Projects

International

NGP-NET – Neglobulárne proteíny – od sekvencie ku štruktúre, funkcii a aplikácii v molekulárnej fyziopatológii
Non-globular proteins – from sequence to structure, function and application in molecular physiopathology
Program: COST
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: Non-globular proteins (NGPs) encompass different molecular phenomena that defy the traditional sequence-structure-function paradigm. NGPs include intrinsically disordered regions, tandem repeats, aggregating domains, low-complexity sequences and transmembrane domains. Although growing evidence suggests that NGPs are central to many human diseases, functional annotation is very limited. It was recently estimated that close to 40 of all residues in the human proteome lack functional annotation and many of these are NGPs. While a better understanding of NGPs is crucial to fully comprehend human molecular physiopathology, progress has been hampered so far by the lack of a systematic approach to their study.This Action Proposal aims to create a pan-European scientific network of groups that work on NGPs to strengthen, focus and coordinate research in this field. It proposes to develop a novel classification of NGPs by consensus among interested experts that will be showcased on a newly developed web site, along with meetings, training schools and scientific missions on NGP-related topics.
Project webpage: http://www.cost.eu/COST_Actions/bmbs/BM1405
Duration: 27.7.2015 – 25.3.2019
Účinok malých molekúl a nanočastíc na amyloidnú agregáciu poly/peptidov
Effect of small molecules and nanoparticles on amyloid aggregation of poly/peptides
Program: Bilateral – other
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: This project is aimed at examining the self-assembly of proteins into amyloid aggregates, one of the hallmarks of AD and other amyloidosis. Accordingly, there is a considerable world-wide interest to identify molecular entities that can influence the amyloid aggregation in order to facilitate the drug development for amyloid diseases. The main goals of the project are to estimate the conditions required for promoting protein misfolding, to determine the cytotoxicity of amyloid aggregates, and to identify the compounds (e.g. small molecules and nanoparticles) that are able to inhibit protein aggregation using in vitro and in silico methods. The bilateral collaboration will allow to combine expertise and experience of both partners in the field of protein aggregation and acquire complex data with aid of complementary approaches, leading to a better understanding of amyloid aggregation mechanisms. The use of equipment provided by both institutions will offer a solid background for team members in order to publish their results at conferences and in journals. Moreover, this collaborative research partnership will present an excellent opportunity for both teams’ young members to learn new techniques in the well-equipped laboratories at NTU and SAS and work as an international scientific research group.
Duration: 11.1.2016 – 31.12.2018
Amyloidná agregácia proteínov na hybridných povrchoch
Amyloid aggregation of proteins in hybrid interfaces
Program: Inter-academic agreement
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: The aim of the project is a study of the mechanism of aggregation of the different amyloid proteins induced by interaction with various surfaces. The main focus will be concern on the characterization of protein aggregation induced by protein interaction with solid interfaces with various geometrical as well as the chemical properties of the surfaces. We will investigate the role of the surface forces and dimensionality of nanoparticles as agents that accelerate or prevent amyloid fibrillization of proteins. Moreover, effect of the interface polarity, substrate roughness or geometrical constraints will be examined. We will compare the morphological properties of amyloid aggregates formed in solution and at solid interface.
Duration: 11.1.2016 – 31.12.2017
ChinherbAD – Využitie multitargetových nízkomolekulových látok z tradičných čínskych bylín pri liečbe Alzheimerovej choroby
The multitarget low molecular compounds from traditional Chinese herbs in treatment of Alzheimer´s disease
Program: Bilateral – other
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: Alzheimer\’s disease (AD) is a devastating neurodegenerative disorder of multifactorial nature characterized by neuroinflammation, decreasing the level of the neurotransmitter acetylcholine as well as formation of amyloid Abeta peptide plaques and neurofibrillary tangles containing abnormally posttranslationally modified tau protein. There is no effective treatment for AD so far and none of the clinically tested drugs have any feasibility to stop, substantially delay or reverse the progressive consequences of this disease. Accordingly, there is a considerable world-wide interest to facilitate the drug development for AD. Recently, the strategy of using the multi-targeted ligands seems to be the most attractive for developing effective therapy for Alzheimer´s disease due to ability of these compounds interacts with multiple targets responsible for the disease pathogenesis. The main goal of this project is to investigate multi-target responsibility of compounds including extracts from traditional Chinese herbs as potential therapeutic agents for AD. Using in vitro, in vivo and in silico methods we will study ability of these compounds to affect the neuroinflammation, to inhibit acetylcholinesterase activity, and amyloid aggregation of Abeta peptide. The bilateral collaboration will allow the both research groups to combine their expertise and experience in the field of pathology of Alzheimer´s disease. The complementary approach allows obtain more complex data leading to suggestion of possible alternatives of therapy against this devastating disease. Moreover, the project will also enable mutual utilization of equipment provided by both institutions. At the same time the young members of project\’s team will have the opportunity to learn new techniques in well-equipped laboratories at SAS and East China University of Science and Technology and also work in the international scientific team.
Duration: 1.1.2016 – 31.12.2017

National

Nový pohľad na vplyv hydrofóbnych interakcií na tvorbu a stabilitu proteínových agregátov. Prepojenie na oxidačný stres.
New Insight into the Role of Hydrophobic Interactions in Formation and Stability of Proteins Aggregates. Link to Oxidative Stress.
Program: VEGA
Project leader: MUDr. Musatov Andrey, DrSc.
Duration: 1.1.2021 – 31.12.2023