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Introduction

This book1 presents original mathematical models of thermal stresses in com-
posite materials with three components. In contrast to mathematical models of the
thermal stresses in two-component materials, which are determined in the first vol-
ume [1], the three-component materials consist of an isotropic matrix and isotropic
ellipsoidal inclusions with an isotropic ellipsoidal envelope. These stresses origi-
nate during a cooling process, and are a consequence of different thermal expansion
coefficients of the matrix, the ellipsoidal envelope and the ellipsoidal inclusion.

The mathematical models are determined for a suitable model system. The model
system is required to correspond to real isotropic matrix-envelope-inclusion compos-
ites. The thermal stresses are derived within a suitable coordinate system. The co-
ordinate system is required to correspond to a shape of the ellipsoidal envelope and
inclusion. Consequently, the mathematical determination results from mechanics
of an isotropic elastic continuum, and results in different mathematical solutions for
the thermal stresses in the material components. Due to these different mathematical
solutions, the principle of minimum elastic energy is considered.

The mathematical models for the three-component materials are applicable to
those for the thermal-stress induced micro-/macro-strengthening and crack formation
in the two-component materials, which are determined in the first volume [1].

1This book was reviewed by the following reviewers:

Assoc. Prof. Ing. Robert Bidulský, PhD., visiting professor, Politecnico di Torino, Torino, Italy

Assoc. Prof. Ing. Daniel Kottfer, PhD., Alexander Dub³cek University of Tren³cı́n, Faculty of Special Technology De-
partment of Mechanical Engineering, Tren³cı́n, Slovak Republic
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Chapter 1

Matrix-Envelope-Inclusion
Composite

1.1 Model System

Figure 1.1 shows a model system, corresponding to real matrix-envelope-inclusion
composites, which is considered within the mathematical models of the thermal
stresses. This model system consists of an infinite isotropic matrix with isotropic
ellipsoidal envelopes on a surface of isotropic ellipsoidal inclusions with the dimen-
sions a1q, a2q, a3q (q = IN,E) and the inter-inclusion distance d along the axes x1, x2,
x3 of the Cartesian system (Ox1x2x3), respectively, where O represents a centre of
the ellipsoidal inclusion. The subscript q = IN and q=E is related to the inclusion
and envelope, respectively.

As presented in [2]–[23], the thermal stresses are determined in the cubic cells
with the dimension d along the axes x1, x2, x3 and with central ellipsoidal inclusions
(see Figure 1.2). Due to the infinite matrix, the thermal stresses, which are deter-
mined for one of the cubic cells, are identical with those, which are determined for
any of the cubic cells [2]–[23]. With regard to the volume VIN = 4πa1,a2 a3 [24] and
VC = d3 of the ellipsoidal inclusion and the cubic cell, the inter-inclusion distance d
as a function of the inclusion volume fraction vIN is derived as

vIN =
VIN

VC
=

4πa1IN a2IN a3IN

3d3 ∈
(

0,
π
6

)
, d =

(
4πa1IN a2IN a3IN

3vIN

)1/3

, (1.1)

where the value vINmax= π/6 results from the condition aiIN → aiE → d/2 (i = 1,2,3).
Accordingly, the thermal stresses are functions of the material parameters aiq (i = 1,2,3
q = IN,E), vIN , d.

1.2 Coordinate System

Figure 1.3 shows the ellipse E with the dimensiions a, b along the axes x, y, respec-
tively. The ellipse E is described by the function

3



Figure 1.1: The matrix-envelope-inclusion system with an infinite isotropic matrix
with isotropic ellipsoidal envelopes on a surface of isotropic ellipsoidal inclusions
with the dimensions a1q, a2q, a3q (q = IN,E) and the inter-inclusion distance d along
the axes x1, x2, x3 of the Cartesian system (Ox1x2x3), respectively, where O repre-
sents a centre of the ellipsoidal inclusion. The subscript q = IN and q = E is related
to the inclusion and envelope, respectively.

(x
a

)2
+
(y

b

)2
= 1. (1.2)

Any point P of the ellipse E is described by the coordinates [24]

x= asinν, y= bcosν, ν ∈ 〈0,2π〉 , (1.3)

where the normal n of the ellipse E at the point P is derived [24]

∂x
∂ν
(x−asinν)+

∂y
∂ν
(y−bcosν) = 0. (1.4)

With regard to Equations (1.3), (1.4), we get

ybsinν− xacosν+
(
a2 −b2

)
sinνcosν= 0. (1.5)

The thermal stresses are determined by the spherical coordinates (r,ϕν) (see Fig-
ure 1.4). The model system in Figures (1.1), (1.2) is symmetric, and then the thermal
stresses are determined within the intervals ϕ ∈ 〈0,π/2〉, ν ∈ 〈0,π/2〉 [2]–[23].

Figure 1.4 shows the ellipsoidal inclusion for ϕ,ν ∈ 〈0,π/2〉 with the centre O
and with the dimensions a1IN = O1, a2IN = O2, a3IN = O3 along the axes x1, x2,

4



Figure 1.2: The cubic cells with the dimension d along the axes x1, x2, x3 of the
Cartesian system (Ox1x2x3) and with the plane x12x3, where O represents a centre of
the ellipsoidal inclusion, and (x12 ⊂ x1x2, x12x3 ⊥ x1x2.

Figure 1.3: The ellipse E with the dimensions a, b along the axes x, y of the Cartesian
system (Oxy), respectively, and the point P related to the angle α.

x3 of the Cartesian system (O,x1,x2,x3) (see Figures (1.1), (1.2)), respectively. Due
to clarity of Figure 1.4 the ellipsoidal envelope in Figures 1.1, 1.2 is not depicted in
Figure 1.4. Finally,

(
PIN,xn,xϕ,xν

)
is a Cartesian system at the point PIN , where the

axes xn and xν represents a normal and a tangent of the ellipse EIN at the point PIN ,
respectively, x12x3 ⊥ x1x2, (x12 ⊂ x1x2, xϕ ⊥ x12.

5



Figure 1.4: The inclusion with the centre O and with the dimensions a1IN = O1,
a2IN =O2, a3IN =O3 along the axes x1, x2, x3 of the Cartesian system (O,x1,x2,x3),
respectively. The ellipses E12, E123 in the planes x1x2, x12x3 (see Figure 1.4) are given
by Equations (1.6), (1.7), respectively, where x12x3 ⊥ x1x2, (x12 ⊂ x1x2, xϕ ⊥ x12.
The point PIN on the inclusion surface is defined by ϕ,ν ∈ 〈0,π/2〉, ν ∈ 〈0,π/2〉,
and

(
PIN,xn,xϕ,xν

)
is a Cartesian system at the point PIN , where PIN ⊂ EIN . The

axes xn and xν represents a normal and a tangent of the ellipse EIN at the point PIN ,
respectively. Due to clarity of Figure 1.4 the ellipsoidal envelope in Figures 1.1, 1.2
is not depicted in Figure 1.4.

Figure 1.5 shows the cross section O789 of the cubic cell in the plane x12x3 (see
Figures 1.2, 1.4). The angle ν ∈ 〈0,π/2〉 defines a position of the point PIN with
the Cartesian system

(
PIN,xn,xϕ,xν

)
(see Figure 1.4) for ν = ν0 (see Figure 1.5a),

ν ∈ 〈0,ν0) (see Figure 1.5b), ν ∈ (ν0,π/2〉 (see Figure 1.5c). The points P12, PM

represent intersections of the normal xn with O789. Due to clarity of Figure 1.5, the
angle νE = ∠(OPE ,x3) (see Equation (1.14)) is depicted in Figure 1.5b only.

Let xnIN and xnE represent normals on the envelope-inclusion and envelope-matrix
boundaries at the points PIN and PE , respectively. As analysed in [2]-[21], due to the
symmetry of the model system, any points PIN and PE on the envelope-inclusion and
envelope-matrix boundaries (see Figure 1.5) exhibit the displacements unIN and unE

along the normals xnIN and xnE , respectively, i.e., uϕq = uνq = 0 (q = IN,E) [2]-[21],
where uϕq, uνq are displacements along the tangents xϕq, xνq, respectively.

6



a b

c

Figure 1.5: The angle ν ∈ 〈0,π/2〉
defines a position of the point PIN with
the Cartesian system

(
PIN,xn,xϕ,xν

)
(see Figure 1.4) for (a) ν = ν0, (b) ν ∈
〈0,ν0), (c) ν ∈ (ν0,π/2〉, where ν0 is
given by Equation (1.9). The points P12,
PM represent intersections of the normal
xn with O789, where O789 is a cross sec-
tion of the cubic cell in the plane x12x3

(see Figures 1.2, 1.4). The angle θ =
∠(xn,x3) is given by Equation (1.18).
Due to clarity of Figure 1.5, the angle
νE = ∠(OPE ,x3) (see Equation (1.14))
is depicted in Figure 1.5b only.

Consequently, the mathematical models in this book can be determined provided
that uϕq= uνq= 0 (q = IN,E), which results in the condition xn= xnIN = xnE . Finally,
the condition xn = xnIN = xnE defines relationships between the dimensions aiIN and
aiE (i = 1,2,3; see Equation (1.13)). With regard to Equation (1.13), the ellipsoidal
inclusion and ellipsoidal envelope are required to represent a rotational ellipsoid (a
spheroid), i.e., a1q = a2q �= a3q (q = IN,E). The relationships (see Equation (1.13))
are determined by the following procedure.

With regard to Equation (1.3), any point of the ellipse E12IN in the plane x1x2 is
described by the coordinates

7



x1 = a1IN cosϕ, x2 = a2IN sinϕ, ϕ ∈
〈

0,
π
2

〉
. (1.6)

Similarly, any point PIN of the ellipse EIN in the plane x12x3 (see Figure 1.5) is
described by the coordinates

x12IN = a12IN sinν, x3IN = a3IN cosν,

a12IN = O4=
√

a2
1IN cos2 ϕ+a2

2IN sin2 ϕ, ϕ,ν ∈
〈

0,
π
2

〉
. (1.7)

Consequently, any point PE of the ellipse EE in the plane x12x3 (see Figure 1.5) is
described by the coordinates

x12E = a12E sinνE , x3E = a3E cosνE ,

a12E = O5=
√

a2
1E cos2 ϕ+a2

2E sin2 ϕ, ϕ,νE ∈
〈

0,
π
2

〉
. (1.8)

With regard to Equation (1.5), (1.7), (1.8), the normals xnIN and xnE at the points
PIN and PE of the ellipses EIN and EE in the plane x12x3 (see Figure 1.5), respectively,
are derived as

x3 a3IN sinν− x12 a12IN cosν+
(
a2

12IN −a2
3IN

)
sinν cosν= 0, ν ∈

〈
0,

π
2

〉
, (1.9)

x3 a3E sinνE − x12 a12E cosνE+
(
a2

12E −a2
3E

)
sinνE cosνE = 0, νE ∈

〈
0,

π
2

〉
.

