Projects

International

Structural, magnetic, and thermal investigations of novel functional materials
Structural, magnetic, and thermal investigations of novel functional materials
Program: Mobility
Project leader: RNDr. Mihalik Matúš, PhD.
Annotation: The object of the collaboration is investigation of the magnetic, structural and thermodynamic properties of new magnetic materials such as manganites, magnetic oxides and molecule-based magnets. Of particular importance is the full physical characterization of functional materials with light-, temperature- or pressure-controlled properties as well as magnetic molecular nanosystems. Collaboration in this area between the Institute of Nuclear Physics PAS and the Institute of Experimental Physics SAS lasts for over fifteen years. We have carried out common studies of several molecular magnets, workers of INP PAN take regularly part in the triennial CSMAG conference organized in Košice. We are in possession of different but complementary measurement instruments. Therefore, the continuation of the joint project, aimed at a more comprehensive description and understanding of properties of new magnetic materials, would be purposeful.
Duration: 1.1.2023 – 31.12.2024
Multifunctional magnetic materials – research into structure and physical properties
Multifunctional magnetic materials – research into structure and physical properties
Program: Inter-academic agreement
Project leader: RNDr. Zentková Mária, CSc.
Annotation: The object of the collaboration is investigation of the magnetic, structural and thermodynamic properties ofnew magnetic materials such as manganites, magnetic oxides and molecule-based magnets. Of particularimportance is the search for functional materials with light-, temperature- or pressure-controlled propertiesas well as magnetic molecular nanosystems. Collaboration in this area between the Institute of NuclearPhysics PAS and the Institute of Experimental Physics SAS lasts for over twelve years. We have carried outcommon studies of several molecular magnets, workers of INP PAN take regularly part in the triennialCSMAG conference organized in Košice. We are in possession of different but complementary measurementinstruments. Therefore, the continuation of the joint project, aimed at a more comprehensive description andunderstanding of properties of new magnetic materials, would be purposef
Duration: 19.2.2019 – 31.12.2022
MAGBIO – Magnetické nanokompozity pre biomedicínu
Magnetic nanocomposites for biomedicine
Program: Bilateral – other
Project leader: RNDr. Zentková Mária, CSc.
Annotation: Multidisciplinary project is devoted to synthesis and characterization of magnetite and manganite based magnetic nanocomposites with application potential for hyperthermia. Magnetic nanoparticles produced by various synthetic routes will be functionalized by methods of surface chemistry and tested for amount of the heat loss in the presence of alternating current magnetic field at frequencies and amplitudes causing no harm to patients. Aspects of biocompatibility and nontoxicity of prepared nanocomposites will be studied as well.
Duration: 15.2.2019 – 31.12.2021
Štúdium nových magnetických materiálov
Comprehensive studies of novel magnetic materials
Program: Inter-academic agreement
Project leader: RNDr. Zentková Mária, CSc.
Duration: 1.1.2016 – 31.12.2017
Hierarchia fázových prechodov v kooperatívnych systémoch so spinovou interakciou: Zameranie na emergentné časové škálovanie pre čítacie hlavy
Hierarchi of phase transitions in cooperative systems with spin-interactions: Towards emergent time-scales for read-heads
Program: Inter-academic agreement
Project leader: RNDr. Mihalik Marián, CSc.
Annotation: A broad variety of interactions pertaining to magnetic ions in a crystal field, gives rise to a succession of phase transitions under cooling across the Curie temperature. Conventionally, such transitions are triggered by a change of ambient conditions, such as temperature, pressure, and magnetic or electric fields. Controlling a phase of matter by excitations at different time scales may have amazing consequences for further recording and information processing, pushing these technologies into the range of unprecedented frequencies. Magnetic H-T phase diagrams of such materials are featured by poorly understood regions of multiple relaxation times, which often signify the spin-glass state. As such, they will be studied within this project activity for low-dimensional antiferromagnets with concurrent exchange interactions. Ising spin-glasses in transverse magnetic field will gain special consideration by means of dynamic susceptibility, ferromagnetic and electron-spin resonance measurements at low temperatures for manifestation of quantum effects. Irreversibility lines in H-T diagrams will be analyzed with focus on crossovers for a variety of multiferroic materials. The obtained ample data should reveal universal features of phase transitions apt to spin-glass behavior in magnetic and related materials. The results should be used for recommendations to novel materials of top-level information technologies.
