Projects

International

Frustrované kvantové magnety – vplyv jednoosového tlaku
Frustrated quantum magnets – impact of uniaxial pressure
Program: Mobility
Project leader: doc. RNDr. Gabáni Slavomír, PhD.
Duration: 1.1.2024 – 31.12.2025
Supravodivosť v tenkých filmoch nitridov – materiály pre budúce kvatové zariadenia
Superconductivity in nitride thin films – materials for future quantum devices
Program: Other
Project leader: RNDr. Pristáš Gabriel, PhD.
Annotation: The main aim of our common project is study superconductivity in nitride thin films. It was shown, that narrow NbN superconducting strips could be used forconstruction of ultrafast single photon detectors, which are expected to play important role in the secure quantum communications. Very recently, team from Montanuniversität Leoben succeeded in preparation of superconducting high entropy alloy (HEA) thin films and team from Slovak side preformed measurements of its superconducting properties. Preparation of nitride HEAs will be next step in effort to improve superconducting parameters of thin films for the purpose to be used in future quantum devices.
Duration: 1.11.2023 – 31.10.2024
EMP – Europská Mikrokelvinová Platforma
European Microkelvin Platform
Program: Horizon 2020
Project leader: RNDr. Skyba Peter, DrSc.
Project webpage: https://emplatform.eu/
Duration: 1.1.2019 – 31.12.2023
Supravodivé vlastnosti tenkých vrstiev boridov
Superconducting properties of boride thin films
Program: Mobility
Project leader: doc. RNDr. Flachbart Karol, DrSc., akademik US Slovenska
Annotation: The aim of the mobility project is to prepare thin films of superconducting borides YB6 and ZrB12, and to investigate their properties as function of thickness, microstructure and applied pressure.The outcome of this investigation will be new information about how the superconducting properties of bulk (3D) superconductors change when they become two dimensional (2D). In this regard namely a modification of superconducting properties is expected due to a considerable change of rich phonon spectra in borides and of the related electron-phonon interaction, which are responsible for the origin of superconductivity. This research on borides is unexplored, therefore new and original results are expected.The project will, moreover, enable a mutual use of laboratory equipment (for thin film preparation in Leoben, for their investigation in Kosice), it will lead to promotion of post-docs and PhD students, to preparation of common publications, and probably also to further common projects.
Duration: 1.1.2021 – 31.12.2022