(1.10)

With regard to Equations (1.9), (1.10), the condition xnIN = xnE results in

a2
12IN −a2

3IN

a12IN a3IN
=

a2
12E −a2

3E

a12E a3E
, (1.11)

tanνE =
a12E a3IN

a12IN a3E
tanν. (1.12)

With regard to a12q (see Equations (1.7), (1.8)) and due to a3q �= f (ϕ) (q= IN,E),
the relationships between the dimensions aiIN and aiE (i = 1,2,3) are derived as

a2
1IN −a2

3IN

a1IN a3IN
=

a2
1E −a2

3E

a1E a3E
, a1q = a2q �= a3q, aiIN < aiE , i= 1,2,3, q= IN,E,

(1.13)

8



where the angle νE = ∠(OPE ,x3) (see Figure 1.5b, Equation (1.12)) has the form

sinνE =
a1E a3IN tanν√

(a1IN a3E)
2+(a1E a3IN tanν)2

,

cosνE =
a1IN a3E√

(a1IN a3E)
2+(a1E a3IN tanν)2

. (1.14)

With regard to Equation (1.9), the coordinates xx12,0, x3 of the point P12 have the
forms

x120 =

(
a2

1IN −a2
3IN

)
sinν

a1IN
, x3 = 0, ν ∈

〈
0,

π
2

〉
. (1.15)

Similarly, the coordinates xx12M , x3M of the point PM in Figure 1.5b for ν ∈ 〈0,ν0〉
are derived as

x12M =
sinν
a1IN

(
d cosν
2a3IN

+a2
1IN −a2

3IN

)
, x3M =

d
2
, ν ∈ 〈0,ν0〉 . (1.16)

The coordinates xx12M , x3M of the point PM in Figure 1.5c for ν ∈ 〈ν0,π/2〉 have
the forms

x12M =
d

2 f (ϕ) sinν
,

f (ϕ) = cosϕ, ϕ ∈
〈

0,
π
4

〉
; f (ϕ) = sinϕ, ϕ ∈

〈π
4
,
π
2

〉
,

x3M =
cosν
a3IN

[
a1IN d

2 f (ϕ) sinν
+a2

3IN −a2
1IN

]
, ν ∈

〈
ν0,

π
2

〉
. (1.17)

The coordinate x12M of the point PM in Figure 1.5a for ν = ν0 is given by Equa-
tion (1.17), where x3M = d/2. With regard to Equation (1.9), the angle ν0 represents
a root of the following equation

cosν0

a3IN

[
a1IN d

2 f (ϕ) sinν0
+a2

3IN −a2
1IN

]
−

d
2
= 0,

f (ϕ) = cosϕ, ϕ ∈
〈

0,
π
4

〉
; f (ϕ) = sinϕ, ϕ ∈

〈π
4
,
π
2

〉
, (1.18)

and this root is determined by a numerical method. The angle θ = ∠(xn,x3) is de-
rived as

9



cosθ=
x3P√

(x12P− x121)
2+ x2

3P

=
1√

1+(a3IN tanν/a1IN)
2
,

sinθ=
1√

1+(a1IN cotν/a3IN)
2
. (1.19)

Consequently, we get [24]

∂
∂θ
=

(
∂θ
∂ϕ

)−1 ∂
∂ϕ
=Θ

∂
∂ϕ

, (1.20)

where the function Θ=Θ(ϕ) has the form

Θ=
(

a1IN

a3IN

)[(
a3IN sinν

a1IN

)2

+ cos2 ν

]
. (1.21)

As presented in [2]–[23], the thermal stresses, which are determined along the
axes xn, xϕ, xθ of the Cartesian system

(
P,xn,xϕ,xθ

)
, represent function of the spheri-

cal coordinates (xn,ϕ,θ) for ϕ,θ∈ 〈0,π/2〉. The intervals xn ∈ 〈0,xIN〉, xn ∈ 〈xIN,xE〉
and xn ∈ 〈xE ,xM〉 are related to the ellipsoidal inclusion, envelope and cell matrix,
respectively. Finally, we get

xIN = P12PIN =

√
(a1IN sinν− x120)

2+(a3IN cosν)2,

xE = PINPE =

√
(a1E sinνE −a1IN sinν)2+(a3E cosνE −a3IN cosν)2,

xM = PEPM =

√
(x12M −a1E sinνE)

2+(x3M −a3E cosνE)
2, (1.22)

where sinνE , cosνE and x120, x12M, x3M are given by Equations (1.12) and (1.15)–
(1.16), respectively.
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Chapter 2

Elastic Solid Continuum

2.1 Fundamental Equations

As analysed in [2]-[21], any point P of the normal xn exhibits the displacement un

along xn. The thermal stresses are determined along the axes xn, xϕ, xθ of the Carte-
sian system

(
P,xn,xϕ,xθ

)
. Fundamental equations of mechanics of a solid continuum

are represented by Cauchy’s equations, the equilibrium equations and Hooke’s law.
Cauchy’s equations represent functions of strains and displacements. With respect
to the normal displacement un, Cauchy’s equations have the forms [2]-[21, 23]

εn =
∂un

∂xn
, (2.1)

εϕ = εθ =
un

xn
, (2.2)

εnϕ = εϕn =
1
xn

∂un

∂ϕ
, (2.3)

εnθ = εθn =
Θ
xn

∂un

∂ν
, (2.4)

where εn is a normal strain along the axis xn, and Θ is given by Equation (1.21).
Consequently, εϕ and εθ are tangential strains along the axes xϕ and xθ, respectively.
Finally, εnϕ, εnθ and εϕn, εθn represent shear strains along the axes xn and xϕ, xθ,
respectively. Due to uϕ = uν = 0, we get εϕν = ενϕ = 0 [2]–[23], where uϕ, uν
are displacements along the axes xϕ, xν, respectively, and εϕν is a shear strain. As
presented in [2]–[23], the equilibrium equations are derived as

2σn−σϕ −σν+ xn
∂σn

∂xn
+

∂σnϕ

∂ϕ
+Θ

∂σnθ
∂ν

= 0, (2.5)

∂σϕ

∂ϕ
+3σnϕ+ xn

∂σnϕ

∂xn
= 0, (2.6)

Θ
∂σθ
∂ν
+3σnθ+ xn

∂σnθ
∂xn

= 0, (2.7)
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where σn is a normal stess along the axis xn. Consequently, σϕ and σθ are tangen-
tial stresses along the axes xϕ and xθ, respectively. Finally, σnϕ, σnθ and σϕn, σθn

represent shear stresses along the axes xn and xϕ, xθ, respectively, where σnϕ = σϕn,
σnθ = σθn. Due to εϕν = ενϕ = 0, we get σϕν = σνϕ = 0 [2]–[23], where σϕν is a
shear stress. With regard to εϕθ = 0, σϕθ = 0, Hooke’s law has the form [2]–[21, 23]

εn = s11σn+ s12
(
σϕ+σθ

)
, (2.8)

εϕ = s12 (σn+σθ)+ s11σϕ, (2.9)

εθ = s12
(
σn+σϕ

)
+ s11σθ, (2.10)

εnθ = s44σnθ, (2.11)

εnϕ = s44σnϕ, (2.12)

where s11, s12, s44 are derived as [25]

s11 =
1
E

, s12 =−
μ
E

, s44 =
2(1+μ)

E
. (2.13)

Finally, E and μ are Young’s modulus and Poisson’s ratio, respectively. In case of
the ellipsoidal inclusion and the cell matrix, we get E = EIN , μ = μIN and E = EM,
μ = μM, respectively. With regard to Equations (2.1)–(2.4), (2.8)–(2.12), we get
[2]–[23]

σn = (c1+ c2)
∂un

∂xn
−2c2

un

xn
, (2.14)

σϕ = σθ =−c2
∂un

∂xn
+ c1

un

xn
, (2.15)

σnϕ =
1

s44xn

∂un

∂ϕ
, (2.16)

σnθ =
Θ

s44xn

∂un

∂ν
, (2.17)

where c1, c2, c3 (see Equation (2.20)) have the forms

c1 =
E

(1+μ)(1−2μ)
, c2 =−

μE
(1+μ)(1−2μ)

, c3 =−4(1−μ)< 0, (2.18)
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and c3 < 0 due to μ < 0.5 for real isotropic components [26]. Let Equations (2.14)–
(2.17) be substituted to Equation (2.18) and to [∂Eq.(2.6)/∂ϕ] + Θ [∂Eq.(2.7)/∂ν].
Consequently, Equations (2.5)–(2.7) are derived as

x2
n

∂2un

∂x2
n
+2xn

∂un

∂xn
−2un+

Un

s44 (c1+ c2)
= 0, (2.19)

xn
∂Un

∂xn
= c3Un, (2.20)

where Un is derived as

Un =
∂2un

∂ϕ2 +Θ2 ∂2un

∂ν2 . (2.21)

The system of the differential equations (2.19), (2.21) is solved by the mathemat-
ical procedures in Sections 3.1, 4.1, 5.1, 6.1, 7.1.

2.2 Elastic Energy

As analysed in [2]–[23] with respect to the different mathematical procedures (see
Sections 3.1, 4.1, 5.1, 6.1, 7.1), such a mathematical solution, which exhibits a min-
imum value of the elastic energy WC of the cubic cell, is considered, where WIN , WE

and WM is elastic energy, which is accumulated in the volume VIN , VE and VM of
the ellipsoidal inclusion, envelope and cell matrix, respectively. The elastic energy
density w is derived as [25]

w=
1
2

(
εnσn+ εϕσϕ+ εθσθ

)
+ εnϕσnϕ+ εnθσnθ, (2.22)

and WIN , WE , WM and WC have the forms

WIN =
∫

VIN

wIN dVIN = 8

π/2∫
0

π/2∫
0

xIN∫
0

wIN x2
n dxn dϕ dν,

WM =
∫
VM

wM dVM = 8

π/2∫
0

π/2∫
0

xM∫
xIN

wM x2
n dxn dϕ dν,

WE =
∫
VE

wE dVE = 8

π/2∫
0

π/2∫
0

xM∫
xE

wE x2
n dxn dϕ dν,
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WC =WIN+WE+WM. (2.23)

2.3 Reason of Thermal Stresses

The thermal stresses are a consequence of the condition αIN �= αE �= αM, αIN =
αE �= αM, αIN �= αE = αM, where αq is a thermal expansion coefficient of the el-
lipsoidal inclusion (q= IN), the ellipsoidal envelope (q = E) and the matrix (q=M)
(see Figure 1.1). The thermal stresses originate at the temperature T ≤ Tr, where
Tr is relaxation temperature. If T > Tr, then the thermal stresses are relaxed by
thermal-activated processes [26]. The temperature Tr is defined by the formula
Tr = (0.35−0.4)×Tm [26], where Tm is melting temperature of a three-component
material. If αq = αq (T ) (q = IN,E,M), then the coefficient βq is derived as

βq =

Tr∫
T

αq dT, q= IN,E,M. (2.24)

The thermal stresses are a consequence of the normal stresses p1n, p2n, which act
on the envelope-inclusion and envelope-matrix boundaries for xn = xIN and x = xE ,
respectively.

If βIN �= βE �= βM, then p1n, p2n are derived as [2]–[23]

p1n =
(ρM+ρ22E)(βE −βIN)+ρ21E (βE −βM)

(ρIN+ρ11E)(ρM+ρ22E)−ρ12E ρ21E
, (2.25)

p2n =
(ρIN+ρ11E)(βM −βE)+ρ12E (βIN −βE)

(ρIN+ρ11E)(ρM+ρ22E)−ρ12E ρ21E
, (2.26)

where the coefficients ρIN; ρ i jE (i, j = 1,2); ρM are given by Equations (6.89); (6.62),
(6.72), (6.82), (7.83), (7.93), (7.103); (3.24), (4.24), (4.34), (4.44), (4.54), (5.23),
(5.33), (5.43), (5.53), (6.22), (6.32), (6.42), (6.52), (7.23), (7.33), (7.43), (7.53),
(7.63), (7.73), respectively, with respect to minimum Wc (see Equation (2.23)).

If βIN �= βE = βM, then the stress p1n has the form [2]–[23]

p1n =
βE −βIN

ρIN+ρ1ME
, (2.27)

where ρIN and ρ1ME are given by Equations (6.89) and (3.53), (4.130), (6.136),
respectively, with respect to minimum Wc (see Equation (2.23)).

If βIN = βE �= βM, then the stress p2n is derived as [2]–[23]
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p2n =
βM −βE

ρM+ρ2INE
, (2.28)

where ρIN and ρ2INE are given by Equations (6.89) and (3.63), (4.140), (5.129),
(5.139), (6.143), respectively, with respect to minimum Wc (see Equation (2.23)).

As an example of minimum Wc with respect to different mathematical solutions
of the thermal stresses in the matrix, the ellipsoidal envelope and inclusion, let a real
three-component material with the thermal expansion coefficients αIN �= αE �= αM

be considered. Let WM, WE , WIN given by Equations (3.22), (4.72), (6.88), respec-
tively, result in minimum Wc for this real material. Consequently, the thermal stresses
in the matrix; the ellipsoidal envelope and inclusion, which are functions of p1n, p2n

(see Equations (2.25), (2.26)), are given by Equations (3.15)–(3.24); (4.65)–(4.74)
and (6.83)–(6.89), respectively. Finally, the coefficients ρM, ρi jE (i, j = 1,2) and ρIN

in Equations (2.25), (2.26) are given by Equations (3.24), (4.74) and (6.89), respec-
tively.

2.4 Boundary Conditions

The mathematical solutions of the system of the differential equations (2.19), (2.21)
include integration constants. As presented in [2]–[23], these constants are deter-
mined by the following boundary conditions for the ellipsoidal inclusion, envelope
and cell matrix.

2.4.1 Matrix

The absolute value |unM| is required to represent a decreasing function of xn ∈
〈xE ,xM〉 with a maximum on the envelope-matrix boundary, i.e., for xn = xE .

If βIN = βE �= βM or βIN �= βE �= βM, then the mandatory boundary conditions
have the forms [2]–[23]

(σnM)xn=xE
=−p2n, (2.29)

(unM)xn=xM
= 0, (2.30)

where xE and p2n are given by Equations (1.22) and (2.26), (2.28), respectively.
Equations (2.29) and (2.30) represent stress and geometric boundary conditions, re-
spectively.

