. In order to achieve the project objectives, it will be necessary to carry out the fundamental investigation of filtration efficiencies of the suggested materials with virucidal effects based on copper and ions of silver of zinc. The purpose of the project is to develop and construct testing systems intended for identification of resistance coefficients of newly developed filtration materials, filter permeability using a suitable aerosol, as well as mask penetration through the facepiece contact line. Optimisation of the shape of the respirator facepiece will be based on the analysis of biological parameters of at least 20 human facial scans; this will facilitate elimination of potential infection by particles escaping through the space around the mask. |
Duration: | 16.9.2020 – 31.12.2021 |
Vývoj nových biodegradovateľných kovových zliatin určených pre medicínske aplikácie | |
Development of new biodegradable metal alloys for medical applications | |
Program: | VEGA |
Project leader: | doc. Ing. Saksl Karel, DrSc. |
Annotation: | In the submitted project we would like to prepare and investigate ultralight amorphous alloys (metallic glasses) which will be produced only from bioabsorbable elements (Ca, Mg, Zn, Sr, Si, Zr and Li). These elements are present in the human body and they are naturally tolerated by the human body.These amorphous alloys are applied in the field of medicine to prepare intracorporeal implants with controlled dissolution in the body of a patient. During the project our research team will design a brand new amorphous alloys. We will perform analysis of their atomic structures, tests of thermal stability, critical casting thickness, mechanical properties, corrosion resistance in environment similar to the human body fluids and cytotoxicity of the osteoblastic cells on the alloys surface. During the evaluation of new alloys we use our knowledge in field of detail study of atomic structure upon highly disorered materials. |
Duration: | 1.1.2019 – 31.12.2021 |
Vplyv sekundárnych častíc na mikroštruktúru a mechanické vlastnosti horčíkových nanokompozitných sústav. | |
Effect of secondary phases on microstructure and mechanical properties of magnesium nanocomposite systems | |
Program: | VEGA |
Project leader: | Ing. Ballóková Beáta, PhD. |
Annotation: | The purpose of the project is to investigate properties of Mg nanomaterial systems prepared by the method ofIPD, the analysis of the failure micromechanisms in relation to the microstructure and basic mechanical andtechnological properties. Tribological parameters, creep characteristics, local mechanical properties of phases,as well as kinetics and mechanism of superplasticity will also be evaluated. Further, behavior of the individualcomposite materials after influencing the surface by laser radiation and determination of the optimal parametersof the laser beam will be examined. The aim will be to analyze mechanical properties, wear resistant andcorrosion properties of the materials in relation to their morphology and their microstructural changes induced bylaser modification.Experimental materials will be one-phased and composite nanostructured material systems based on Mg withthe different volume fractions of strengthening nanoparticles of Al2O3, SiC and carbon nanotubes. |
Duration: | 1.1.2017 – 31.12.2019 |
VIPD – Vplyv intenzívnych plastických deformácií na formovanie štruktúry a vlastnosti progresívnych kompozitných nanomateriálových sústav | |
Effect of intensive plastic deformations on microstructure and properties of advanced composite nanomaterial systems | |
Program: | VEGA |
Project leader: | Ing. Ballóková Beáta, PhD. |
Annotation: | The project aim is to contribute to the description of deformation behavior and failure mechanisms of materials prepared by intensive plastic deformation especially with regard to interaction of solidified phases withnanocomposite matrix.The basis of the project is the main research in the area of microstructure, substructure and texture changes analysis with the aim of formation of the high-angle nanograins matrix composites based on Mg (AZ61, AZ91,AM60) with various volume ratios of Al2O3 by the intensive plastic deformation process. Focus will be devoted to evaluation of the mechanical properties and “in situ” micromechanisms failures fundamentals.Local mechanical properties, kinetics and mechanism of superplasticity, creep behavior of composites using the method of "small punch", as well as tribological parameters will be tested. Composites based on Al (Al-Al4C3) willbe simultaneosly analysed, too. |
Duration: | 1.1.2014 – 31.12.2016 |
Výskum procesov degradácie moderných nanokompozitných multivrstiev v tavenine zlievárenských zliatin hliníka. | |
Investigation of degradation processes of advanced nanocomposite mutilayers in melt of aluminum foundry alloys. | |
