Projects

International

Azobenzénové deriváty ako potenciálne terapeutiká pre Alzheimerovu chorobu
Azobenzenes as potential Alzheimer\’s theranostic agents
Program: Mobility
Project leader: RNDr. Bednáriková Zuzana, PhD.
Annotation: Amyloid fibrils of amyloid β (Aβ) peptides are a neuropathological feature of Alzheimer\’s disease (AD). AD is one of the world\’s fastest-growing neurological diseases with substantial economic and societal impact, but no cure is currently available. Therefore, the exploration of novel treatment approaches is in high demand. The project\’s main objective is to study the ability of azobenzene molecules to affect targets associated with the amyloid cascade of AD pathogenesis. The project will employ the lever-like potential of azobenzene molecules to dissociate fibrillar aggregates of Aβ peptides and inhibit the proteolytic activity of β-secretase. We will integrate in vitro, in silico, and cells workflow to find a possible alternative therapy against this devastating disease. Moreover, this collaborative research partnership will present an excellent opportunity for both teams\’ young members to learn new techniques in the well-equipped laboratories at the Polish and Slovak Academies of Sciences and gain new experience by working in an international scientific environment.
Duration: 1.1.2023 – 31.12.2024
ANOMATY – Interakcie amyloidných fibríl a nanočastíc pre biomedicínske, biochemické a inžinierske aplikácie
Interactions of nanoparticles with amyloid fibrils: from therapy to nanomaterials
Program: Bilateral – other
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: Nanoparticles represent a powerful platform with a large potential for biomedicine and engineering applications.The formation of amyloid aggregates is unfavorable in vivo as they are associated with the pathogenesis of many human diseases, yet, amyloid fibrils have the potential to be engineered into novel materials. However, there is still little known about the interactions between amyloid fibrils and nanoparticles that can provide new enhanced NPs functions. The project aims to investigate the interaction of amyloid fibrils formed from native globular proteins and nanoparticles to utilize or enhance the NPs applications as catalysts in engineering applications or possible disaggregation agents to treat amyloid-related diseases (Alzheimer´s disease, diabetes mellitus). We will determine the relationship between amyloid fibrils (formed from lysozyme, insulin, and α -lactalbumin) and Au-, Ag- and Pd –nanoparticles with different surface chemistry (size, charge, functionalization). Moreover, we will perform a systematic study of globular proteins\’ propensity to form amyloid fibrils with controlled properties. The proposed objectives will be achieved by combining experimental techniques with computational methods routinely used in respective scientific teams. Moreover, the data about fibrils\’ structural and physico-chemical properties might fill the empty spaces in a big biology puzzle – pathophysiology of amyloid-related diseases.
Duration: 1.1.2022 – 31.12.2023
Stabilita a agregácia globulárnych proteínov v prítomnosti biokompatibilných iónových kvapalín
Stability and aggregation of globular proteins in the presence of biocompatible ionic liquids
Program: Mobility
Project leader: RNDr. Fedunová Diana, PhD.
Duration: 1.1.2021 – 31.12.2022
– – Štúdium amyloidnej agregácie proteínov in vitro a v mozgomiešnom moku
Study of the protein amyloid aggregation in vitro and in cerebrospinal fluid
Program: Inter-institute agreement
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: Study of the amyloid aggregation of the protein in vitro and in the samples of the cerebrospinal fluid of the peoples with amyloid-related disease which obtain protein aggregation in vivo.Test of the assay for cerebrospinal fluid of the dementic and non-dementic peoples.
Duration: 13.7.2015 – 31.12.2020
CHINMEDAMY – Identifikácia a mechanizmus účinku malých molekúl využívaných v tradičnej čínskej medicíne na liečbu Alzheimerovej choroby
Discovery and Mechanism of Small Molecule Compounds from Traditional Chinese Medicine for treatment of Alzheimer \’s Disease
Program: Bilateral – other
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Duration: 1.1.2018 – 31.12.2019
NGP-NET – Neglobulárne proteíny – od sekvencie ku štruktúre, funkcii a aplikácii v molekulárnej fyziopatológii
Non-globular proteins – from sequence to structure, function and application in molecular physiopathology
Program: COST
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: Non-globular proteins (NGPs) encompass different molecular phenomena that defy the traditional sequence-structure-function paradigm. NGPs include intrinsically disordered regions, tandem repeats, aggregating domains, low-complexity sequences and transmembrane domains. Although growing evidence suggests that NGPs are central to many human diseases, functional annotation is very limited. It was recently estimated that close to 40 of all residues in the human proteome lack functional annotation and many of these are NGPs. While a better understanding of NGPs is crucial to fully comprehend human molecular physiopathology, progress has been hampered so far by the lack of a systematic approach to their study.This Action Proposal aims to create a pan-European scientific network of groups that work on NGPs to strengthen, focus and coordinate research in this field. It proposes to develop a novel classification of NGPs by consensus among interested experts that will be showcased on a newly developed web site, along with meetings, training schools and scientific missions on NGP-related topics.