If βIN �= βE = βM, then we get (unM)xn=xE
= (unE)xn=xE

. With regard to Equa-
tion (2.2), we get (unM)xn=xE

= xE
(
εϕE
)
xn=xE

, (unE)xn=xE
= xE

(
εϕE
)
xn=xE

. If βIN �=
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βE = βM, then Equation 2.29 is replaced by the following mandatory boundary con-
dition [2]–[23]

(
εϕM
)
xn=xE

=
(
εϕE
)
xn=xE

=−p1n ρ2ME , (2.31)

where ρ2ME is given by Equations (3.53), (4.130), (6.135) with respect to minimum
Wc (see Equation (2.23)). In this case, two integration constants for the cell ma-
trix, which are included in

(
εϕM
)
xn=xE

, are functions of
(
εϕE
)
xn=xE

. The tangential

strain
(
εϕE
)
xn=xE

includes the integration constant Ce, which is determined by Equa-

tion (2.33). The tangential strain
(
εϕM
)
xn=xE

is a function of the normal stress p1n

and the coefficient ρ2ME (see Equations (2.27), (3.53), (4.130), (6.135)).
As analysed in [2]–[23], the following additional boundary condition can be con-

sidered

(εnM)xn=xM
= 0. (2.32)

2.4.2 Envelope

If βIN �= βE �= βM, then the boundary conditions have the forms [2]–[23]

(σnE)xn=xIN
=−p1n, (2.33)

(σnE)xn=xE
=−p2n. (2.34)

If βIN �= βE = βM, then |unE | = f (xn) represents a decreasing function of xn ∈
〈xIN,xE〉 (see Equation (1.22)). Consequently, the integration constant Ce is deter-
mined by Equation (2.33) [2]–[23].

If βIN = βE �= βM, then |unE | = f (xn) represents an increasing function of xn ∈
〈xIN,xE〉 (see Equation (1.22)). Consequently, the integration constant Ce is deter-
mined by Equation (2.34) [2]–[23].

2.4.3 Inclusion

The absolute value |unE | = f (xn) represents an increasing function of xn ∈ 〈0,xIN〉
with a maximum value on the envelope-inclusion boundary, i.e., for xn = xIN . Addi-
tionally, the conditions (unIN)xn→0 /−→±∞, (εIN)xn−→0 /−→±∞, (σIN)r→0 /−→±∞
are required to be fulfilled [2]–[23].

If βIN �= βE �= βM or βIN �= βE = βM, then the boundary conditions have the forms
[2]–[23]

(un)xn=0 = 0, (2.35)
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(σnIN)xn=xIN
=−p1n, (2.36)

where xIN is given by Equation (1.22), and the integration constant CIN is deter-
mined by Equation (2.36). Equations (2.35) and (2.36) represent geometric and
stress boundary conditions, respectively. If βIN �= βE �= βM or βIN �= βE = βM, then
the normal stress p1n, which acts on the envelope-inclusion boundary, is given by
Equations (2.25) or (2.27) [2]–[23], respectively.

If βIN = βE �= βM, then we get (unIN)xn=xIN
= (unE)xn=xIN

. With regard to Equa-
tion (2.2), we get (unIN)xn=xIN

= xIN
(
εϕIN

)
xn=xIN

, (unE)xn=xIN
= xIN

(
εϕE
)
xn=xIN

. Con-
sequently, Equation 2.36 is replaced by the following mathematical boundary condi-
tion [2]–[23]

(
εϕIN

)
xn=xIN

=
(
εϕE
)
xn=xIN

=−p2n ρ1INE , (2.37)

where ρ1INE is given by Equations (3.63), (4.140), (5.129), (5.139), (6.143) with
respect to minimum Wc (see Equation (2.23)). In this case, the integration con-
stant Cp in

(
εϕIN

)
xn=xIN

is a function of
(
εϕE
)
xn=xIN

[2]–[23]. The tangential strain(
εϕE
)
xn=xIN

includes the integration constant Ce, which is determined by Equation

(2.34). The tangential strain
(
εϕE
)
xn=xIN

is a function of the normal stress p2n and
the coefficient ρ1INE (see Equation (3.63)). The normal stress p2n, which acts on the
envelope-matrix boundary, is given by Equation (2.28).
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Chapter 3

Mathematical Model 1

3.1 Mathematical Procedure

Let the mathematical procedure xn [∂Eq.(2.20)/∂xn] be performed, and then we
get [2]–[23]

x2
n

∂2Un

∂x2
n
+(1− c3)xn

∂Un

∂xn
= 0, (3.1)

where c3 < 0 and Un = Un (xn,ϕ,θ) are given by Equations (2.18) and (2.21), re-
spectively. Let Equation (2.20) be substituted to Equation (3.1), and then we get
[2]–[23]

x2
n

∂2Un

∂x2
n
+ c3 (1− c3)Un = 0. (3.2)

Let Un be assumed in the form Un = xλ
n , then we get [2]–[23]

Un =C1 xλ1
n +C2 xλ2

n , (3.3)

where C1, C2 are integration constants, which are determined by the boundary con-
ditions in Section 2.4, and λ1, λ2, with respect to μ < 0.5 for a real isotropic material
[26], have the forms [2]–[23]

λ1 =
1
2

[
1+
√

1+16(1−μ) [1+4(1−μ)]
]

> 3,

λ2 =
1
2

[
1−
√

1+16(1−μ) [1+4(1−μ)]
]

< −2. (3.4)

Let Equation (3.3) be substituted to Equation (2.19), and then we get [2]–[23]

x2
n

∂2un

∂x2
n
+2xn

∂un

∂xn
−2un =C1 xλ1

n +C2 xλ2
n . (3.5)

The mathematical solution of Equation (3.5), which is determined by Wron-
skian’s method [24], is derived as
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un =
2

∑
i=1

Ci x
λi
n . (3.6)

With regard to Equations (2.1)–(2.4), (2.14)–(2.17), (2.22), (3.6), we get

εn =
2

∑
i=1

Ci λi x
λi−1
n , (3.7)

εϕ =
2

∑
i=1

Ci x
λi−1
n , (3.8)

εnϕ = s44 σnϕ =
2

∑
i=1

∂Ci

∂ϕ
xλi−1
n , (3.9)

εnθ = s44 σnθ =Θ
2

∑
i=1

∂Ci

∂ν
xλi−1
n , (3.10)

σn =
2

∑
i=1

Ci ξ i x
λi−1
n , (3.11)

σϕ = σθ =
2

∑
i=1

Ci ξ2+i x
λi−1
n , (3.12)

w= κ1 x2(λ1−1)
n +κ2 x2(λ2−1)

n ++κ3 xλ1+λ2−2
n , (3.13)

where Θ, s44 is given by Equations (1.21), (2.13), respectively, and ξ i, ξ2+i, ξ2+i+2 j,
κ j (i = 1,2; j = 1,2,3) are derived as

ξ i =
E [λi (1−μ)+2μ]
(1+μ)(1−2μ)

, ξ2+i =
E (1+λi μ)

(1+μ)(1−2μ)
,

ξ2+i+2 j =
E
{

λi
[
λ j (1−μ)+4μ

]
+2
}

2(1+μ)(1−2μ)
,

κ i =C2
i ξ2+3i+

1
s44

[(
∂Ci

∂ϕ

)2

+Θ2
(

∂Ci

∂ν

)2
]

,

κ3 =C1C2 (ξ6+ξ7)+
1

s44

(
∂C1

∂ϕ
∂C2

∂ϕ
+Θ2 ∂C1

∂ν
∂C2

∂ν

)
, i, j = 1,2. (3.14)

In case of the thermal stresses in the ellipsoidal inclusion, |unIN| = f (xn) rep-
resents an increasing function of xn ∈ 〈0,xIN〉, and then C1IN �= 0, C2IN = 0 (see
Equation (3.6)). If C1IN �= 0, C2IN = 0, then the thermal stresses in the ellipsoidal
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inclusion are determined in [1]. The radial stress p, which acts on on the inclusion-
matrix boundary is replaced by p1n (see Equations (2.25), (2.27)), where ρIN in
Equations (2.25), (2.27) is determined in [1].

3.2 Condition βIN �= βE �= βM

3.2.1 Matrix

With regard to Equations (2.29), (2.30), (3.6)–(3.13), (2.22), (2.23), we get

εnM =−p2n

2

∑
i=1

λiM

ζ iM

(
xn

xM

)λiM−1

, (3.15)

εϕM = εθM =−p2n

2

∑
i=1

1
ζ iM

(
xn

xM

)λiM−1

, (3.16)

εnϕM = s44M σnϕM =−
∂

∂ϕ

2

∑
i=1

(
p2n

ζ iM xλiM−1
M

)
xλiM−1
n , (3.17)

εnθM = s44M σnθM =−Θ
2

∑
i=1

∂
∂ν

(
p2n

ζ iM xλiM−1
M

)
xλiM−1
n , (3.18)

σnM =−p2n

2

∑
i=1

ξ iM

ζ iM

(
xn

xM

)λiM−1

, (3.19)

σϕM = σθM =−p2n

2

∑
i=1

ξ2+iM

ζ iM

(
xn

xM

)λiM−1

, (3.20)

wM = κ1M x2(λ1M−1)
n +κ2M x2(λ2M−1)

n ++κ3M xλ1M+λ2M−2
n , (3.21)

WM = 4

π/2∫
0

π/2∫
0

⎡
⎣κ1M

(
x2λ1M+1
M − x2λ1M+1

E

)
2λ1M+1

+
κ2M

(
x2λ2M+1
M − x2λ2M+1

E

)
2λ2M+1

+
κ3M

(
xλ1M+λ2M+1
M − xλ1M+λ2M+1

E

)
λ1M+λ2M+1

⎤
⎦dϕ dν, (3.22)

where Θ, xE , xM, s44M, λiM, ξ jM (i = 1,2; j = 1, . . . , 4) are given by Equations (1.21),
(1.22), (2.13), (3.4), (3.14), respectively, and ζ iM, κ jM (i = 1,2; j = 1,2,3; see Equa-
tion (3.14)) have the forms
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ζ iM = ξ iM

(
xE

xM

)λiM−1

−ξ3−iM

(
xE

xM

)λ3−iM−1

,

κiM = ξ2+3iM

(
p2n

ζ iM xλiM−1
M

)2

+
1

s44M

[
∂

∂ϕ

(
p2n

ζ iM xλiM−1
M

)]2

+
Θ2

s44M

[
∂

∂ν

(
p2n

ζ iM xλiM−1
M

)]2

,

κ3M =
p2

2n (ξ6M+ξ7M)

ζ1 ζ2 xλ1M+λ2M−2
M

+
1

s44M

∂
∂ϕ

(
p2n

ζ1 xλ1M−1
M

)
∂

∂ϕ

(
p2n

ζ2 xλ2M−1
M

)

+
Θ2

s44M

∂
∂ϕ

(
p2n

ζ1 xλ1M−1
M

)
∂

∂ϕ

(
p2n

ζ2 xλ2M−1
M

)
, i= 1,2. (3.23)

The normal stress p2n is given by Equation (2.26), where ρIN and ρi jE (i, j = 1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum Wc (see Equation (2.23)).
With regard to

(
εϕM
)
xn=xE

= −p2n ρM and Equation (3.16), the coefficient ρM in
Equation (2.26) is derived as

ρM =
(1+μ)(1−2μ)

E

[
1

λ1 (1−μ)+2μ
+

1
λ2 (1−μ)+2μ

]
. (3.24)

3.2.2 Envelope

With regard to Equations (2.33), (2.34), (3.6)–(3.13), (2.22), (2.23), we get

εnE =−
1

ζE

2

∑
i=1

λ iE

ξ iE

[
p1n− p2n

(
xIN

xE

)λ3−iE−1
] (

xn

xIN

)λ iE−1

, (3.25)

εϕE = εθE =−
1

ζE

2

∑
i=1

1
ξ iE

[
p1n− p2n

(
xIN

xE

)λ3−iE−1
] (

xn

xIN

)λ iE−1

, (3.26)

εnϕE = s44E σnϕE =−
2

∑
i=1

xλ iE−1
n

ξ iE

∂
∂ϕ

{
1

ζE xλ iE−1
IN

[
p1n− p2n

(
xIN

xE

)λ3−iE−1
]}

,

(3.27)
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εnθE = s44E σnθE =−Θ
2

∑
i=1

xλ iE−1
n

ξ iE

∂
∂ν

{
1

ζE xλ iE−1
IN

[
p1n− p2n

(
xIN

xE

)λ3−iE−1
]}

,

(3.28)

σnE =−
1

ζE

2

∑
i=1

[
p1n− p2n

(
xIN

xE

)λ3−iE−1
] (

xn

xIN

)λ iE−1

, (3.29)