Duration: 1.1.2014 – 31.12.2016
MAGKOMBIO – Magnetické nanokompozity pre biomedicínu
Magnetic nanocomposites for biomedical application
Program: Bilateral – other
Project leader: RNDr. Zentková Mária, CSc.
Annotation: Magnetic nanocomposites based on manganite, iron oxide and Fe-spinel nanoparticles coveredby silica or polymers are promising materials with application potential in biomedicine. Differentmethods of synthesis together with comprehensive analysis of their structural, microstructuraland magnetic properties enable the possibility to tune their physical properties in the line withrequirements for biocompatible material usable for application purposes.
Duration: 1.1.2015 – 31.12.2016
URAN – Intermetalické zlúčeniny uranu a ich hydridy
Uranium intermetallics and their hydrides
Program: Bilateral – other
Project leader: RNDr. Mihalik Marián, CSc.
Annotation: Proposed project is devoted to study of isostructural compounds of the type A2T2X, where A islanthanide, which represent group of materials with very well localised f-electrons, or uranium,which forms compounds with delocalised 5f electron states. T is transition element and X is nontransitionelement like Sn or In. In this system a principal shortness of modern solid statephysics to include related phenomena connecting with rise and development of magneticordering by ab-initio calculations of electron structure impose enhanced requirement onexperimental physics. The reason is dominancy of matched electron – electron interactions,which lead to exotic i.e. emergent phase like unconventional superconductivity or non Fermiliquid behaviour. These phenomena are not described very well in the frame of classical theoriesbased on the one – electron approximation.The scientific goal of the project is determination of characteristic features related to magneticphase transition in selected compounds of the type A2T2X, exploration and specification of newcompounds from this series, determination of hydrogen absorption and study of magneto -structural correlation in this system. Variable concentration of H will be used to tune magneticproperties around the onset of magnetic ordering (for U) or for tuning to the metal-insulator transition (for lanthanides). For compounds in the critical region of the transition, detailed characteristics down to very low temperatures will be established and analyzed in the context ofnon-Fermi liquid physics. The project has a good chance to give a significant contribution to thephysics of strongly correlated systems. A broader goal is a better coordination (integration) of the Czech and Slovak research teams working in the same field and their instrumental capacities.
Duration: 1.1.2014 – 31.12.2015
MMVVM – Magnetické a magnetooptické vlastnosti vybraných manganitov.
Magnetic and magnetooptical properties of selected manganites.
Program: Bilateral – other
Project leader: RNDr. Mihalik Matúš, PhD.
Annotation: Chemical compounds of the composition RTO3 (R = rare earth, T = Mn, Fe) attract the attentionof the physicists because of their very interesting physical properties like multiferroicity, magneticordering succeeded by the compensation temperature, high application potential in field of themagnetocaloric effect at room temperature, magnetooptical applications in THz region, orinteresting catalytic properties. Our project is focused to the deeper understanding andclarification of the selected physical properties of the RMn1-xFexO3 compounds, which will beprepared in the single-crystal form by the float zone method in the optical mirror furnace. Thesubstitution of Mn for Fe ions allows the tuning of the magnetic interactions in this system. Theprepared oxides will be subsequently characterized from the point of view of structural,magnetic, optic and magnetooptic properties. The big motivation to submit this project for theboth partner organizations is the effort to start bilateral collaboration between the scientificgroups in the area of the study of new materials. This collaboration allows the mobility mainly forPhD. students and postdoctoral fellows on the both sites.
Duration: 1.1.2015 – 31.12.2015
Magnetické a štruktúrne vlastnosti nových materiálov
Magnetic and structural properties of novel materials
Program: Inter-academic agreement
Project leader: RNDr. Zentková Mária, CSc.
Annotation: The object of the collaboration is the investigation of magnetic and structural properties of new magnetic materials such as molecule-based magnets, manganites and intermetallic compounds. Magnetic properties of above mentioned materials can be tuned by external parameters like light, pressure and temperature.
Duration: 1.1.2013 – 31.12.2015

National

Funkčné magnetické materiály s perovskitovou štruktúrou na báze oxidov vzácnych zemín a prechodných kovov
Functional magnetic materials with perovskite structure based on rare earth and transition metal oxides
Program: VEGA
Project leader: RNDr. Mihalik Marián, CSc.