Project webpage: http://www.cost.eu/COST_Actions/bmbs/BM1405
Duration: 27.7.2015 – 25.3.2019
Účinok malých molekúl a nanočastíc na amyloidnú agregáciu poly/peptidov
Effect of small molecules and nanoparticles on amyloid aggregation of poly/peptides
Program: Bilateral – other
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: This project is aimed at examining the self-assembly of proteins into amyloid aggregates, one of the hallmarks of AD and other amyloidosis. Accordingly, there is a considerable world-wide interest to identify molecular entities that can influence the amyloid aggregation in order to facilitate the drug development for amyloid diseases. The main goals of the project are to estimate the conditions required for promoting protein misfolding, to determine the cytotoxicity of amyloid aggregates, and to identify the compounds (e.g. small molecules and nanoparticles) that are able to inhibit protein aggregation using in vitro and in silico methods. The bilateral collaboration will allow to combine expertise and experience of both partners in the field of protein aggregation and acquire complex data with aid of complementary approaches, leading to a better understanding of amyloid aggregation mechanisms. The use of equipment provided by both institutions will offer a solid background for team members in order to publish their results at conferences and in journals. Moreover, this collaborative research partnership will present an excellent opportunity for both teams’ young members to learn new techniques in the well-equipped laboratories at NTU and SAS and work as an international scientific research group.
Duration: 11.1.2016 – 31.12.2018
Amyloidná agregácia proteínov na hybridných povrchoch
Amyloid aggregation of proteins in hybrid interfaces
Program: Inter-academic agreement
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: The aim of the project is a study of the mechanism of aggregation of the different amyloid proteins induced by interaction with various surfaces. The main focus will be concern on the characterization of protein aggregation induced by protein interaction with solid interfaces with various geometrical as well as the chemical properties of the surfaces. We will investigate the role of the surface forces and dimensionality of nanoparticles as agents that accelerate or prevent amyloid fibrillization of proteins. Moreover, effect of the interface polarity, substrate roughness or geometrical constraints will be examined. We will compare the morphological properties of amyloid aggregates formed in solution and at solid interface.
Duration: 11.1.2016 – 31.12.2017
ChinherbAD – Využitie multitargetových nízkomolekulových látok z tradičných čínskych bylín pri liečbe Alzheimerovej choroby
The multitarget low molecular compounds from traditional Chinese herbs in treatment of Alzheimer´s disease
Program: Bilateral – other
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: Alzheimer\’s disease (AD) is a devastating neurodegenerative disorder of multifactorial nature characterized by neuroinflammation, decreasing the level of the neurotransmitter acetylcholine as well as formation of amyloid Abeta peptide plaques and neurofibrillary tangles containing abnormally posttranslationally modified tau protein. There is no effective treatment for AD so far and none of the clinically tested drugs have any feasibility to stop, substantially delay or reverse the progressive consequences of this disease. Accordingly, there is a considerable world-wide interest to facilitate the drug development for AD. Recently, the strategy of using the multi-targeted ligands seems to be the most attractive for developing effective therapy for Alzheimer´s disease due to ability of these compounds interacts with multiple targets responsible for the disease pathogenesis. The main goal of this project is to investigate multi-target responsibility of compounds including extracts from traditional Chinese herbs as potential therapeutic agents for AD. Using in vitro, in vivo and in silico methods we will study ability of these compounds to affect the neuroinflammation, to inhibit acetylcholinesterase activity, and amyloid aggregation of Abeta peptide. The bilateral collaboration will allow the both research groups to combine their expertise and experience in the field of pathology of Alzheimer´s disease. The complementary approach allows obtain more complex data leading to suggestion of possible alternatives of therapy against this devastating disease. Moreover, the project will also enable mutual utilization of equipment provided by both institutions. At the same time the young members of project\’s team will have the opportunity to learn new techniques in well-equipped laboratories at SAS and East China University of Science and Technology and also work in the international scientific team.