σϕE = σθE =−
1

ζE

2

∑
i=1

ξ2+iE

ξ iE

[
p1n− p2n

(
xIN

xE

)λ3−iE−1
] (

xn

xIN

)λ iE−1

, (3.30)

wE = κ1E x2(λ1E−1)
n +κ2E x2(λ2E−1)

n ++κ3E xλ1E+λ2E−2
n , (3.31)

WE = 4

π/2∫
0

π/2∫
0

⎡
⎣κ1E

(
x2λ1E+1
E − x2λ1E+1

IN

)
2λ1E+1

+
κ2E

(
x2λ2E+1
E − x2λ2E+1

IN

)
2λ2E+1

+
κ3E

(
xλ1E+λ2E+1
E − xλ1E+λ2E+1

IN

)
λ1E+λ2E+1

⎤
⎦dϕ dν, (3.32)

where Θ, xIN , xE , s44E , λiE , ξ jE (i = 1,2; j = 1, . . . , 7) are given by Equations (1.21),
(1.22), (2.13), (3.4), (3.14), respectively, and ζE , κiE (i = 1,2,3; see Equation (3.14))
have the forms

ζE = 1−

(
xIN

xE

)λ2E−λ1E

,

κ iE =
ξ2+3i(

ξ ie ζe xλ iE−1
IN

)2

[
p1n− p2n

(
xIN

xE

)λ3−iE−1
]2

+
1

s44E ξ2
ie

(
∂

∂ϕ

{
1

ζe xλ iE−1
IN

[
p1n− p2n

(
xIN

xE

)λ3−iE−1
]})2

+
Θ2

s44E

(
∂

∂ν

{
1

ζe xλ iE−1
IN

[
p1n− p2n

(
xIN

xE

)λ3−iE−1
]})2

, i= 1,2,

κ3E =
1

ξ1E ξ2E ζ2
E xλ1E+λ2E−2

IN
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×

{
(ξ6E+ξ7E)

[
p1n− p2n

(
xIN

xE

)λ2E−1
][

p1n− p2n

(
xIN

xE

)λ1E−1
]

+
1

s44E

∂
∂ϕ

[
p1n− p2n

(
xIN

xE

)λ2E−1
]

∂
∂ϕ

[
p1n− p2n

(
xIN

xE

)λ1E−1
]

+
Θ2

s44E

∂
∂ν

[
p1n− p2n

(
xIN

xE

)λ2E−1
]

∂
∂ν

[
p1n− p2n

(
xIN

xE

)λ1E−1
]}

. (3.33)

The normal stresses p1n, p2n are given by Equations (2.25), (2.26), where ρIN , ρM

in Equation (2.25) are given by Equations (6.89), (3.24), respectively. With regard
to
(
εϕE
)
xn=xIN

=−(p1n ρ11E+ p2n ρ12E),
(
εϕE
)
xn=xE

=−(p1n ρ21E+ p2n ρ22E) and
Equation (3.26), the coefficient ρi jE (i, j = 1,2) in Equations (2.25), (2.26) is de-
rived as

ρ11E =
1

ζE

2

∑
i=1

1
ξ iE

, ρ21E =
1

ζE

2

∑
i=1

1
ξ iE

(
xE

xIN

)λiE−1

,

ρ12E =−
1

ζE

2

∑
i=1

1
ξ iE

(
xIN

xE

)λ3−iE−1

,

ρ22E =−
1

ζE

2

∑
i=1

1
ξ iE

(
xIN

xE

)λ3−ie−1 ( xE

xIN

)λiE−1

. (3.34)

3.3 Condition βIN �= βE = βM

3.3.1 Matrix

With regard to Equations (2.30), (2.31), (3.6)–(3.13), (2.22), (2.23), we get

εnM =−p1n ρ2ME

2

∑
i=1

λ iM

ζ iM

(
xn

xM

)λ iM−1

, (3.35)

εϕM = εθM =−p1n ρ2ME

2

∑
i=1

1
ζ iM

(
xn

xM

)λ iM−1

, (3.36)

εnϕM = s44M σnϕM =
2

∑
i=1

∂
∂ϕ

(
p1n ρ2ME

ζ iM xλ iM−1
M

)(
xn

xM

)λ iM−1

, (3.37)

εnθM = s44M σnθM =−Θ
2

∑
i=1

∂
∂ν

(
p1n ρ2ME

ζ iM xλ iM−1
M

)(
xn

xM

)λ iM−1

, (3.38)
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σnM =−p1n ρ2ME

2

∑
i=1

ξ iM

ζ iM

(
xn

xM

)λ iM−1

, (3.39)

σϕM = σθM =−p1n ρ2ME

2

∑
i=1

ξ2+iM

ζ iM

(
xn

xM

)λ iM−1

, (3.40)

wM = κ1M x2(λ1M−1)
n +κ2M x2(λ2M−1)

n ++κ3M xλ1M+λ2M−2
n , (3.41)

WM = 4

π/2∫
0

π/2∫
0

⎡
⎣κ1M

(
x2λ1M+1
M − x2λ1M+1

E

)
2λ1M+1

+
κ2M

(
x2λ2M+1
M − x2λ2M+1

E

)
2λ2M+1

+
κ3M

(
xλ1M+λ2M+1
M − xλ1M+λ2M+1

E

)
λ1M+λ2M+1

⎤
⎦dϕ dν, (3.42)

where Θ, xE , xM, s44M, λiM, ξ jM (i = 1,2; j = 1, . . . , 4) are given by Equations (1.21),
(1.22), (2.13), (3.4), (3.14), respectively, and ζ iM, κ jM (i = 1,2; j = 1,2,3; see Equa-
tion (3.14)) have the forms

ζ iM =

(
xE

xM

)λ iM−1

−

(
xE

xM

)λ3−iM−1

,

κiM = ξ2+3iM

(
p1n ρ2ME

ζ iM xλiM−1
M

)2

+
1

s44M

[
∂

∂ϕ

(
p1n ρ2ME

ζ iM xλiM−1
M

)]2

+
Θ2

s44M

[
∂

∂ν

(
p1n ρ2ME

ζ iM xλiM−1
M

)]2

,

κ3M =
p1n ρ2

2ME (ξ6M+ξ7M)

ζ1 ζ2 xλ1M+λ2M−2
M

+
1

s44M

∂
∂ϕ

(
p1n ρ2ME

ζ1 xλ1M−1
M

)
∂

∂ϕ

(
p1n ρ2ME

ζ2 xλ2M−1
M

)

+
Θ2

s44M

∂
∂ϕ

(
p1n ρ2ME

ζ1 xλ1M−1
M

)
∂

∂ϕ

(
p1n ρ2ME

ζ2 xλ2M−1
M

)
, i= 1,2. (3.43)

The normal stress p1n is given by Equation (2.27), where ρIN and ρ1ME in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively ,
with respect to minimum Wc (see Equation (2.23)).
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3.3.2 Envelope

If βIN �= βE = βM, then |unE | = f (xn) represents a decreasing function of xn ∈
〈xIN,xE〉, and then C1e = 0 and C2e �= 0 due to λ1e > 3 and λ2e < −2 (see Equa-
tions (3.4), (3.6)), respectively. With regard to Equations (2.33), (3.6)–(3.13), (2.22),
(2.23), we get

εnE =−
p1n λ2E

ξ2E

(
xn

xIN

)λ2E−1

, (3.44)

εϕE = ε33E =−
p1n

ξ2E

(
xn

xIN

)λ2E−1

, (3.45)

εnϕE = s44E σnϕE =−
∂

∂ϕ

(
p1n

ξ2E xλ2E−1
IN

)
xλ2E−1
n , (3.46)

εnθE = s44E σnθE =−Θ
∂

∂ν

(
p1n

ξ2E xλ2E−1
IN

)
xλ2E−1
n , (3.47)

σnE =−p1n

(
xn

xIN

)λ2E−1

, (3.48)

σϕE = σ33E =−
p1n ξ3E

ξ2E

(
xn

xIN

)λ2E−1

, (3.49)

wE = κ3E x2(λ2E−1)
n , (3.50)

WE =
4

2λ2E+1

π/2∫
0

π/2∫
0

κ3E

(
x2λ2E+1
E − x2λ2E+1

IN

)
dϕ dν, (3.51)

where Θ, xIN , xE , s44E , λ2E and ξ2E , ξ3E are given by Equations (1.21), (1.22),
(2.13), (3.4) and (3.14), respectively, and κ3E (see Equation (3.14)) has the form

κ3E = ξ5E

(
p1n

ξ2E xλ2E−1
IN

)2

+
1

s44E

⎧⎨
⎩
[

∂
∂ϕ

(
p1n

ξ2E xλ2E−1
IN

)]2

+Θ2

[
∂Ci

∂ν

(
p1n

ξ2E xλ2E−1
IN

)]2
⎫⎬
⎭ . (3.52)

The normal stress p1n is given by Equation (2.27), where ρIN in Equation (2.27)
is given by Equation (6.89). With regard to

(
εϕE
)
xn=xIN

=−p1n ρ1ME ,
(
εϕE
)
xn=xE

=
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−p1n ρ2ME (see Equation (3.45)), the coefficients ρ1ME , ρ2ME in Equations (2.27),
(2.31) are derived as

ρ1ME =
1

ξ2E
, ρ2ME =

1
ξ2E

(
xE

xIN

)λ2E−1

. (3.53)

3.4 Condition βIN = βE �= βM

If βIN = βE �= βM, then the thermal strains and stresses in the cell matrix are deter-
mined in Section 3.2.1. The normal stress p2n in Section 3.2.1 is given by Equa-
tion (2.28). The coefficients ρIN; ρM; ρ2INE in Equation (2.28) are given by Equa-
tions (6.89); (3.24), (4.24), (4.34), (4.44), (4.54), (5.23), (5.33), (5.43), (5.53), (6.22),
(6.32), (6.42), (6.52), (7.23), (7.33), (7.43), (7.53), (7.63), (7.73); (3.63), respec-
tively, with respect to minimum Wc (see Equation (2.23)).

3.4.1 Envelope

If βIN = βE �= βM, then |unE | = f (xn) represents an increasing function of xn ∈
〈xIN,xE〉, and then C1E �= 0 and C2E = 0 due to λ1e > 3 and λ2E < −2 (see Equa-
tions (3.4), (3.6)), respectively. With regard to Equations (2.34), (3.6)–(3.13), (2.22),
(2.23), we get

εnE =−
p2n λ1E

ξ1E

(
xn

xE

)λ1E−1

, (3.54)

εϕE = ε33E =−
p2n

ξ1E

(
xn

xE

)λ1E−1

, (3.55)

εnϕE = s44E σnϕE =−
∂

∂ϕ

(
p2n

ξ1E xλ1E−1
E

)
xλ1E−1
n , (3.56)

εnθE = s44E σnθE =−Θ
∂

∂ν

(
p2n

ξ1E xλ1E−1
E

)
xλ1E−1
n , (3.57)

σnE =−p2n

(
xn

xE

)λ1E−1

, (3.58)

σϕE = σ33E =−
p2n ξ3E

ξ1E

(
xn

xE

)λ1E−1

, (3.59)

wE = κ1E x2(λ1E−1)
n , (3.60)
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WE =
4

2λ1E+1

π/2∫
0

π/2∫
0

κ1E

(
x2λ1E+1
E − x2λ1E+1

IN

)
dϕ dν, (3.61)

where Θ, xIN , xE , s44E , λ1E and ξ1E , ξ3E are given by Equations (1.21), (1.22),
(2.13), (3.4) and (3.14), respectively, and κ1E (see Equation (3.14)) has the form

κ1E = ξ5E

(
p2n

ξ1E xλ1E−1
E

)2

+
1

s44E

⎧⎨
⎩
[

∂
∂ϕ

(
p2n

ξ1E xλ1E−1
E

)]2

+Θ2

[
∂Ci

∂ν

(
p2n

ξ1E xλ1E−1
E

)]2
⎫⎬
⎭ . (3.62)

The normal stress p2n is given by Equation (2.28), where ρM in Equation (2.28) is
given by Equations (3.24), (4.24), (4.34), (4.44), (4.54), (5.23), (5.33), (5.43), (5.53),
(6.22), (6.32), (6.42), (6.52), (7.23), (7.33), (7.43), (7.53), (7.63), (7.73) with respect
to minimum Wc (see Equation (2.23)). With regard to

(
εϕE
)
xn=xIN

= −p2n ρ1INE ,(
εϕE
)
xn=xE

= −p2n ρ2INE (see Equation (3.55)), the coefficients ρ1INE , ρ2INE in
Equations (2.28), (2.37) are derived as

ρ1INE =
1

ξ1E

(
xIN

xE

)λ1E−1

, ρ2INE =
1

ξ1E
. (3.63)
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Chapter 4

Mathematical Model 2

4.1 Mathematical Procedure

Let the mathematical procedure ∂2Eq.(2.20)/∂x2
n be performed, and then we get

[2]–[23]

xn
∂3Un

∂x3
n
+(2− c3)