National

Vylepšenie supravodivých parametrov vysoko-entropických zliatin tenkých filmov
Enhancement of superconducting parameters in high-entropy alloy thin films
Program: VEGA
Project leader: RNDr. Pristáš Gabriel, PhD.
Annotation: Superconducting materials have become an integral part of the latest technologies such as quantum computers,single-photon detectors, magnetic resonance, SQUID, etc. Achieving room-temperature superconductivity is nomore the only goal, but targeted improvement of superconducting parameters (upper critical field, criticaltemperature) for application needs is the key. Extreme conditions in the form of very low temperatures, highpressures and reduction dimensions into quasi-two dimensions are very powerful tools in this endeavor. Inparticular, in case of thin films the superconducting properties can be tuned by several external parameters (e.g.film thickness, substrate, interfaces). The main goal of the project is to improve superconducting parameters ofthe high-entropy alloys and other materials in the form of thin films in purpose for use in future quantumapplications technology.
Duration: 1.1.2024 – 31.12.2027
Magnetická frustrácia a supravodivosť v 2D a 3D boridoch
Magnetic frustration and superconductivity in 2D and 3D borides
Program: VEGA
Project leader: RNDr. Pristáš Gabriel, PhD.
Annotation: Borides form a wide class of materials with different physical properties. Metallic geometrically frustratedmagnetic tetraborides (REB4) are 2D frustrated systems and together with their fcc 3D counterpartsdodecaborides (REB12) pose an ideal playground for study of 2D/3D interplay of frustration in megnetic systems.Uniaxial pressure, as well as hydrostatic pressure will be the tuning parameters which can change the interactionbetween magnetic moments. Depending on the direction of uniaxial pressure we will be able to change themagnitude of interactions in different crystallographic directions and test theoretical predictions. A similarcrossover between 2D and 3D can be studied also in superconducting borides as YB6, ZrB12 and LuB12. Even ifthere exist at present time a rather good understanding of the physical properties of bulk metallic borides, thereare still serious open questions what will happen if one dimension will be reduced considerably – by preparingthin films of corresponding borides.
Duration: 1.1.2020 – 31.12.2023
Štúdium netriviálnej supravodivosti vybraných materiálov.
Research of non-trivial superconductivity on selected materials.
Program: VEGA
Project leader: RNDr. Kačmarčík Jozef, PhD.
Duration: 1.1.2020 – 31.12.2023
ECODISC – Elektrónové korelácie v neusporiadaných supravodičoch
Electron correlations in disordered superconductors
Program: SRDA
Project leader: Mgr. Szabó Pavol, CSc.
Annotation: Project aims at understanding of the effect of disorder on superconductivity in systems which are close to Superconductor-Insulator Transition as well as in thin films of hydrides. The thin films of MoN, MoC, TiN of various thickness and stoichiometry and on different substrates as well as polycrystalline and nanostructured boron-doped diamond will be prepared. Some of these systems reveal fermionic and some bosonic effects insuperconducting state. By means of conductance measurements from DC to optical frequency range as well as by means of the scanning tunneling microscopy and spectroscopy at very low temperatures and in high magnetic field we will address the question of what kind of superconductivity is established in strongly disorderd systems where already quasiparticles out of superconducting state reveal renormalized density of states around the Fermi energy. We want also to understand the appearence of superconductivity in thin films of hydrides. We will explore the effect of disorder changing upon hydrogen content, thickness of film, substrate, microstructure and applied pressure on superconductivity in YHx, TiHx, VHx hydrides and their oxyhydrides.
Duration: 1.7.2019 – 30.6.2023
MIKROKELVIN – Kvantové materiály pri ultra-nízkych teplotách – MIKROKELVIN
Quantum matters at very low temperatures – MICROKELVIN
Program: Štrukturálne fondy EÚ Výskum a inovácie
Project leader: RNDr. Skyba Peter, DrSc.
Duration: 1.1.2020 – 30.6.2023
FRUSTKOM – Frustrované kovové magnetické systémy
Frustrated metallic magnetic systems
Program: SRDA
Project leader: doc. RNDr. Gabáni Slavomír, PhD.
Annotation: The up to now experimental and theoretical studies of frustrated magnetic systems (FMS) has been concentrated mainly on dielectric systems. Such systems can be found in 2D and 3D lattices based on equilateral triangles, and in dielectrics the interaction between their spins can be relatively well defined and described. In metallic FMS (M-FMS), which have been much less studied, an important role plays the long-range indirect exchange interaction between the spins mediated by conduction electrons (the RKKY interaction). To the small number of up to now studied M-FMS belong also some rare earth metallic borides having a fcc (e.g.HoB12, ErB12) or Shastry-Sutherland (e.g.TmB4, HoB4, ErB4) structure. This project aims are to investigate experimentally the impact of high pressure (hydrostatic and uniaxial), the influence of alloying and the anisotropy on the magnetic, transport and thermal properties of M -FMS, which has not been studied yet. A pioneering work will be above all the direct observation of magnetic structures of individual phase diagram regions of these M-FMS by spin-polarized scanning tunnelling microscopy. Investigated will be also the dynamics of magnetic structures (the influence of the rate of change of the magnetic field on these structures) and the study of magnetic excitations (by neutron diffraction methods) in selected tetraborides and dodecaborides.The challenging experimental studies, for which both high quality samples and suitable methods are already available, will be supported by the theoretical interpretation of received results, and by the theoretical elaboration.
Project webpage: http://extremeconditions.saske.sk/projects/
Duration: 1.8.2018 – 31.12.2022