Duration: 1.1.2016 – 31.12.2017
MACOSYS – Magneticky aktívne anizotrópne kompozitne systémy
Magnetically active anisotropic composite systems
Program: ERANET
Project leader: doc. RNDr. Kopčanský Peter, CSc.
Annotation: The proposal relates to basic research of anisotropic soft materials sensitive to magnetic fields. The targeted substances are composite materials, so called ferronematics (nematic liquid crystals (LCs) doped with spherical, rod-like, chain-like magnetite nanoparticles, or with carbon nanotubes functionalized with magnetite nanoparticles), and the cross-linked liquid crystalline polymers (elastomers) doped with nanoparticles. The key objectives are: (i) to measure the optical and dielectric responses of these materials to low magnetic fields; (ii) to explore which conditions influence these responses (e.g., bias magnetic field, pretilt, anchoring between the liquid crystal and nanoparticles); (iii) to contribute to the better understanding of the major problem in ferronematics (FNs): the aggregation process; (iv) to enhance the magnetic field induced phase transition temperature shift in a novel type of FNs; (v) to produce mesogenic cross-linked composites sensitive to magnetic fields.
Duration: 1.9.2013 – 31.8.2016
Amyloidná agregácia proteínov na hybridných povrchoch
Amyloid aggregation of proteins in hybrid interfaces
Program: Inter-academic agreement
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: We are interested to study the effect of nano-confinement on structure, stability and other properties of proteins leading to formation of amyloid structures. Poly/peptides behave differently on surfaces, interfaces or small length scales compared to their bulk properties. Understanding such differences is crucial in many applications where proteins are constrained in nanometer size spaces. The results will provide new insights into the effects of soft-matter confinement on protein amyloid fibrillation, a situation usually met in natural cell environments.
Duration: 1.1.2013 – 31.12.2015
Štúdium amyloidnej agregácie in vitro a v mozgomiešnom moku
Study of the amyloid aggregation in vitro and in cerebrospinal fluid
Program: Inter-institute agreement
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: The collaboration is aimed at the study of the protein amyloid aggregation in vitro and investigation of the effect of nanoparticles on amyloid aggregates in vitro. We will develop test with nanoparticles in vitro added to samples of cerebrospinal fluid(CSF)obtaining protein aggregates formed in vivo. The test will be realized with CSF of dement and non-dement people.
Duration: 1.10.2010 – 31.12.2014
AMYTOX – Štúdium amyloidogénnych proteínov a ich cytotoxicity
Investigation of the amyloidogenic proteins in relationship with their cytotoxic effect
Program: Bilateral – other
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: The project offers us the possibility to take part into international collaboration with Romanian Scientists concern to amyloid aggregation of proteins. Moreover, the proposal of the project will enable mutual utilization of equipment provided by both institutions. At the same time the young members of Slovakian team will have the opportunity to learn new techniques in well-equipped laboratories at UMF „Carol Davila“ and work in the international scientific team.The topic of the project includes the research of the protein self-assembly into amyloidal aggregates, since this characteristic is one of the hallmarks of multiple severe diseases(Alzheimer’s disease, non-neuropathic amyloidosis). Although multiple studies in the research field of amyloidosis were carry out, the data on the mechanism formation or reverse of the process of the amyloidosis are missing, and the toxicity of amyloid aggregates remains to be clarified. Our attention will be addressed to assess the conditions required for promotion of protein missfolding, to determine the cytotoxic effect of the amyloids, and to identify molecules able to inhibit protein aggregation. The major advantages of the bilateral cooperation will consist in: i) the study could provide a useful model for understanding the pathological protein aggregation and their cytotoxic action; ii) the scientific output of the project could suggest possible alternatives of therapy against devastating diseases, as different types of dementia or non-neuropathic amyloidosis; iii) the experimental data will offer thepossibility to publish our joint results in the international scientific journals; iv) our collaboration could represent a solid base to apply further for EU funding projects.