∂2Un

∂x2
n
= 0, (4.1)

where c3 < 0 and Un=Un (xn,ϕ,ν) are given by Equations (2.18) and (2.21), respec-
tively. Let Ub be assumed in the form Un = xλ

n , and then we get

Un =C1 xn+C2 xc3
n +C3, (4.2)

where C1, C2, C3 are integration constants, which are determined by the boundary
conditions in Section 2.4. Let Equation (2.35) be substituted to Equation (2.19), and
then we get

x2
n

∂2un

∂x2
n
+2xn

∂un

∂xn
−2un =C1 xn+C2 xc3

n +C3 x2
n. (4.3)

The mathematical solution of Equation (4.3), which is determined by Wron-
skian’s method [24], is derived as

un =C1 xn

(
1
3
− lnxn

)
+C2 xc3

n +C3. (4.4)

With regard to Equations (2.1)–(2.4), (2.14)–(2.17), (2.22), (4.4), we get

εn =−C1

(
2
3
+ lnxn

)
+C2 c3 xc3−1

n , (4.5)

εϕ = εθ =C1

(
1
3
− lnxn

)
+C2 xc3−1

n +
C3

xn
, (4.6)

εnϕ = s44 σnϕ =

(
1
3
− lnxn

)
∂C1

∂ϕ
+ xc3−1

n
∂C2

∂ϕ
+

1
xn

∂C3

∂ϕ
, (4.7)
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εnθ = s44 σnθ =Θ
[(

1
3
− lnxn

)
∂C1

∂ν
+ xc3−1

n
∂C2

∂ν
+

1
xn

∂C3

∂ν

]
, (4.8)

σn =−C1

[
2(c1+2c2)

3
+(c1 − c2) lnxn

]
+C2 [(c1+ c2)c3 −2c2]x

c3−1
n −

2C3 c2

xn
,

(4.9)

σϕ = σθ =C1

[
c1+2c2

3
− (c1 − c2) lnxn

]
+C2 (c1 − c2 c3)x

c3−1
n +

C3 c1

xn
,

(4.10)

w=C2
1 κ1+C2

2 κ2+C2
3 κ3+C1C2 κ4+C1C3 κ5+C2C3 κ6

+
χ1

s44

[(
∂C1

∂ϕ

)2

+Θ2
(

∂C1

∂ν

)2
]
+

χ2

s44

[(
∂C2

∂ϕ

)2

+Θ2
(

∂C2

∂ν

)2
]

+
χ3

s44

[(
∂C3

∂ϕ

)2

+Θ2
(

∂C3

∂ν

)2
]
+

χ4

s44

(
∂C1

∂ϕ
∂C2

∂ϕ
+Θ2 ∂C1

∂ν
∂C2

∂ν

)

+
χ5

s44

(
∂C1

∂ϕ
∂C3

∂ϕ
+Θ2 ∂C1

∂ν
∂C3

∂ν

)
+

χ6

s44

(
∂C2

∂ϕ
∂C3

∂ϕ
+Θ2 ∂C2

∂ν
∂C3

∂ν

)
, (4.11)

where Θ, ci (i = 1,2,3), s44 are given by Equations (1.21), (2.18), (2.13), respectively,
and κ j, χ j ( j = 1, . . . , 6) are derived as

κ1 =
c2 − c1

2
ln2 xn+

2(c2 − c1)

3
lnxn+

7c1+2c2

9
,

κ2 =

[
c2

3 (c1+ c2)

2
+ c1 (1−2c3)

]
x2(c3−1)
n , κ3 =

c1

x2
n
,

κ4 = c3 (c1 − c2)x
c3−1
n lnxn+2

[
c1 −

c3 (2c1+ c2)

3

]
xc3−1
n ,

κ5 =
2c1

xn
, κ6 = 0,

χ1 = ln2 xn−
2
3

lnxn+
1
9
, χ2 = x2(c3−1)

n , χ3 =
1
x2
n
,

χ4 =
2
3

xc3−1
n −2xc3−1

n lnxn, χ5 =
2

3xn
−

2lnxn

xn
, χ6 = xc3−2

n . (4.12)

The integrals Φi, Ψi of the κ j = κ j (xn), χ j = χ j (xn) (i = 1, . . . , 6), respectively,
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have the forms

Φiq =

x2n∫
x1n

κiq x2
n dxn, Ψiq =

x2n∫
x1n

χiq x2
n dxn, i= 1, . . . ,6,

q= E ⇒ x1n = xIN, x2n = xE ,

q=M ⇒ x1n = xE , x2n = xM. (4.13)

where xIN , xE , xM are given by Equations (1.22), respectively. Consequently, we get

Φ1q =
c2q− c1q

6

{
x3

2n

[(
lnx2n−

1
3

)2

+
1
9

]
− x3

1n

[(
lnx1n−

1
3

)2

+
1
9

]}

+
2
(
c2q− c1q

)
9

[
x3

2n

(
lnx2n−

1
3

)
− x3

1n

(
lnx1n−

1
3

)]

+

(
7c1q+2c2q

)(
x3

2n− x3
1n

)
27

,

Φ2q =
1

2c3q+1

[
c2

3q

(
c1q+ c2q

)
2

+ c1q
(
1−2c3q

)](
x

2c3q+1
2n − x

2c3q+1
1n

)
,

Φ3q = c1q (x2n− x1n) ,

Φ4q =
c3q
(
c1q− c2q

)
c3q+2

[
x

c3q+2
2n

(
lnx2n−

1
c3q+2

)
− x

c3q+2
1n

(
lnx1n−

1
c3q+2

)]

+
2

c3q+2

[
c1q −

c3q
(
2c1q+ c2q

)
3

](
x

c3q+2
2n − x

c3q+2
1n

)
,

Φ5q = c1q

(
x2

2n− x2
1n

)
, Φ6q = 0,

Ψ1q =
x3

2n

3

[
(lnx2n−1)

(
lnx2n−

1
3

)
+

2
9

]
−

x3
1n

3

[
(lnx1n−1)

(
lnx1n−

1
3

)
+

2
9

]
,

Ψ2q =
x

2c3q+1
2n − x

2c3q+1
1n

2c3q+1
, Ψ3q = x2n− x1n,

Ψ4q =
2

c3q+2

{
x

c3q+2
2n

[
c3q+5

3
(
c3q+2

)− lnx2n

]
− x

c3q+2
1n

[
c3q+5

3
(
c3q+2

)− lnx1n

]}
,

Ψ5q = x2
2n

(
5
6
− lnx2n

)
− x2

1n

(
5
6
− lnx1n

)
, Ψ6q =

x
c3q+1
2n − x

c3q+1
1n

c3q+1
,

q= E ⇒ x1n = xIN, x2n = xE ,

q=M ⇒ x1n = xE , x2n = xM. (4.14)

In case of the ellipsoidal inclusion, we get (unIN)xn→0 −→ ± ∞, (εIN)xn−→0 −→
± ∞, (σIN)r→0 −→±∞ due to (lnxn)xn→0 −→ ± ∞ and (xc3

n )xn→0 −→ ± ∞ for
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c3 < 0 (see Equations (2.18), (4.4)–(4.10)). Accordingly, the mathematical solutions
(4.4)–(4.10) are suitable for the envelope and matrix.

Additionally, the function f = xn [(1/3)− lnxn] is increasing or decreasing for
xn ≤ 0.513 m or xn ≥ 0.513 m, respectively. With regard to dimensions of compo-
nents of a real three-component material, f = xn [(1/3)− lnxn] represents an increas-
ing function of xn.

4.2 Condition βIN �= βE �= βM

4.2.1 Matrix

The integration constants C1M, C2M, C3M for the matrix (see Equation (4.4)) are de-
termined by the boundary conditions (2.29), (2.30) or (2.29), (2.30), (2.32). The
boundary conditions result in the following combinations of C1M, C2M, C3M, i.e.,
C1M �= 0, C2M �= 0, C3M = 0; C1M �= 0, C3M �= 0, C2M = 0; C2M �= 0, C3M �= 0,
C1M = 0; C1M �= 0, C2M �= 0, C3M �= 0. Finally, such a combination is considered
to exhibit a minimum value of the elastic energy WC of the cubic cell (see Equa-
tion (2.23)).

Conditions C1M �= 0, C2M �= 0, C3M = 0. With regard to Equations (2.29), (2.30),
(4.4)–(4.11), (2.22), (2.23), we get

εnM =
p2n

ζ

[
2
3
+ lnxn+ c3M

(
1
3
− lnxM

)(
xn

xM

)c3M−1
]

, (4.15)

εϕM = εθM =−
p2n

ζ M

[
1
3
− lnxn−

(
1
3
− lnxM

)(
xn

xM

)c3M−1
]

, (4.16)

εnϕM = s44M σnϕM =

(
lnxn−

1
3

)
∂

∂ϕ

(
p2n

ζ M

)

+ xc3M−1
n

∂
∂ϕ

[
p2n

ζ M xc3M−1
M

(
1
3
− lnxM

)]
, (4.17)

εnθM = s44M σnθM =−Θ
{(

lnxn−
1
3

)
∂

∂ν

(
p2n

ζ M

)

+ xc3M−1
n

∂
∂ν

[
p2n

ζ M xc3M−1
M

(
1
3
− lnxM

)]}
, (4.18)

32



σnM =
p2n

ζ M

{
2(c1M+2c2M)

3
+(c1M − c2M) lnxn

+[(c1M+ c2M)c3M −2c2M]

(
1
3
− lnxM

)(
xn

xM

)c3M−1
}

, (4.19)

σϕM = σθM =−
p2n

ζ M

[
c1M+2c2M

3
− (c1M − c2M) lnxn

−(c1M − c2M c3M)

(
1
3
− lnxM

)(
xn

xM

)c3M−1
]

, (4.20)

wM =

(
p2n

ζ M

)2
⎧⎨
⎩κ1M+κ2M

(
1−3lnxM

3xc3M−1
M

)2

+
κ4M (3lnxM −1)

3xc3M−1
M

⎫⎬
⎭

+
χ1M

s44M

{[
∂

∂ϕ

(
p2n

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n

ζ M

)]2
}

+
χ2M

s44M

⎛
⎝{ ∂

∂ϕ

[
p2n (1−3lnxM)

3ζ M xc3M−1
M

]}2

+Θ2

{
∂

∂ν

[
p2n (1−3lnxM)

3ζ M xc3M−1
M

]}2
⎞
⎠

+
χ4M

s44M

∂
∂ϕ

(
p2n

ζ M

)
∂

∂ϕ

[
p2n (3lnxM −1)

3ζ M xc3M−1
M

]

+
χ4M Θ2

s44M

∂
∂ν

(
p2n

ζ M

)
∂

∂ν

[
p2n (3lnxM −1)

3ζ M xc3M−1
M

]
, (4.21)

WM = 4

π/2∫
0

π/2∫
0

(
p2n

ζ M

)2
⎧⎨
⎩Φ1M+Φ2M

(
1−3lnxM

3xc3M−1
M

)2

+
Φ4M (3lnxM −1)

3xc3M−1
M

⎫⎬
⎭ dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

{[
∂

∂ϕ

(
p2n

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n

ζ M

)]2
}

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

⎛
⎝{ ∂

∂ϕ

[
p2n (1−3lnxM)

3ζ M xc3M−1
M

]}2
⎞
⎠ dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M Θ2

⎛
⎝{ ∂

∂ν

[
p2n (1−3lnxM)

3ζ M xc3M−1
M

]}2
⎞
⎠ dϕ dν
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+
4

s44M

π/2∫
0

π/2∫
0

Ψ4M
∂

∂ϕ

(
p2n

ζ M

)
∂

∂ϕ

[
p2n (3lnxM −1)

3ζ M xc3M−1
M

]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ4M Θ2 ∂
∂ν

(
p2n

ζ M

)
∂

∂ν

[
p2n (3lnxM −1)

3ζ M xc3M−1
M

]
dϕ dν, (4.22)

where Θ, xM, s44M, ciM (i = 1,2,3) and κ jM, χ jM; Φ jM, Ψ jM ( j = 1,2,4) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and ζ M, ζ iM

(i = 1,2) have the forms

ζ M = ζ2M −ζ1M

(
1
3
− lnxM

)
, ζ1M = [(c1M+ c2M)c3M −2c2M]

(
xE

xM

)c3M−1

,

ζ2M =−

[
2(c1M+2c2M)

3
+(c1M − c2M) lnxE

]
. (4.23)

The normal stress p2n is given by Equation (2.26), where ρIN and ρi jE (i, j = 1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum Wc (see Equation (2.23)).
With regard to