Program: | VEGA |
Project leader: | Ing. Jakubéczyová Dagmar, CSc. |
Annotation: | The objective of the project is to study the partial processes occurring in the interaction of aluminum melt with advanced PVD coatings deposited onto the substrate used for the production of cores for forms and ejectors.There will be analysed the local tribological and mechanical properties of systems melt – coating-substrate depending on the variability of the process of preparation, composition and application as a result of the environmental influence. The main benefits of the project will include the selection and testing of advancedmultilayer and nanocomposite coatings deposited on samples from steels for hot working and testing their resistance in molten aluminum. Preferred features of this steel group coated by optimal types of coatings will pose the combination of properties such as high abrasive wear resistance and superior protection against thermal shocks, which are essential factors influencing lifetime of functional components of forms for metal casting under pressure. |
Duration: | 1.1.2014 – 31.12.2016 |
Vplyv disperzných častíc na formovanie štruktúry a vlastností nanokompozitov pripravených metódou SPD | |
Effect of dispersion particles on structure formation and properties of nanocomposites prepared by SPD method | |
Program: | VEGA |
Project leader: | Prof. Ing. Besterci Michal, DrSc., Dr.h.c. |
Annotation: | The essence of the proposed project is basic research in the field of modelling of severe plastic deformations (SPD) by the finite element method (FEM) and analysis of relation between SPD method (ECAP) and physical and mechanical properties. Attention will be focused on determination of the probable mechanism of the composite nanostructure formation as well as superplasticity conditions of the selected nanostructure systems. Tribological parameters, creep characteristics, local mechanical properties as well as statistical disorientation of grain boundaries will be evaluated. Cu-Al2O3, Cu-Y2O3, Glidcop, Al-Al4C3 and others will be used as experimental materials. |
Duration: | 1.1.2011 – 31.12.2013 |
Výskum vlastností kompozitných povlakov aplikovaných modernými PVD technológiami na nástrojoch práškovej metalurgie | |
Research of the properties of composite coatings applied by advanced PVD technologies onto powder metallurgy tools | |
Program: | VEGA |
Project leader: | Ing. Jakubéczyová Dagmar, CSc. |
Annotation: | Research of the properties of multilayer composite coatings deposited by modern PVD technologies onto tools produced by powder metallurgy (PM). Modern PVD coating technologies (ARC and LARC methods)will be used for deposition of coatings based on (Ti,Al)N with addition of Cr, Si, or as Ti substitution. The system coating–base substrate will be subjected to the research focusing on degradation of the coating surface under condition of mechanical wear. For the investigation of failure mechanisms will be used analytical methods – light, electron andtransmission microscopy, AFM to study surface morphology and its roughness, evaluation of adhesive-cohesive properties, indentation and tribological tests, mechanical bending and compression tests and tests of service life.Interpretation of mutual physical and tribological relationships within the scope of analysed systems and conditions of testing on concrete materials will contribute to the knowledge on utilization of new types of coatingsin the working process. |
Duration: | 1.1.2011 – 31.12.2013 |
Mikro a nanoštruktúrne kovové materiály pripravené SPD metódami | |
Microstructure and nanostructure metallic materials prepared by SPD methods | |
Program: | VEGA |
Project leader: | Prof. Ing. Besterci Michal, DrSc., Dr.h.c. |
Duration: | 1.1.2008 – 31.12.2010 |
Tvorba nanoštruktúr v kovových materiáloch pomocou intenzívnych objemových plastických deformácií a ich vzťah k fyzikálno-mechanickým vlastnostiam | |
Nanostructure development in metal materials by bulk severe plastic deformation with relation on physical and mechanical properties | |
Program: | SRDA |
Project leader: | Prof. Ing. Besterci Michal, DrSc., Dr.h.c. |
Duration: | 1.1.2006 – 30.6.2009 |
Biokompozity na báze hydroxiapatitu s orientovanou štruktúrou | |
Biokomposites on hydroxiapatite basis with oriented structure | |
Program: | VEGA |
Project leader: | Ing. Medvecký Ľubomír, DrSc. |
Duration: | 1.1.2005 – 1.12.2007 |
Hodnotenie štruktúrnych parametrov a analýza fyzikálnomechanických vlastností disperzne spevnených sústav | |
Microstructure evaluation and physical and mechanical properties analysis of disprsion sterengthened systems | |
Program: | VEGA |
Project leader: | Prof. Ing. Besterci Michal, DrSc., Dr.h.c. |
Duration: | 1.1.2005 – 1.12.2007 |