Duration: 1.1.2013 – 31.12.2014
LYSACELL – Štúdium amyloidnej agregácie lyzozýmu in vitro a analýza vplyvu agregácie na prežívanie buniek
Investigation of the lysozyme amyloid aggregtiion using in vitro assays and analysing its effects on cell viability and proliferation
Program: Bilateral – other
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: The topic of the project includes the research of the protein self-assembly into amyloidal aggregates, since this characteristic is one of the hallmarks of multiple severe diseases. Amyloidosis is a disorder of protein folding in which normally soluble proteins undergo conformational changes and are deposited in an abnormal fibrillar form. For instance, the presence of tau protein deposits is associated with neurodegenerative diseases, like Alzheimer\’s disease and the presence of lysozyme with systemic amyloidosis.One of the objectives of the project is characterization of the conditions leading to protein conformational changes which promote amyloid aggregation. Also, the attention will be focused to investigate the effect of amyloid assemblies (soluble and insoluble) on viability and proliferation of the cells and to analyse their effects on the cell cycle phases and apoptotic processes. The significant spotlight will be given to identify effective molecules or molecular complexes involved in inhibition or destruction of amyloid polymerization and to examine their cytotoxicity.
Duration: 3.1.2011 – 31.12.2012
PROtein interactions monitored by multi-parameter Field Effect Transistors
Program: FP7
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Duration: 1.1.2010 – 1.1.2010

National

Viaczložkové ligandy ako modulátory cieľov spojených s patogenézou Alzheimerovej choroby
Program: SRDA
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Duration: 1.7.2023 – 30.6.2027
Iónové kvapaliny a hlboko eutektické zmesi ako modulátory stability a agregácie proteínov
Program: VEGA
Project leader: RNDr. Fedunová Diana, PhD.
Duration: 1.1.2022 – 31.12.2025
Objasnenie počiatočných štádií amyloidnej agregácie proteínov – od mechanizmu k terapii
Unraveling the early events of protein amyloid aggregation – from mechanism to therapy
Program: VEGA
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: Structural changes of poly/peptides leading to the formation of amyloid aggregates are associated with incurablediseases, like Alzheimer\’s disease or diabetes. While the general mechanisms of fibril formation and theircharacterization are well reported, the early events during poly/peptide fibrillation are still unclear. The project isfocused on understanding the early events mechanisms leading to the formation of pre-fibrillar (partially un/foldedintermediates, nuclei, oligomers) and fibrillar amyloid aggregates of selected globular and intrinsically disorderedproteins. Our focus will be the study of the kinetics of pre-fibrillar structures formation, their morphology, andcytotoxicity, under various experimental conditions, and in the presence of selected interacting partners (smallmolecules, nanoparticles). The obtained results will contribute to understanding the early events of amyloidaggregation and identifying the inhibitors with therapeutic potential for amyloid diseases.
Duration: 1.1.2021 – 31.12.2024
NANOVIR – Nanočastice pre riešenie diagnosticko-terapeutických problémov s COVID-19 (NANOVIR)
Program: Štrukturálne fondy EÚ Výskum a inovácie
Project leader: Ing. Závišová Vlasta, PhD.
Project webpage: https://websrv.saske.sk/uef/veda-a-vyskum/projekty-v-ramci-opvai/nanovir/
Duration: 3.3.2021 – 30.6.2023
BIOVID-19 – Vývoj biomodelov pre zlepšenie hodnotenia účinnosti liekov a látok, ktoré majú potenciál pri liečbe COVID-19 (BIOVID-19)
Program: Štrukturálne fondy EÚ Výskum a inovácie
Project leader: Ing. Koneracká Martina, CSc.
Project webpage: https://websrv.saske.sk/uef/veda-a-vyskum/projekty-v-ramci-opvai/biovid-19/
Duration: 29.6.2021 – 30.6.2023
MULTIHIT – Multifunkčné inhibítory poly/peptidov spojených s Alzheimerovou chorobou
Multi-target inhibitors of poly/peptides associated with Alzheimer´s disease
Program: SRDA
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Duration: 1.7.2019 – 1.6.2023
DIAGNAD – DIAGNAD
Program: Štrukturálne fondy EÚ Výskum a inovácie
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: The project will carry out independent research and development of new diagnostic substances for Alzheimer\’s disease based on high-affinity natural substances labeled with radioisotopes or nanoparticles. The goal is also to expand knowledge in the underdeveloped field of Alzheimer\’s disease (ACH) diagnostics and to better understand the mechanisms leading to the formation and development of this progressive and incurable disease.