(
εϕM
)
xn=xE

= −p2n ρM and Equation (4.16), the coefficient ρM in
Equation (2.26) is derived as

ρM =
1

ζ M

[
1
3
− lnxE −

(
1
3
− lnxM

)(
xE

xM

)c3M−1
]

. (4.24)

Conditions C1M �= 0, C3M �= 0, C2M = 0. With regard to Equations (2.29), (2.30),
(4.4)–(4.11), (2.22), (2.23), we get

εnM =
p2n

ζ M xM

(
2
3
+ lnxn

)
, (4.25)

εϕM = εθM =−
p2n

ζ M

[
1
xM

(
1
3
− lnxn

)
−

1
xn

(
1
3
− lnxM

)]
, (4.26)

εnϕM = s44M σnϕM =−

(
1
3
− lnxn

)
∂

∂ϕ

(
p2n

ζ M xM

)
+

1
xn

∂
∂ϕ

[
p2n (1−3lnxM)

3ζ M

]
,

(4.27)

εnθM = s44M σnθM =

−Θ
{(

1
3
− lnxn

)
∂

∂ϕ

(
p2n

ζ M xM

)
−

1
xn

∂
∂ϕ

[
p2n (1−3lnxM)

3ζ M

]}
, (4.28)
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σnM =
p2n

ζ M

{
1
xM

[
2(c1M+2c2M)

3
+(c1M − c2M) lnxn

]
−

2c2M

xn

(
1
3
− lnxM

)}
,

(4.29)

σϕM = σθM =

−
p2n

ζ M

{
1
xM

[
c1M+2c2M

3
− (c1M − c2M) lnxn

]
−

c1M

xn

(
1
3
− lnxM

)}
, (4.30)

wM =

(
p2n

ζ M

)2
[

κ1M

x2
M

+κ3M

(
1
3
− lnxM

)2

+
κ5M (3lnxM −1)

3xM

]

+
χ1M

s44M

{[
∂

∂ϕ

(
p2n

ζ M xM

)]2

+Θ2
[

∂
∂ν

(
p2n

ζ M xM

)]2
}

+
χ3M

s44M

({
∂

∂ϕ

[
p2n (1−3lnxM)

3ζ M

]}2

+Θ2
{

∂
∂ν

[
p2n (1−3lnxM)

3ζ M

]}2
)

+
χ5M

s44M

∂
∂ϕ

(
p2n

ζ M xM

)
∂

∂ϕ

[
p2n (3lnxM −1)

3ζ M

]

+
χ5M Θ2

s44M

∂
∂ν

(
p2n

ζ M xM

)
∂

∂ν

[
p2n (3lnxM −1)

3ζ M

]
, (4.31)

WM = 4

π/2∫
0

π/2∫
0

(
p2n

ζ M

)2
[

Φ1M

x2
M

+Φ3M

(
1
3
− lnxM

)2

+
Φ5M (3lnxM −1)

3xM

]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

{[
∂

∂ϕ

(
p2n

ζ M xM

)]2

+Θ2
[

∂
∂ν

(
p2n

ζ M xM

)]2
}

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M

{
∂

∂ϕ

[
p2n (1−3lnxM)

3ζ M

]}2

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M Θ2
{

∂
∂ν

[
p2n (1−3lnxM)

3ζ M

]}2

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ5M
∂

∂ϕ

(
p2n

ζ M xM

)
∂

∂ϕ

[
p2n (3lnxM −1)

3ζ M

]
dϕ dν
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+
4

s44M

π/2∫
0

π/2∫
0

Ψ5M Θ2 ∂
∂ν

(
p2n

ζ M xM

)
∂

∂ν

[
p2n (3lnxM −1)

3ζ M

]
dϕ dν,(4.32)

where Θ, xM, s44M, ciM (i = 1,2,3) and κ jM, χ jM; Φ jM, Ψ jM ( j = 1,3,5) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and ζ M have
the forms

ζ M =
1
xM

[
2(c1M+2c2M)

3
+(c1M − c2M) lnxE

]
+

2c2M

xE

(
1
3
− lnxM

)
. (4.33)

The normal stress p2n is given by Equation (2.26), where ρIN and ρi jE (i, j = 1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum Wc (see Equation (2.23)).
With regard to

(
εϕM
)
xn=xE

= −p2n ρM and Equation (4.26), the coefficient ρM in
Equation (2.26) is derived as

ρM =
1

ζ M

[
1
xM

(
1
3
− lnxE

)
−

1
xE

(
1
3
− lnxM

)]
. (4.34)

Conditions C2M �= 0, C3M �= 0, C1M = 0. With regard to Equations (2.29), (2.30),
(4.4)–(4.11), (2.22), (2.23), we get

εnM =−
p2n c3M

ζ M xM

(
xn

xM

)c3M−1

, (4.35)

εϕM = εθM =
p2n

ζ M xn

[
1−

(
xn

xM

)c3M
]
, (4.36)

εnϕM = s44M σnϕM =−
1
xn

[
xc3M
n

∂
∂ϕ

(
p2n

ζ M xc3M
M

)
−

∂
∂ϕ

(
p2n

ζ M

)]
, (4.37)

εnθM = s44M σnθM =−
Θ
xn

[
xc3M
n

∂
∂ν

(
p2n

ζ M xc3M
M

)
−

∂
∂ν

(
p2n

ζ M

)]
, (4.38)

σnM =−
p2n

ζ M

{
c3M (c1M+ c2M)−2c2M

xM

(
xn

xM

)c3M−1

+
2c2M

xn

}
, (4.39)

σϕM = σθM =−
p2n

ζ M

[
c1M − c2M c3M

xM

(
xn

xM

)c3M−1

−
c1M

xn

]
, (4.40)
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wM =

(
p2n

ζ M

)2
(

κ2M

x2c3M
M

+κ3M −
κ6M

xc3M
M

)

+
χ2M

s44M

{[
∂

∂ϕ

(
p2n

ζ M xc3M
M

)]2

+Θ2
[

∂
∂ν

(
p2n

ζ M xc3M
M

)]2
}

+
χ3M

s44M

{[
∂

∂ϕ

(
p2n

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n

ζ M

)]2
}

−
χ6M

s44M

[
∂

∂ϕ

(
p2n

ζ M xc3M
M

)
∂

∂ϕ

(
p2n

ζ M

)
+Θ2 ∂

∂ν

(
p2n

ζ M xc3M
M

)
∂

∂ν

(
p2n

ζ M

)]
,(4.41)

WM = 4

π/2∫
0

π/2∫
0

(
p2n

ζ M

)2
(

Φ2M

x2c3M
M

+Φ3M −
Φ6M

xc3M
M

)
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

{[
∂

∂ϕ

(
p2n

ζ M xc3M
M

)]2

+Θ2
[

∂
∂ν

(
p2n

ζ M xc3M
M

)]2
}

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M

{[
∂

∂ϕ

(
p2n

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n

ζ M

)]2
}

dϕ dν

−
4

s44M

π/2∫
0

π/2∫
0

Ψ6M

[
∂

∂ϕ

(
p2n

ζ M xc3M
M

)
∂

∂ϕ

(
p2n

ζ M

)

+ Θ2 ∂
∂ν

(
p2n

ζ M xc3M
M

)
∂

∂ν

(
p2n

ζ M

)]
dϕ dν, (4.42)

where Θ, xM, s44M, ciM (i = 1,2,3) and κ jM, χ jM; Φ jM, Ψ jM ( j = 2,3,6) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and ζ M has
the form

ζ M =
1
xE

{
[c3M (c1M+ c2M)−2c2M]

(
xE

xM

)c3M

+2c2M

}
. (4.43)

The normal stress p2n is given by Equation (2.26), where ρIN and ρi jE (i, j = 1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum Wc (see Equation (2.23)).
With regard to

(
εϕM
)
xn=xE

= −p2n ρM and Equation (4.36), the coefficient ρM in
Equation (2.26) is derived as
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ρM =
1

ζ M

[(
xE

xM

)c3M

−1

]
. (4.44)

Conditions C1M �= 0, C2M �= 0, C3M �= 0. With regard to Equations (2.29), (2.30),
(4.4)–(4.11), (2.22), (2.23), we get

εnM =−
p2n

ζ M

[
ζ1M

(
2
3
+ lnxn

)
−ζ2M c3M xc3M−1

n

]
, (4.45)

εϕM = εθM =−
p2n

ζ M

[
ζ1M

(
1
3
− lnxn

)
+ζ2M xc3M−1

n +
ζ3M

xn

]
, (4.46)

εnϕM = s44M σnϕM =

(
1
3
− lnxn

)
∂

∂ϕ

(
p2n ζ1M

ζ M

)
+ xc3−1

n
∂

∂ϕ

(
p2n ζ2M

ζ M

)

+
1
xn

∂
∂ϕ

(
p2n ζ3M

ζ M

)
, (4.47)

εnθM = s44M σnθM =−Θ
[(

1
3
− lnxn

)
∂

∂ν

(
p2n ζ1M

ζ M

)
+ xc3−1

n
∂

∂ν

(
p2n ζ2M

ζ M

)

+
1
xn

∂
∂ν

(
p2n ζ3M

ζ M

)]
, (4.48)

σnM =−
p2n

ζ M

{
ζ1M

[
2(c1M+2c2M)

3
+(c1M − c2M) lnxn

]

− ζ2M [(c1M+ c2M)c3M −2c2M]x
c3M−1
n +

2c2M ζ3M

xn

}
, (4.49)

σϕM = σθM =
p2n

ζ M

{
ζ1M

[
c1M+2c2M

3
− (c1M − c2M) lnxn

]

+ ζ2M (c1M − c2M c3M)x
c3M−1
n +

c1M ζ3M

xn

}
, (4.50)

wM =

(
p2n

ζ M

)2(
κ1M ζ2

1M+κ2M ζ2
2M+κ3M ζ2

3M

+κ4M ζ1M ζ2M+κ5M ζ1M ζ3M+κ6M ζ2M ζ3M)
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+
χ1M

s44M

{[
∂

∂ϕ

(
p2n ζ1M

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n ζ1M

ζ M

)]2
}

+
χ2M

s44M

{[
∂

∂ϕ

(
p2n ζ2M

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n ζ2M

ζ M

)]2
}

+
χ3M

s44M

{[
∂

∂ϕ

(
p2n ζ3M

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n ζ3M

ζ M

)]2
}

+
χ4M

s44M

∂
∂ϕ

(
p2n ζ1M

ζ M

)
∂

∂ϕ

(
p2n ζ2M

ζ M

)

+
χ4M Θ2

s44M

∂
∂ν

(
p2n ζ1M

ζ M

)
∂

∂ν

(
p2n ζ2M

ζ M

)

+
χ5M

s44M

∂
∂ϕ

(
p2n ζ1M

ζ M

)
∂

∂ϕ

(
p2n ζ3M

ζ M

)

+
χ5M Θ2

s44M

∂
∂ν

(
p2n ζ1M

ζ M

)
∂

∂ν

(
p2n ζ3M

ζ M

)

+
χ6M

s44M

∂
∂ϕ

(
p2n ζ2M

ζ M

)
∂

∂ϕ

(
p2n ζ3M

ζ M

)

+
χ6M Θ2

s44M

∂
∂ν

(
p2n ζ2M

ζ M

)
∂

∂ν

(
p2n ζ3M

ζ M

)
, (4.51)

WM = 4

π/2∫
0

π/2∫
0

(
p2n

ζ M

)2(
Φ1M ζ2

1M+Φ2M ζ2
2M+Φ3M ζ2

3M+Φ4M ζ1M ζ2M

+ Φ5M ζ1M ζ3M+Φ6M ζ2M ζ3M

)
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

{[
∂

∂ϕ

(
p2n ζ1M

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n ζ1M

ζ M

)]2
}

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

{[
∂

∂ϕ

(
p2n ζ2M

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n ζ2M

ζ M

)]2
}

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M

{[
∂

∂ϕ

(
p2n ζ3M

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n ζ3M

ζ M

)]2
}

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ4M

[
∂

∂ϕ

(
p2n ζ1M

ζ M

)
∂

∂ϕ

(
p2n ζ2M

ζ M

)
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+ Θ2 ∂
∂ν

(
p2n ζ1M

ζ M

)
∂

∂ν

(
p2n ζ2M

ζ M

)]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ5M

[
∂

∂ϕ

(
p2n ζ1M

ζ M

)
∂

∂ϕ

(
p2n ζ3M

ζ M

)

+ Θ2 ∂
∂ν

(
p2n ζ1M

ζ M

)
∂

∂ν

(
p2n ζ3M

ζ M

)]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ6M

[
∂

∂ϕ

(
p2n ζ2M

ζ M

)
∂

∂ϕ

(
p2n ζ3M

ζ M

)

