Projects

National

SelfNano – Programovateľné samo-usporiadanie hybridných DNA-proteín nanosystémov pre kontrolovateľné viazanie a uvoľnovanie biologicky aktívnych látok
Programmable self-organization of hybrid DNA-protein nanosystems for controlled binding and release of biologicals
Program: SRDA
Project leader: RNDr., Ing. Šipošová Katarína, PhD.
Annotation: Protein self-assembly is a process based on autonomous, non-covalent interactions between distinct building blocks without requirement of external energy sources. The possibility of chemical appending of functional ligands onto self-assembling peptides or proteins lays the foundation for developing new materials with unprecedented structural and functional features. Especially using sequence addressable DNAs, the synergistic combination into DNA-protein self-assembling systems, may lead to unique and sophisticated functional hybrid nanostructures, which are highly programmable and display remarkable features that create new opportunities to build materials on the nanoscale. Inspired by the unique ability of proteins to self-assemble into amyloid fibrils, we plan to use recombinant spider silk eADF4(C16) protein, insulin, Aβ peptide and lysozyme in order to demonstrate the versatility of the concept of DNA-assisted self-organization of higher-order fibrillar structures. We will explore two dynamic association modes, the temperature-controlled hybridization event of short overlapping DNA sequences and the highly specific DNA-aptamer-to-ligand binding controlled by the ligand affinity. Generally, we foresee the feasibility of the proposed nanofibrillar systems mate of DNA-protein hybrids for the construction of nanostructured materials in biomedical research for binding and release of biologically active agents, formation of multiple protein arrangements for efficient enzymatic cascades or even dyes positioning for efficient light harvesting systems.
Duration: 1.7.2024 – 30.6.2028