Duration: 1.1.2021 – 31.12.2022
LEAPSynPD – Inhibícia agregácie α-synukleínu pomocou LEA proteínov: nový prístup pre liečbu Parkinsonovej choroby
Inhibition of α-Synuclein Aggregation by LEA Proteins: A New Approach for Parkinson’s Disease Treatment
Program: SRDA
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: Intracellular protein aggregates mostly composed of α-Synuclein (α-Syn) are a pathological hallmark of Parkinson’s disease (PD), one of the world’s fastest growing neurological disorders. Recently, no efficient cure is available, therefore the exploration of novel approaches towards the development of a radically new therapy is urgently required. The potential of LEA proteins to inhibit α-Syn aggregation will be studied with aim to structurally characterized the interactions of LEA proteins with α-Syn and provide top LEAP candidates with significant anti-aggregation potential.
Duration: 1.1.2022 – 31.1.2022
Nadmolekulárne komplexy proteínov – konformačné prechody, stabilita a agregácia
Supramolecular complexes of proteins – conformational transitions, stability and aggregation
Program: VEGA
Project leader: RNDr. Fedunová Diana, PhD.
Annotation: Protein aggregation and self-assembly into supramolecular complexes occurs in various biological processes. Fibrillar aggregates – amyloids are hallmark of various diseases. Amyloid fibrils are part of physiological processes in cells and are also tested as novel biomaterials. The project is focused on study of the effect of two classes of cosolvents on amyloid aggregation of structurally different polypeptides – globular lysozyme and intrinsically disordered Aß peptide. The aim of the project is to find the relation between cosolvent properties and their effect on conformation, stability and kinetics of amyloid aggregation and morphology of obtained fibrils.Elucidation of these relations is important for the understanding of the mechanism of amyloid aggregation and can help to design new therapeutics against amyloid-related diseases, for identification of pathological structuralmotifs of fibrils as well as in biotechnological application of fibrils as novel materials.
Duration: 1.1.2018 – 31.12.2021
Samousporiadanie poly/peptidov do amyloidných agregátov – mechanizmus, inhibícia a cytotoxicita
Self-assembly of poly/peptides into amyloid aggregates – mechanism, inhibition and cytotoxicity
Program: VEGA
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: Amyloid supramolecular complexes formed by poly/peptides are the most prevalent naturally occurring self-assembling systems. Formation of such complexes affects function of poly/peptides and is associated with more than 30 serious amyloid-related diseases such as Alzhemer’s disease or diabetes mellitus. The exactmechanism of amyloid self-assembly of poly/peptides is not known yet and no effective treatment of amyloidosis is established. The goal of the project is to study the mechanism of the amyloid aggregation of poly/petides with different native structures and identification of inhibitors of poly/peptide self-assembly since the inhibition of amyloid formation is one of the possible therapeutic approaches against amyloid-related diseases. We will focus on the determination of the correlation between the morphology of amyloid aggregates and their cytotoxicity as well as on the relationship between structure of the effective inhibitors and their anti-amyloid activity.
Duration: 1.1.2017 – 31.12.2020
DIAGNAD – Výskum a vývoj látok pre diagnostiku Alzheimerovej choroby
Program: Štrukturálne fondy EÚ Výskum a inovácie
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Duration: 1.1.2017 – 31.12.2020
MICROMANIP – Obrazová analýza mikroskopických častíc pri automatizácii optických manipulačných techník aplikovateľných v mikro/nanorobotike.
Image analysis of microscopic particles in the automation of optical manipulation techniques applicable in mikro/nanorobotics.
Program: SRDA
Project leader: doc. Ing. Tomori Zoltán, CSc.
Annotation: Mikromanipulation based on the laser optical traps represents a progressive method of basic research in the physical, chemical and biomedical sciences. An analogy between the optical manipulation and the robotics evokes exploitation of the artificial intelligence algorithms (computer vision, machine learning, planning of trajectories, etc.). According to some authors, the use of these methods in combination with physical models has led to the significant increase of the effectiveness compared to the classic optimization (up to 1000 times in SVM classifier trained in advance using the Lorenz-Mie scattering light model). The aim of the project is to use a similar philosophy for the experimental tasks solved in our laboratory – cells sorting and fusing, their physical properties measurement and etc. Using the apparatus for 2-photon polymerization we plan to manufacture microrobotic instruments controlled by the optical tweezers traps, e.g. a mikrorobotic arm (gripper). As continuity with our previous project, we would improve the interactive control of optical tweezers via NUI interface (using the position of the fingers and gaze, voice, gestures). This interface should be functional not only locally, but also remotely over a network connection.