+ Θ2 ∂
∂ν

(
p2n ζ2M

ζ M

)
∂

∂ν

(
p2n ζ3M

ζ M

)]
dϕ dν, (4.52)

where Θ, xM, s44M, ciM (i = 1,2,3) and κiM, χiM; ΦiM, ΨiM (i = 1,. . . , 6) are given
by Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and ζ iM

(i = 1,2,3), ζ M have the forms

ζ1M = c3M xc3M−1
M , ζ2M =

2
3
+ lnxM,

ζ3M =−xc3M
M

[
2
3
+ lnxM+ c3M

(
1
3
− lnxM

)]
,

ζ M = c3M

{[
2(c1M+2c2M)

3
+(c1M − c2M) lnxE

]

−
2c2M xM

xE

(
1
3
− lnxM

)}
xc3M−1
M

−

{
[(c1M+ c2M)c3M −2c2M]x

c3M−1
E +

2c2M xc3M
M

xE

}(
2
3
+ lnxM

)
. (4.53)

The normal stress p2n is given by Equation (2.26), where ρIN and ρi jE (i, j = 1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum Wc (see Equation (2.23)).
With regard to

(
εϕM
)
xn=xE

= −p2n ρM and Equation (4.46), the coefficient ρM in
Equation (2.26) is derived as

ρM =
1

ζ M

[
ζ1M

(
lnxE −

1
3

)
−ζ2M xc3M−1

E −
ζ3M

xE

]
. (4.54)
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4.2.2 Envelope

The integration constants C1E , C2E , C3E for the envelope (see Equation (4.4)) are de-
termined by the boundary conditions (2.33), (2.34). The boundary conditions result
in the following combinations of C1E , C2E , C3E , i.e., C1E �= 0, C2E �= 0, C3E = 0;
C1E �= 0, C3E �= 0, C2E = 0; C2E �= 0, C3E �= 0, C1E = 0. Finally, such a combina-
tion is considered to exhibit a minimum value of the elastic energy WC of the cubic
cell (see Equation (2.23)).

Conditions C1E �= 0, C2E �= 0, C3E = 0. With regard to Equations (2.33), (2.34),
(4.4)–(4.11), (2.22), (2.23), we get

εnE = ζ1E

(
2
3
+ lnxn

)
− c3E ζ2E xc3E−1

n , (4.55)

εϕE = εθE =−

[
ζ1E

(
1
3
− lnxn

)
+ζ2E xc3E−1

n

]
, (4.56)

εnϕE = s44E σnϕE =−

[
∂ζ1E

∂ϕ

(
1
3
− lnxn

)
+

∂ζ2E

∂ϕ
xc3E−1
n

]
, (4.57)

εnθE =−Θ
[

∂ζ1E

∂ν

(
1
3
− lnxn

)
+

∂ζ2E

∂ν
xc3E−1
n

]
, (4.58)

σnE =−

{
ζ1E

[
2(c1E+2c2E)

3
+(c1E − c2E) lnxn

]

+ ζ2E [(c1E+ c2E)c3E −2c2E ]x
c3E−1
n

}
, (4.59)

σϕE = σθE =−

{
ζ1E

[
c1E+2c2E

3
− (c1E − c2E) lnxn

]

+ ζ2E (c1E − c2E c3E)x
c3E−1
n

}
, (4.60)

wE = κ1E ζ2
1E+κ2E ζ2

2E+κ4E ζ1E ζ2E+
χ1E

s44E

[(
∂ζ1E

∂ϕ

)2

+Θ2
(

∂ζ1E

∂ν

)2
]

+
χ2E

s44E

[(
∂ζ2E

∂ϕ

)2

+Θ2
(

∂ζ2E

∂ν

)2
]
+

χ4E

s44E

(
∂ζ1E

∂ϕ
∂ζ2E

∂ϕ
+Θ2 ∂ζ1E

∂ν
∂ζ2E

∂ν

)
,

(4.61)
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WE = 4

π/2∫
0

π/2∫
0

(
Φ1E ζ2

1E+Φ2E ζ2
2E+Φ4E ζ1E ζ2E

)
dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ1E

[(
∂ζ1E

∂ϕ

)2

+Θ2
(

∂ζ1E

∂ν

)2
]

dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ2E

[(
∂ζ2E

∂ϕ

)2

+Θ2
(

∂ζ2E

∂ν

)2
]

dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ4E

(
∂ζ1E

∂ϕ
∂ζ2E

∂ϕ
+Θ2 ∂ζ1E

∂ν
∂ζ2E

∂ν

)
dϕ dν, (4.62)

where Θ, xE , s44E , ciE (i = 1,2,3) and κ jE , χ jE ; Φ jE , Ψ jE ( j = 1,2,4) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and ζkE

(k = 1,2) has the form

ζ iE = p1n ζ i1E+ p2n ζ i2E , i= 1,2,

ζ11E =
1

ζE
[(c1E+ c2E)c3E −2c2E ]x

c3E−1
E ,

ζ12E =−
1

ζE
[(c1E+ c2E)c3E −2c2E ]x

c3E−1
IN ,

ζ21E =
1

ζE

[
2(c1E+2c2E)

3
+(c1E − c2E) lnxE

]
,

ζ22E =−
1

ζE

[
2(c1E+2c2E)

3
+(c1E − c2E) lnxIN

]
,

ζE = [(c1E+ c2E)c3E −2c2E ]

×

[
2(c1E+2c2E)

3

(
xc3E−1
IN − xc3E−1

E

)
+ (c1E − c2E)

(
xc3E−1
IN lnxE − xc3E−1

E lnxIN

)]
. (4.63)

The normal stresses p1n, p2n in Equation (4.23) are given by Equations (2.25),
(2.26), where ρIN and ρM in Equations (2.25), (2.26) are given by Equation (6.89)
and (4.24), (4.34), (4.44), (4.54), respectively. With regard to

(
εϕE
)
xn=xIN

=

−(p1n ρ11E+ p2n ρ12E),
(
εϕE
)
xn=xE

= −(p1n ρ21E+ p2n ρ22E) and Equation (4.56),
the coefficient ρi jE (i, j = 1,2) in Equations (2.25), (2.26) is derived as
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ρ1iE = ζ1iE

(
1
3
− lnxIN

)
+ζ2iE xc3E−1

IN , ρ2iE = ζ1iE

(
1
3
− lnxE

)
+ζ2iE xc3E−1

E ,

i= 1,2. (4.64)

Conditions C1E �= 0, C3E �= 0, C2E = 0. With regard to Equations (2.33), (2.34),
(4.4)–(4.11), (2.22), (2.23), we get

εnE = ζ1E

(
2
3
+ lnxn

)
, (4.65)

εϕE = εθE =−

[
ζ1E

(
1
3
− lnxn

)
+

ζ2E

xn

]
, (4.66)

εnϕE = s44E σnϕE =−

[
∂ζ1E

∂ϕ

(
1
3
− lnxn

)
+

1
xn

∂ζ2E

∂ϕ

]
, (4.67)

εnθE = s44E σnθE =−Θ
[

∂ζ1E

∂ν

(
1
3
− lnxn

)
+

1
xn

∂ζ2E

∂ν

]
, (4.68)

σnE =−

{
ζ1E

[
2(c1E+2c2E)

3
+(c1E − c2E) lnxn

]
−

2c2E ζ2E

xn

}
, (4.69)

σϕE = σθE =−

{
ζ1E

[
c1E+2c2E

3
− (c1E − c2E) lnxn

]
+

c1E ζ2E

xn

}
, (4.70)

wE = κ1E ζ2
1E+κ3E ζ2

3E+κ5E ζ1E ζ3E+
χ1E

s44E

[(
∂ζ1E

∂ϕ

)2

+Θ2
(

∂ζ1E

∂ν

)2
]

+
χ3E

s44E

[(
∂ζ3E

∂ϕ

)2

+Θ2
(

∂ζ3E

∂ν

)2
]
+

χ5E

s44E

(
∂ζ1E

∂ϕ
∂ζ3E

∂ϕ
+Θ2 ∂ζ1E

∂ν
∂ζ3E

∂ν

)
,

(4.71)
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WE = 4

π/2∫
0

π/2∫
0

(
Φ1E ζ2

1E+Φ3E ζ2
3E+Φ5E ζ1E ζ3E

)
dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ1E

[(
∂ζ1E

∂ϕ

)2

+Θ2
(

∂ζ1E

∂ν

)2
]

dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ3E

[(
∂ζ3E

∂ϕ

)2

+Θ2
(

∂ζ3E

∂ν

)2
]

dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ5E

(
∂ζ1E

∂ϕ
∂ζ3E

∂ϕ
+Θ2 ∂ζ1E

∂ν
∂ζ3E

∂ν

)
dϕ dν, (4.72)

where Θ, xE , s44E , ciE (i = 1,2,3) and κ jE , χ jE ; Φ jE , Ψ jE ( j = 1,3,5) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and ζkE

(k = 1,3) has the form

ζ iE = p1n ζ i1E+ p2n ζ i2E , i= 1,3,

ζ11E =−
2c2E

ζE xE
, ζ12E =

2c2E

ζE xIN
,

ζ31E =
1

ζE

[
2(c1E+2c2E)

3
+(c1E − c2E) lnxE

]
,

ζ32E =−
1

ζE

[
2(c1E+2c2E)

3
+(c1E − c2E) lnxIN

]
,

ζE = 2c2E

[
2(c1E+2c2E)

3

(
1
xE

−
1

xIN

)
+(c1E − c2E)

(
lnxIN

xE
−

lnxE

xIN

)]
. (4.73)

The normal stresses p1n, p2n in Equation (4.33) are given by Equations (2.25),
(2.26), where ρIN and ρM in Equations (2.25), (2.26) are given by Equation (6.89)
and (4.24), (4.34), (4.44), (4.54), respectively. With regard to

(
εϕE
)
xn=xIN

=

−(p1n ρ11E+ p2n ρ12E),
(
εϕE
)
xn=xE

= −(p1n ρ21E+ p2n ρ22E) and Equation (4.66),
the coefficient ρi jE (i, j = 1,2) in Equations (2.25), (2.26) is derived as

ρ1iE = ζ1iE

(
1
3
− lnxIN

)
+

ζ3iE

xIN
, ρ2iE = ζ1iE

(
1
3
− lnxE

)
+

ζ3iE

xE
,

i= 1,2. (4.74)
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Conditions C2E �= 0, C3E �= 0, C1E = 0. With regard to Equations (2.33), (2.34),
(4.4)–(4.11), (2.22), (2.23), we get

εnE =−c3E ζ2E xc3E−1
n , (4.75)

εϕE = εθE =−

(
ζ2E xc3E−1

n +
ζ3E

xn

)
, (4.76)

εnϕE = s44E σnϕE =−

(
∂ζ2E

∂ϕ
xc3E−1
n +

1
xn

∂ζ3E

∂ϕ

)
, (4.77)

εnθE = s44E σnθE =−Θ
(

∂ζ2E

∂ν
xc3E−1
n +

1
xn

∂ζ3E

∂ν

)
, (4.78)

σnE =−

[
ζ2E [(c1E+ c2E)c3E −2c2E ]x

c3E−1
n −

2c2E ζ3E

xn

]
, (4.79)

σϕE = σθE =−

[
ζ2E (c1E − c2E c3E)x

c3E−1
n +

c1E ζ3E

xn

]
, (4.80)

wE = κ2E ζ2
2E+κ3E ζ2

3E+κ6E ζ2E ζ3E+
χ2E

s44E

[(
∂ζ2E

∂ϕ

)2

+Θ2
(

∂ζ2E

∂ν

)2
]

+
χ3E

s44E

[(
∂ζ3E

∂ϕ

)2

+Θ2
(

∂ζ3E

∂ν

)2
]
+

χ6E

s44E

(
∂ζ2E

∂ϕ
∂ζ3E

∂ϕ
+Θ2 ∂ζ2E

∂ν
∂ζ3E

∂ν

)
,

(4.81)

WE = 4

π/2∫
0

π/2∫
0

(
Φ2E ζ2

2E+Φ3E ζ2
3E+Φ6E ζ2E ζ3E

)
dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ2E

[(
∂ζ2E

∂ϕ

)2

+Θ2
(

∂ζ2E

∂ν

)2
]

dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ3E

[(
∂ζ3E

∂ϕ

)2

+Θ2
(

∂ζ3E

∂ν

)2
]

dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ6E

(
∂ζ2E

∂ϕ
∂ζ3E

∂ϕ
+Θ2 ∂ζ2E

∂ν
∂ζ3E

∂ν

)
dϕ dν, (4.82)
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where Θ, xE , s44E , ciE (i = 1,2,3) and κ jE , χ jE ; Φ jE , Ψ jE ( j = 2,3,6) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and ζkE