Annotation: Part of our project deals with multiferroic materials and another with functionality of materials with perovskitestructure in respect to hydrogen storage or application of colloid with nanoparticles for hyperthermia. The projectis targeted to substitutional solid solutions and construction of magnetic phase diagrams in RTO3 system (R = Nd, Pr, Sm, Tb, Dy and T = Ti, Cr, Mn, Fe). Oxygen content affects physical properties of this system. The defect structure can be used for hydrogen storage. Experimental techniques like crystal growth of single crystals, synthesis of magnetic nanoparticles and study of various physical properties are complemented by theoretical approach using Density functional theory. Our project serves as starting point for re-examining the effect of oxygen content on physical properties of RMnO3 multiferroic compounds. The concept of storing hydrogen in the vacancies in these compounds is novel as well smart hyperthermia based on colloid containing magnetic nanoparticles of manganites.
Duration: 1.1.2022 – 31.12.2024
Ortorombické multiferoické materiály so silnou magneto – elektrickou väzbou: vplyv substitúcie v oktaedrických polohách na magnetizmus a multiferoicitu
Orthorhombic multiferroic materials with strong magneto – electric coupling: effect of substitution in octahedral sites on magnetism and multiferroicity
Program: VEGA
Project leader: RNDr. Mihalik Marián, CSc.
Annotation: Single crystals of RMnxT1-xO3 (R = Nd, Pr, Sm, Tb, Dy and T = Ti, Mn, Fe) will be grown by optical floating zone method. We will study the evolution of the Jahn-Teller distortion of crystal lattice and orbital ordering with substitution of Mn3+with non-active Jahn-Teller ion. We will focus to the construction of magnetic phase diagrams with particular emphasis on determination of magnetic structure by means of magnetization, heat capacity, neutron diffraction measurements and study of critical coefficients. A part of the project is devoted to study of functional nanoparticles. We will pay special attention to tuning of magneto-electric coupling in multiferroic compounds (RMnO3, R = Tb, Dy or RFeO3, R = Gd, Dy) with magnetically induced ferroelectricity by low concentration doping with Ti, Cr and Fe or Mn respectively. Recent study of these systems supposed new physical hypothesis referring the duality of multiferroicity and we hope that our project will contribute to verification of this hypothesis.
Duration: 1.1.2019 – 31.12.2021
Štúdium magnetických vlastností vybraných multiferoických materiálov na báze oxidov 3d kovov
Magnetic properties of selected 3d metal-oxides based multiferroics
Program: VEGA
Project leader: RNDr. Zentková Mária, CSc.
Duration: 1.1.2016 – 31.12.2018
Vplyv extrémnych podmienok (magnetické pole, tlak, teplota) na neobvyklé chovanie základného stavu a fázové prechody v korelovaných látkach
Effect of extreme environment (magnetic field, pressure, temperature) on the anomalous behavior of the ground state and phase transitions in strongly correlated materials.
Program: VEGA
Project leader: RNDr. Mihalik Matúš, PhD.
Annotation: Nowadays, the trend in research of rare-earth intermetallic compounds is the shift of the interest towards thephysical phenomena like Kondo behavior, non-Fermi liquid behavior, or quantum critical point. It has turned outthat these exotic types of behavior can be observed in Ce, Yb, or U-based compounds. During the project we willprepare and characterize polycrystals and single crystals from Ce – Ni – Ge; Ce – Co – Ge, U – Ni – Ge and U –Co – Ge ternary systems. The main objective of our project is search for quantum criticality in theseantiferromagnetic and ferromagnetic systems and generating quantum fluctuations by suitable chemical doping(Co-Ni substitution; or Ge-Si substitution), high pressure and magnetic field. The additional objective is seekingfor the novel materials targeted U-based ternary intermetallic compounds.
Duration: 1.1.2016 – 31.12.2018
ANMAGEL – Anizotropia magneticko – elektrickej väzby v manganitoch vzácnych zemín
Anisotropy of magnetoelectric coupling in rare-earth
Program: SRDA
Project leader: RNDr. Mihalik Marián, CSc.