Duration: 1.7.2016 – 30.6.2020
Štúdium stability a agregácie natívne rozbalených proteínov
Study of the intrinsically disordered protein stability and aggregation
Program: VEGA
Project leader: RNDr. Fedunová Diana, PhD.
Annotation: Intrinsically disordered proteins (IDPs) – proteins without ordered stable structure at physiological conditions – are of great interest especially due to their connections to neurodegenerative diseases. Alzheimer’s disease is characterized by deposits of amyloid plaques or neurofibrillary tangles, formed by fibrous assemblies of the A-beta or tau proteins. The growing evidences indicate that oligomers are more toxic species than fibrils. Proposed projects is oriented on study of the effect of external conditions (pH, T, ionic strength, hydrophobicity) and various compounds (denaturants, osmolytes and polyanions) on conformation of tau and A-beta proteins andkinetics of their oligomerization. Another goal is to define how properties of oligomers affect the kinetics of ibrillization and morphology of obtained amyloid fibrils.
Duration: 1.1.2014 – 31.12.2017
Inhibitors of protein amyloid aggregation
Program: VEGA
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: Amyloid aggregation is on high interest due to its impact on properties of poly/peptides that are arranged into highly organized amyloid aggregates. Amyloids play an important role in serious diseases (type II diabetes, Alzheimer’s diseases) and impose serious restriction in pharmaceutical utilization of proteins. Although multiple studies were carrying out, the data on the mechanism formation or reverse of amyloidosis are missing. The project is devoted to contribute to the understanding of the process of amyloid aggregation and to identify the active substances (small molecules and nanoparticles) that reduce the amyloid self-assembly of proteins providing a basis for the development of drugs for the treatment of amyloid pathology. We will determine the correlation between the properties of active substances and their anti-amyloid activity. We will identify binding sites for the active compounds and suggest the mechanism binding of active molecules using experimental and mathematical methods.
Duration: 1.1.2013 – 31.12.2016
MICRO_NUI – Interaktívny zber a spracovanie obrazov v mikroskopii použitím prirodzeného užívateľského rozhrania
Interactive methods of image acquisition and processing in microscopy using natural user interface
Program: SRDA
Project leader: doc. Ing. Tomori Zoltán, CSc.
Annotation: Communication with computers via the natural user interface (NUI) has growing importance in several areas. Our goal is the utilization of specific NUI devices, e.g. Microsoft Kinect, touch tablet and the brain potentials sensor to control the „state of the art" experimental devices such as optical tweezers and optical scalpel. The project is aimed to propose new and modify existing algorithms in the field of computer vision and image analysis, that allow not only recognition of microscopic particles, but also automatic or semi-automatic manipulation of them. The part of this process is appropriate visualization in mono or stereo mode that represents a feedback of interactive algorithms.
Duration: 1.7.2012 – 31.12.2015
METAMYLC – Štrukturalizačné javy v systémoch s nanočasticami
Structuralization phenomena in systems with nanoparticles
Program: SRDA
Project leader: doc. RNDr. Kopčanský Peter, CSc.
Annotation: The structuralization phenomena plays key role in fundamental as well as in applied research. The proposed project is devoted to the study of the influence of nanoparticles on the structuralization phenomena in various systems as well as on the structuralization of the nanoparticles alone. Some special kinds of nanoparticles will be prepared, which will be used for study these effects. The main aim is to study the influence of the nanoparticles on the structuralization phenomena in two different kind of systems as liquid crystalline mater and amyloid structures. In the first system the magnetic particles can increase the sensitivity of liquid crystals on an external magnetic field. In the amyloid structures the nanoparticles can significantly influence the amyloid aggregation of proteins, which is responsible for amyloid diseases as Alzheimher, Parkinson and Dibetes II The prepared nanoparticles will also be used to build their 3D structures (metamaterials), i.e. to create systems with unusual physical properties as for example negative reflection.
Duration: 1.5.2011 – 31.10.2014
Iónové kvapaliny – vplyv na štruktúru a stabilitu proteínov
Ionic liquids – influence on structure and stability of proteins
Program: VEGA
Project leader: RNDr. Fedunová Diana, PhD.
