International
Výskum korelovaných a topologických fáz vo van der Waalsovských materiáloch | |
Exploring correlated and topological phases in layered van der Waals quantum materials | |
Program: | Mobility |
Project leader: | Mgr. Szabó Pavol, CSc. |
Annotation: | The project aims to explore novel quantum physics in heterostructures made of 2D materials focusing on emergent quantum phenomena induced by the spin-orbit coupling and its interplay with magnetism, topology, and superconductivity. We propose a study of van der Waals (vdW) heterostructures made of few-layer thin superconductors and ferromagnet and topological materials in order to study proximity effects on topologically induced superconductivity. The objective of the research is to build technological knowhow of sample preparation made of 2D materials, performing scanning tunneling microscopy and transport experiments which will be complemented by the state-of-the-art density functional theory calculations and tight-binding modeling of electronic structure to study quasiparticle interferences and transport properties. |
Duration: | 1.1.2023 – 31.12.2024 |
2DSOTECH – Dvojrozmerná van der Waalsovská spinovo-orbitálna torzná technológia | |
2Dimensional van der Waals Spin-Orbit Torque Technology | |
Program: | ERANET |
Project leader: | RNDr. Gmitra Martin, PhD. |
Annotation: | Engineering two-dimensional (2D) material van der Waals heterostructures by combining the best of different functional constituents can offer a plethora of opportunities in nanoelectronics. Here, we propose to develop all-2D spintronics platforms for the next generation of information technology based on 2D magnetic and topological spin-orbit materials. These hybrid systems can provide a strong synergy between spintronics and 2D materials, with the goal of combining “the best of both worlds”. Such integration of spin-orbit physics and magnetism in 2D heterostructures will enable groundbreaking functionalities in all-2D spin-orbit torque (SOT) technologies for low-power and non-volatile memory and logic devices.We will exploit low crystal symmetry of layered spin-orbit materials (SOM), hosting novel spin textures for the realization of efficient charge-to-spin conversion (CSC) with a significant out-of-plane spin-orbit field contribution for SOT technologies. We will start with basic investigation of CSC by using potentiometric methods in non-local spin valve geometry with graphene heterostructures. These studies will provide information about the main driving mechanisms of the CSC phenomena, such as the spin Hall, Rashba-Edelstein, or other spin-momentum locking effects to generate a giant and tunable spin polarization. Magnetic 2D crystals, on the other hand, exhibit a wide range of magnetic ordering and, extraordinarily, have the potential to be controlled by purely electronic means. Here, we will investigate 2D magnets for SOT technologies exploiting their low-dimensionality, perpendicular magnetic anisotropy, and the possibility of electric field control. We will examine the dynamics of magnetic excitations, their anisotropies, and controllability by gates, the critical parameters influencing the magnetic switching speed.This project will integrate 2D magnets and SOMs with engineered interfaces to establish exceptionally efficient SOT switching functionalities in all-2D materials platforms. We aim to study the fundamentals of magnetization dynamics and SOT switching behavior of hybrid structures using electronic, magnetotransport, time and spatially resolved magneto-optics, ferromagnetic resonance and 2nd harmonic measurements. The potential of the novel functionalities in these heterostructures will arise from the interplay of exotic spin textures, magnetic phases, proximity-induced exchange and spin-orbit effects at the interfaces of the 2D materials. These effects will be further controlled by interface engineering with a graphene interlayer, twist angle between the layers, and with external parameters such as electric field and pressure. These functionalities will be complemented with voltage-controlled magnetization switching in ultrathin devices. Finally, we will utilize these engineered hybrid devices to demonstrate ultra-fast and low-power magnetization switching of 2D magnets, for a future generation of all-2D SOT technologies. |
Duration: | 1.12.2021 – 29.11.2024 |
National
TopoSQ2D – Topologická supravodivosť v kvantových dvojrozmerných zaradieniach | |
Topological superconductivity in quantum two-dimensional devices | |
Program: | IMPULZ |
Project leader: | RNDr. Gmitra Martin, PhD. |
Annotation: | The project aims to explore quantum physics in van der Waals 2D materials focusing on discovery of emergent quantum phenomena induced by the spin-orbit coupling and its interplay with magnetism, topology and superconductivity. For this purpose we establish a new Quantum Materials research laboratory with tightly merged theoretical expertise in spin-orbit coupling and experimental expertise in superconductivity. Research will be focused on investigating electronic properties of the prepared heterostructures in normal and superconducting phases using scanning tunneling microscopy and magnetotransport measurements. The theory will be intended for calculation of electronic structure from first-principles and quasiparticle interference spectra and transport properties in order to interpret experimental results and guide further experiments. The studied systems will be further recast towards proof-of-principle devices utilizing topological aspects of superconductivity relevant for quantum computations. |
Duration: | 1.4.2022 – |
LSD – Nízkorozmerné supravodivé aparáty | |
Low-dimensional Superconducting Devices | |
Program: | SRDA |
Project leader: | Mgr. Szabó Pavol, CSc. |
Annotation: | Ultralow temperatures have become an important tool for new research avenues in nanoscience, materials research and particularly in quantum nanotechnologies. Scaling down a physical system towards the sizes when the quantum properties surpass classical physics opens a plethora of new quantum-driven effects, thus giving rise to new classes of quantum materials. Within the proposed project we will focus our study on low-dimensional quantum devices, heterostrucures consisting of atomically thin superconducting slabs and aditional layers with different order (inslulator, metal, ferromagnet). In such systems symmetries can be broken possibly allowing for non trivial topological quantum states relevant for future technologies. Atomically thin layered materials are systems with zero limit bulk-to-surface ratio. Their physical properties are strongly affected by interfacing with other systems. Therefore, they represent an accessible platform for the abundance of quantum effects that can be engineered by combining them into vertical stacks using exfoliation techniques. One identifies two types of layered systems – atomically thin artificially prepared van der Waals heterostructures [Science 353, aac9439 (2016)], and naturally layered three-dimensional crystal systems. A special class of naturally layered materials is misfit structures combining alternating atomic layers of hexagonal transition metal dichalcogenides and slabs of ionic rare-earth monochalcogenides in the same superlattice [APL Mater 10, 100901 (2022)]. They feature new state of quantum matter, the Ising superconductivity resulting from broken inversion symmetry and strong spin-orbit coupling as has been recently shown by us. The misfits are also exfoliative and thus incorporable as units in vertical stacks. |
Duration: | 1.9.2024 – 31.12.2027 |