International
AZCAI – Anti-amyloidná aktivita kompozitov na báze zeolitov a analýza so zobrazovaním vo vysokom rozlíšení a v reálnom čase | |
Anti-amyloid activity of zeolite-based composites and analysis with real-time 3d super-resolution imaging | |
Program: | JRP |
Project leader: | RNDr., Ing. Šipošová Katarína, PhD. |
Annotation: | A common feature associated with most of neurodegenerative diseases, including Alzheimer’s disease is the formation of extended, β-sheet rich amyloid fibrils. Today, amyloid-related diseases are incurable and the treatment is only symptomatic without feasibility to stop or substantially delay the progressive consequences of the diseases. Magnetic nano/micro-particles based on clinoptilolite-type of natural zeolite (CZ) jointly developed are expected to serve synergistic therapy approaches act as carriers for controlled drug delivery/release, imaging and local heating in biological systems, that can effectively decompose the amyloid-like fibrillar structures. The micro and mesopores of the natural zeolite can serve as containers for delivering various drugs to the target site to release. Magnetic CZ (MCZs) will improve drug delivery process, real-time monitoring of drug distribution surrounding a targeting side of tissue, as well as the subsequent effects of the therapeutics on the progression of diseases. In addition, fluorescent MCZs in combination with ultrasonic, magnetic or laser irradiation effects will provide hyperthermia and photoreaction to achieve both diagnosis and therapy. The Taiwanese research team has been deeply cultivated in temporal focusing multiphoton microscopy (TFMPM), which imaging frame rate can achieve up to a hundred hertz. We will use the deep learning method to improve the imaging frame rate for real-time biomedical analysis. Within this project, animal models (including genetic rodent models) will be utilized to develop a theranostic system for for inhibition and destruction of amyloid aggregates and super-resolution imaging of MZC induced amyloid aggregate inhibition/destruction effects by state-of-art temporally and spatially super-resolution 3D imaging technology. |
Duration: | 1.1.2022 – 31.12.2024 |
Zvýšenie Bioaktivity Nanočastíc Oxidu Céria | |
Enhancement of Bioactivity of Cerium Oxide Nanoparticles | |
Program: | Inter-academic agreement |
Project leader: | MUDr. Musatov Andrey, DrSc. |
Duration: | 1.1.2020 – 31.12.2021 |
National
Nový pohľad na vplyv hydrofóbnych interakcií na tvorbu a stabilitu proteínových agregátov. Prepojenie na oxidačný stres. | |
New Insight into the Role of Hydrophobic Interactions in Formation and Stability of Proteins Aggregates. Link to Oxidative Stress. | |
Program: | VEGA |
Project leader: | MUDr. Musatov Andrey, DrSc. |
Duration: | 1.1.2021 – 31.12.2023 |
Štúdium anti-oxidačnej a zosilnenej anti-amyloidnej aktivity nanočastíc céru pre biomedicínske aplikácie | |
– | |
Program: | DoktoGrant |
Project leader: | RNDr. Garčárová Ivana |
Duration: | 1.1.2021 – 31.12.2021 |