Annotation: In recent years, there has been a growing interest in the usage of ionic liquids as progressive and ecological protein solvents. The ionic liquids possess unique properties – negligible vapor pressure, high elecrochemicalionic conductivity, high thermal and chemical stability. These specific properties allowing the usage of ionic liquids in diversed fields such as enzymology, organic and inorganic synthesis or electrochemistry of biomacromolecules. Our project is focused on preparation of biocompatible ionic liquids on basis of amino acids, glycerol, imidazolium and higher alcohols as a protein solvents for model proteins (cytochrome c, lysozyme, albumin, ribonuclease). The project is expected to bring new information concerning protein structure and stabilityin unique solvents and to contribute to understanding the mechanisms of protein – ionic liquids interactions. These finding could have a significant impact for ionic liquids usage for protein treatment in biotechnology and pharmacy.
Duration: 1.1.2011 – 31.12.2013
Výpočtové prístupy štúdia štruktúry, zbaľovania a interakcií biopolymérov
Computational approaches to study structure, folding and interactions of biopolymers
Program: Podpora MVTS z prostriedkov SAV
Project leader: RNDr. Kožár Tibor, CSc.
Annotation: The PI of this research proposal (Dr. Chin-Kun Hu), CoPI of this proposal(Dr. Ming-Chya Wu), and their collaborators (including Dr. Shura Hayryan, and collaborators from Slovakia, Yerevan, Berlin, etc) have developed protein and computation packages SMMP (simple molecular mechanics for proteins), ARVO (to calculate volume and surface of macromolecules, including proteins, DNA, RNA, etc), and CAVE (to detect cavities of macromolecules and calculate surface area and volumes of cavities). The PI and collaborators also developed efficient combination of Wang-Landau Monte Carlo methods and transition matrix Monte-Carlo method for simulating proteins. They have also calculated three-dimensional (3D) structures of a large numbers of microRNA and will establish a website for such 3D structures.. The PI of the collaborative group in Slovakia, Dr. Tibor Kozar (Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences) is an expert on modeling of glycans and glycoproteins. In this proposal, we will continue to improve SMMP, ARVO, CAVE, microRNA molecular dynamics calculations, and will collobrate with Dr. Tibor Kozar’s group to study glycan and glycoproteins and amyloid aggregates. In addition, significant effort will be devoted to interaction studies of ligands with biomacromolecules nucleic acids and proteins with both, small ligands (potential drugs) as well as nanoparticles in order to target amyloid aggregation being this important for diseases (e.g. Alzheimer\’s disease).
Duration: 1.1.2011 – 31.12.2013
EDUFYCE – Edukačné fyzikálne centrum ÚEF SAV
Program: Štrukturálne fondy EÚ Vzdelávanie
Project leader: RNDr. Zentková Mária, CSc.
Project webpage: edufyce.saske.sk
Duration: 1.9.2010 – 30.8.2013
NMTE – Nové materiály a technológie pre energetiku
New materials and technologies for energetics
Program: EU Structural Funds Research & Development
Project leader: Ing. Diko Pavel, DrSc., akademik US Slovenska
Annotation: Aims o the project are:1. Technology of nanostructured bulk superconductors for energy storage2. Biological battery based on renewable biological products3. New trafo-steel modified by nanoparticles 4. Cooling and insulating medium based on magnetic fluid for high power transformers
Project webpage: nmte.saske.sk
Duration: 1.5.2010 – 30.4.2013
Dobudovanie centra pre kooperatívne javy a fázové prechody v nanosystémoch s pespektívou využitia v nano- a biotechnológiách
Program: EU Structural Funds Research & Development
Project leader: doc. RNDr. Kopčanský Peter, CSc.
Duration: 1.4.2010 – 31.3.2013
NANOFLUID – Centrum excelentnosti SAV – Nanokvapaliny
Centre excelence of SAS – Nanofluids
Program: Centrá excelentnosti SAV
Project leader: doc. RNDr. Kopčanský Peter, CSc.
Annotation: Centre of NANOFLUIDS is oriented to development of technology of nanoparticles, as are magnetic nanoparticles, coloid gold, nanotubes and their complex characterisation from with aspect to their magnetic and morphologic properties. The prepared nanoparticles will be funcionalised for applications in biomedicine, biotechnology and electrotechnical industry. In the case of biomedical applications the interaction of nanoparticles with biomacromolecules will be investigated, mostly with aspect of the nanohazard, drug targeting delivery, hyperthermia and treatment many human diseases as e.g. Alzheimer\’s diseases, etc. For technical applications the centre will investigate opportunity of application in LCD’s, sensors of magnetic field, as an insulated and cooling medium in high power transformers and converters, exploation multilayered nanotubes and fullerenes as electrodes in device that could converts sun energy into electricity.