Annotation: Magnetoelectric multiferroics are compounds wherein beyond coexistence of long-rangemagnetic and electric polar orders, magnetic and polar degrees of freedom are intrinsicallycoupled. Best examples are rare-earth manganites, whose magnetoelectric effect is associatedwith the competition between AFM and FM exchanges. Their magnetoelectric coupling has beenfrequently studied, though its origin is not fully understood, like its strong anisotropic nature. Tobetter understand this issue, TbMn0.08Fe0.02O3, and DyMn0.08Fe0.02O3 single crystals willbe grown and studied. Iron substitution of manganese already at low concentrations is known toenhance the magnetoelectric coupling. Since iron, contrarily to manganese, is magneticallyisotropic, novel effects in magnetoelectric anisotropy are expected to occur. To unravel thenature of such effects, a study of structure, lattice dynamic, magnetic, thermal and ferroelectricproperties will be carried out as a function of temperature for different magnetic field directionswith respect to crystallographic directions.
Duration: 1.1.2016 – 31.12.2017
Silne korelované elektrónové systémy na báze oxidov 3d kovov a lantanidov
Strongly correlated electron systems based on oxides of 3d metals and lanthanides
Program: VEGA
Project leader: RNDr. Mihalik Marián, CSc.
Annotation: Recent reinvestigation of manganese oxides is mainly driven by possible application potential of magnetocaloric, magnetoelectric, exchange bias effects and effect of colossal magnetoresistance. The main objectives of our project are investigations of magnetic properties, heat capacity, resistivity, magnetoresistivity and dielectric properties in hole-doped perovskite-type manganites R1-xA´xMnO3 and prospective RMnO3 multiferroics materials (R is a rare-earth metal) prepared in the form of nanoparticles, ceramics and single crystals. The project will focus to the manganese based materials with partial substitution of 3d-metal (Fe, Ni, Co) for Mn and perspective A´ will be a monovalent cation (K or Ag e.g.). Mösbauer spectroscopy and NMR measurements will provide details concerning microscopic origin of magnetic state in selected materials. The external parameters like high pressure and high magnetic field will probe magnetic, transport and dielectric properties of prepared materials.
Duration: 1.1.2013 – 31.12.2015
MESPHON – Magnetoelektrický jav a spin-fonónová väzba v oxidoch prechodných kovov
Magneto-electric effect and spin-phonon coupling in transition metal oxides
Program: SRDA
Project leader: RNDr. Mihalik Marián, CSc.
Annotation: Multiferroics belong to a class of materials, which can present simultaneously more than oneferroic property (ferromagnetism, ferroelectricity, feroelasticity). Those multifierroics, wherespontaneous long-range magnetic and dipolar order coexist, represent a very attractive class ofcompounds combining rich and fascinating fundamental physics with potential for multifunctionalapplications in particular in spintronics. Multiferroelectricity, magnetic phase control by electricfield or electric field control of exchange bias are other fascinating phenomena which are frequently studied in transition metal oxides belonging to the group of multiferroics. In our projectspecial attention will be devoted to those exhibiting spin-phonon coupling and/or magnetoelectriceffect. Structural, lattice dynamic, magnetic, transport, thermal and ferroelectric properties ofRMn1-xFexO3 (R= Dy, Tb, Gd) systems will be studied in order to figure out the role of octahedraltilt angle and Jahn -Teller cooperative interactions in the spin-phonon coupling mechanism.
Duration: 1.1.2013 – 31.12.2014
MUFOMAN – MULTIFERROICKÉ MATERIÁLY NA BÁZE OXIDOV MANGÁNU
Manganese Oxides Based Multiferroics
Program: SRDA
Project leader: RNDr. Mihalik Marián, CSc.
Annotation: Multiferroics, materials where spontaneous long-range magnetic and dipolar orders coexist, represent an attractive class of compounds, which combine rich and fascinating fundamental physics with a technologically appealing potential for applications in the general area of spintronics. Recent reinvestigation of manganese oxides is mainly driven by possible application potential of two well known effects: magnetoelectric effect and effect of colossal magnetoresistance. Multiferrolelectricity, magnetic phase control by electric field or electric field control of exchange bias are other fascinating phenomena which are frequently study in RMnO3 and RMn2O5 systems. The aim of our project is strengthening of existing mutual collaboration which will enable us to prepare new nanoparticles, ceramics and single crystal based on manganese oxides. We will study crystal structure, electrical transport and magnetic properties of prepared nanoparticles, ceramics and single crystals. The project will focus to the manganese based materials with partial substitution of 3d-metal (Fe, Ni, Co) for Mn. Detailed Mösbauer spectroscopy measurements will provide details concerning microscopic origin of magnetic state of Fe-substituted manganese based materials. The external parameters like high pressure and high magnetic field will probe magnetic and transport properties of prepared materials.
Duration: 1.1.2012 – 31.12.2013