Projects

National

LSD – Nízkorozmerné supravodivé aparáty
Low-dimensional Superconducting Devices
Program: SRDA
Project leader: Mgr. Szabó Pavol, CSc.
Annotation: Ultralow temperatures have become an important tool for new research avenues in nanoscience, materials research and particularly in quantum nanotechnologies. Scaling down a physical system towards the sizes when the quantum properties surpass classical physics opens a plethora of new quantum-driven effects, thus giving rise to new classes of quantum materials. Within the proposed project we will focus our study on low-dimensional quantum devices, heterostrucures consisting of atomically thin superconducting slabs and aditional layers with different order (inslulator, metal, ferromagnet). In such systems symmetries can be broken possibly allowing for non trivial topological quantum states relevant for future technologies. Atomically thin layered materials are systems with zero limit bulk-to-surface ratio. Their physical properties are strongly affected by interfacing with other systems. Therefore, they represent an accessible platform for the abundance of quantum effects that can be engineered by combining them into vertical stacks using exfoliation techniques. One identifies two types of layered systems – atomically thin artificially prepared van der Waals heterostructures [Science 353, aac9439 (2016)], and naturally layered three-dimensional crystal systems. A special class of naturally layered materials is misfit structures combining alternating atomic layers of hexagonal transition metal dichalcogenides and slabs of ionic rare-earth monochalcogenides in the same superlattice [APL Mater 10, 100901 (2022)]. They feature new state of quantum matter, the Ising superconductivity resulting from broken inversion symmetry and strong spin-orbit coupling as has been recently shown by us. The misfits are also exfoliative and thus incorporable as units in vertical stacks.
Duration: 1.9.2024 – 31.12.2027