Duration: 1.2.2009 – 31.1.2013
Amyloidná agregácia proteínov
Amyloid aggregation of proteins
Program: VEGA
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: Amyloid aggregation of proteins is characteristic of several human pathologies termed amyloid diseases (diabetes type II, Alzheimer\’s and prion diseases) and imposes serious restriction in pharmaceutical and biotechnological utilization of proteins. The proposed project is oriented to the characterization of intramolecular and intermolecular interactions of non-native protein conformers leading to self-assembly of molecules into amyloid aggregates with the aim to determine some common mechanisms required for formation of amyloid structures. The significant focus is given to identification of active substances (low molecular compounds, nanoparticles, molecular complexes) effective in reducing of the amount of amyloid aggregates providing a basis for the development of drugs for the treatment of amyloid pathology.
Duration: 1.1.2010 – 31.12.2012
Vývoj tecnologických postupov magnetických kvapalín pre biomedecínske účely
Program: EU Structural Funds Research & Development
Project leader: doc. RNDr. Kopčanský Peter, CSc.
Duration: 1.1.2010 – 30.6.2012
Komplexy biomakromolekúl s nanočasticami
Biomacromolecule complexes with nanoparticles
Program: VEGA
Project leader: prof. Ing. Antalík Marián, DrSc.
Annotation: Nanoparticles seem to be very perspective objects in the field of biology and medicine. Proposed project isoriented to the investigation of properties of nanoparticles formed by metal atoms and several metal oxides aswell as to the study of their interactions with biological objects on molecular level. The goal of this project is toprepare nanoparticles coated by different molecules bounded by sulfur bridges and to characterize theirproperties also in the complexes with biomacromolecules. We would like to understand the role of the size andshape of basic metal core of nanoparticle with differently modified surface on its interactions withbiomacromolecules.
Duration: 1.1.2009 – 31.12.2011
Kooperatívne javy a fázové prechody v nanosystémoch s perspektívou využitia v nano- a biotechnológiách
Centre of excelence: Cooperative phenomena and phase transitions in nanosystems with perspective applications in nano- and biotechnology
Program: EU Structural Funds Research & Development
Project leader: doc. RNDr. Kopčanský Peter, CSc.
Duration: 24.4.2009 – 31.3.2011
Supramolekulárne komplexy proteínov
Supramolecular protein complexes
Program: VEGA
Project leader: Ing. Bágeľová Jaroslava, CSc.
Annotation: There are a huge number of interactions between proteins themselves and between proteins and other biomacromolecules in the cells. Formation of protein complexes plays a fundamental role in many biological processes and in many diseases such as amyloidoses. The proposed project is oriented to the research ofprotein-protein interactions related to the understanding molecular mechanisms of formation supramolecular complexes, especially amyloid assemblies, with purpose to clarify conditions and mechanism their creation . The aim of our study is to provide information on relationship between conformational changes and initial step of formation supramolecular complexes of proteins. We want contribute to clarify the connection between conformational changes at tertiary and secondary structure level and formation these complexes.
Duration: 1.1.2008 – 31.12.2010
Agregácia proteínov a identifikácia inhibítorov agregácie
Protein aggregation and identification of aggregation inhibitors
Program: VEGA
Project leader: doc. RNDr. Gažová Zuzana, DrSc.
Annotation: The project is focused to obtain new knowledge of the aspects of protein misfolding and protein aggregation as the formation of protein deposits is one of the hallmarks of many very serious diseases and seems to be one of the most important problem in biomedicine\’s and biotechnological utilization of proteins. Project deals with investigation of relationship between various conformational states of proteins and their propensity to aggregate. The disease related protein (lysozyme, tau) as well as model protein system (cytochrome c, myoglobin, polyamino acids) will be used for this purpose. The significant focus will be given to identify inhibitors of protein aggregation. We will searching especially for low molecular compounds.
Duration: 1.1.2007 – 31.12.2009
Molekulárne mechanizmy stability proteínov
Molecular mechanisms of protein stability
Program: VEGA
Project leader: prof. Ing. Antalík Marián, DrSc.
Duration: 1.1.2006 – 31.12.2008