(k = 1,2) has the form

ζ iE = p1n ζ i1E+ p2n ζ i2E , i= 2,3,

ζ21E =−
2c2E

ζE xE
, ζ22E =

2c2E

ζE xIN
,

ζ31E =−
[(c1E+ c2E)c3E −2c2E ]x

c3E−1
E

ζE
,

ζ32E =
[(c1E+ c2E)c3E −2c2E ]x

c3E−1
IN

ζE
,

ζE = 2c2E [(c1E+ c2E)c3E −2c2E ]

(
xc3E−1
E

xIN
−

xc3E−1
IN

xE

)
. (4.83)

The normal stresses p1n, p2n in Equation (4.33) are given by Equations (2.25),
(2.26), where ρIN and ρM in Equations (2.25), (2.26) are given by Equation (6.89)
and (4.24), (4.34), (4.44), (4.54), respectively. With regard to

(
εϕE
)
xn=xIN

=

−(p1n ρ11E+ p2n ρ12E),
(
εϕE
)
xn=xE

= −(p1n ρ21E+ p2n ρ22E) and Equation (4.76),
the coefficient ρi jE (i, j = 1,2) in Equations (2.25), (2.26) is derived as

ρ1iE = ζ2iE xc3E−1
IN +

ζ3iE

xIN
, ρ2iE = ζ2iE xc3E−1

E +
ζ3iE

xE
, i= 1,2. (4.84)

4.3 Condition βIN �= βE = βM

4.3.1 Matrix

The integration constants C1M, C2M, C3M for the matrix (see Equation (4.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)–(2.32). The boundary
conditions result in the following combinations of C1M, C2M, C3M, i.e., C1M �= 0,
C2M �= 0, C3M = 0; C1M �= 0, C3M �= 0, C2M = 0; C2M �= 0, C3M �= 0, C1M = 0;
C1M �= 0, C2M �= 0, C3M �= 0. Finally, such a combination is considered to exhibit a
minimum value of the elastic energy WC of the cubic cell (see Equation (2.23)).

Conditions C1M �= 0, C2M �= 0, C3M = 0. With regard to Equations (2.30), (2.31),
(4.4)–(4.11), (2.22), (2.23), we get
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εnM =−ζ1M

(
2
3
+ lnxn

)
+ c3M ζ2M xc3M−1

n , (4.85)

εϕM = εθM = ζ1M

(
1
3
− lnxn

)
+ζ2M xc3M−1

n , (4.86)

εnϕM = s44M σnϕM =

(
1
3
− lnxn

)
∂ζ1M

∂ϕ
+ xc3M−1

n
∂ζ2M

∂ϕ
, (4.87)

εnθM = s44M σnθM =Θ
[(

1
3
− lnxn

)
∂ζ1M

∂ν
+ xc3M−1

n
∂ζ2M

∂ν
,

]
, (4.88)

σnM =− ζ1M

[
2(c1M+2c2M)

3
+(c1M − c2M) lnxn

]
+ ζ2M [(c1M+ c2M)c3M −2c2M]x

c3M−1
n , (4.89)

σϕM = σθM = ζ1M

[
c1M+2c2M

3
− (c1M − c2M) lnxn

]
+ ζ2M (c1M − c2M c3M)x

c3M−1
n , (4.90)

wM = κ1M ζ2
1M+κ2M ζ2

2M+κ4M ζ1M ζ2M+
χ1M

s44M

[(
∂ζ1M

∂ϕ

)2

+Θ2
(

∂ζ1M

∂ν

)2
]

+
χ2M

s44M

[(
∂ζ2M

∂ϕ

)2

+Θ2
(

∂ζ2M

∂ν

)2
]
+

χ4M

s44M

[
∂ζ1M

∂ϕ
∂ζ2M

∂ϕ
+Θ2 ∂ζ1M

∂ν
∂ζ2M

∂ν

]
,

(4.91)

WM = 4

π/2∫
0

π/2∫
0

(
Φ1M ζ2

1M+Φ2M ζ2
2M+Φ4M ζ1M ζ2M

)
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

[(
∂ζ1M

∂ϕ

)2

+Θ2
(

∂ζ1M

∂ν

)2
]

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

[(
∂ζ2M

∂ϕ

)2

+Θ2
(

∂ζ2M

∂ν

)2
]

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ4M

[
∂ζ1M

∂ϕ
∂ζ2M

∂ϕ
+Θ2 ∂ζ1M

∂ν
∂ζ2M

∂ν

]
dϕ dν, (4.92)
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where Θ, xE , xM, s44M, ciM and κ jE , χ jE ; Φ jE , Ψ jE (i = 1,2,3; j = 1,2,4) are given
by Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and ζ1M,
ζ2M, ζ M have the forms

ζ1M =−
p1n ρ2ME xE xc3M

M

ζ M
, ζ2M =

p1n ρ2ME xE xM

ζ M

(
1
3
− lnxM

)
,

ζ M = xc3M
M xE

(
1
3
− lnxE

)
− xM xc3M

E

(
1
3
− lnxM

)
. (4.93)

The normal stress p1n is given by Equation (2.27), where ρIN and ρ1ME in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum Wc (see Equation (2.23)).

Conditions C1M �= 0, C3M �= 0, C2M = 0. With regard to Equations (2.30), (2.31),
(4.4)–(4.11), (2.22), (2.23), we get

εnM =− ζ1M

(
2
3
+ lnxn

)
, (4.94)

εϕM = εθM = ζ1M

(
1
3
− lnxn

)
+

ζ3M

xn
, (4.95)

εnϕM = s44M σnϕM =

(
1
3
− lnxn

)
∂ζ1M

∂ϕ
+

1
xn

∂ζ3M

∂ϕ
, (4.96)

εnθM = s44M σnθM =Θ
[(

1
3
− lnxn

)
∂ζ1M

∂ν
+

1
xn

∂ζ3M

∂ν

]
, (4.97)

σnM =− ζ1M

[
2(c1M+2c2M)

3
+(c1M − c2M) lnxn

]
−

ζ3M

xn
, (4.98)

σϕM = σθM = ζ1M

[
c1M+2c2M

3
− (c1M − c2M) lnxn

]
+

c1M ζ3M

xn
, (4.99)

wM = κ1M ζ2
1M+κ3M ζ2

3M+κ5M ζ1M ζ3M+
χ1M

s44M

[(
∂ζ1M

∂ϕ

)2

+Θ2
(

∂ζ1M

∂ν

)2
]

+
χ3M

s44M

[(
∂ζ3M

∂ϕ

)2

+Θ2
(

∂ζ3M

∂ν

)2
]
+

χ5M

s44M

[
∂ζ1M

∂ϕ
∂ζ3M

∂ϕ
+Θ2 ∂ζ1M

∂ν
∂ζ3M

∂ν

]
,

(4.100)
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WM = 4

π/2∫
0

π/2∫
0

(
Φ1M ζ2

1M+Φ3M ζ2
3M+Φ5M ζ1M ζ3M

)
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

[(
∂ζ1M

∂ϕ

)2

+Θ2
(

∂ζ1M

∂ν

)2
]

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M

[(
∂ζ3M

∂ϕ

)2

+Θ2
(

∂ζ3M

∂ν

)2
]

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ5M

[
∂ζ1M

∂ϕ
∂ζ3M

∂ϕ
+Θ2 ∂ζ1M

∂ν
∂ζ3M

∂ν

]
dϕ dν, (4.101)

where Θ, xE , xM, s44M, ciM and κ jE , χ jE ; Φ jE , Ψ jE (i = 1,2,3; j = 1,3,5) are given
by Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and ζ1M,
ζ3M, ζ M have the forms

ζ1M =−
p1n ρ2ME xE

ζ M
, ζ3M =

p1n ρ2ME xE xM

ζ M

(
1
3
− lnxM

)
,

ζ M = xE

(
1
3
− lnxE

)
− xM

(
1
3
− lnxM

)
. (4.102)

The normal stress p1n is given by Equation (2.27), where ρIN and ρ1ME in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum Wc (see Equation (2.23)).

Conditions C2M �= 0, C3M �= 0, C1M = 0. With regard to Equations (2.30), (2.31),
(4.4)–(4.11), (2.22), (2.23), we get

εnM = c3M ζ2M xc3M−1
n , (4.103)

εϕM = εθM = ζ2M xc3M−1
n +

ζ3M

xn
, (4.104)

εnϕM = s44M σnϕM = xc3M−1
n

∂ζ2M

∂ϕ
+

1
xn

∂ζ3M

∂ϕ
, (4.105)

εnθM = s44M σnθM =Θ
(

xc3M−1
n

∂ζ2M

∂ν
+

1
xn

∂ζ3M

∂ν

)
, (4.106)
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σnM = ζ2M [(c1M+ c2M)c3M −2cMm]x
c3M−1
n −

ζ3M

xn
, (4.107)

σϕM = σ′
θM = ζ2M (c1M − c2M c3M)x

c3M−1
n +

c1M ζ3M

xn
, (4.108)

wM = κ2M ζ2
2M+κ3M ζ2

3M+κ6M ζ2M ζ3M+
χ2M

s44M

[(
∂ζ2M

∂ϕ

)2

+Θ2
(

∂ζ2M

∂ν

)2
]

+
χ3M

s44M

[(
∂ζ3M

∂ϕ

)2

+Θ2
(

∂ζ3M

∂ν

)2
]
+

χ6M

s44M

[
∂ζ2M

∂ϕ
∂ζ3M

∂ϕ
+Θ2 ∂ζ2M

∂ν
∂ζ3M

∂ν

]
,

(4.109)

WM = 4

π/2∫
0

π/2∫
0

(
Φ2M ζ2

2M+Φ3M ζ2
3M+Φ6M ζ2M ζ3M

)
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

[(
∂ζ2M

∂ϕ

)2

+Θ2
(

∂ζ2M

∂ν

)2
]

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M

[(
∂ζ3M

∂ϕ

)2

+Θ2
(

∂ζ3M

∂ν

)2
]

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ6M

[
∂ζ2M

∂ϕ
∂ζ3M

∂ϕ
+Θ2 ∂ζ2M

∂ν
∂ζ3M

∂ν

]
dϕ dν, (4.110)

where Θ, xE , xM, s44M, ciM and κ jE , χ jE ; Φ jE , Ψ jE (i = 1,2,3; j = 2,3,6) are given
by Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and ζ2M,
ζ3M, ζ M have the forms

ζ2M =−
p1n ρ2ME xE

ζ M
, ζ3M =

p1n ρ2ME xE xc3M
M

ζ M
, ζ M = xc3M

E − xc3M
M . (4.111)

The normal stress p1n is given by Equation (2.27), where ρIN and ρ1ME in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum Wc (see Equation (2.23)).
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Conditions C1M �= 0, C2M �= 0, C3M �= 0. With regard to Equations (2.30), (2.31),
(2.32), (4.4)–(4.11), (2.22), (2.23), we get

εnM =− ζ1M

(
2
3
+ lnxn

)
+ c3M ζ2M xc3M−1

n , (4.112)

εϕM = εθM = ζ1M

(
1
3
− lnxn

)
+ζ2M xc3M−1

n +
ζ3M

xn
, (4.113)

εnϕM = s44M σnϕM =

(
1
3
− lnxn

)
∂ζ1M

∂ϕ
+ xc3M−1

n
∂ζ2M

∂ϕ
+

1
xn

∂ζ3M

∂ϕ
, (4.114)

εnθM = s44M σnθM =Θ
[(

1
3
− lnxn

)
∂ζ1M

∂ν
+ xc3M−1

n
∂ζ2M

∂ν
+

1
xn

∂ζ3M

∂ν

]
, (4.115)

σnM =− ζ1M

[
2(c1M+2c2M)

3
+(c1M − cMm) lnxn

]

+ ζ2M [(c1M+ c2M)c3M −2c2M]x
c3M−1
n −

2c2M ζ3M

xn
, (4.116)

σϕM = σθM = ζ1M

[
c1M+2c2M

3
− (c1M − c2M) lnxn

]

+ ζ2M (c1M − c2M c3M)x
cMm−1
n +

c1M ζ3M

xn
, (4.117)

wM = κ1M ζ2
1M+κ2M ζ2

2M+κ3M ζ2
3M+κ4M ζ1M ζ2M+κ5M ζ1M ζ3M+κ6M ζ2M ζ3M

+
χ1M

s44M

[(
∂ζ1M

∂ϕ

)2

+Θ2
(

∂ζ1M

∂ν

)2
]
+

χ2M

s44M

[(
∂ζ2M

∂ϕ

)2

+Θ2
(

∂ζ2M

∂ν

)2
]

+
χ3M

s44M

[(
∂ζ3M

∂ϕ

)2

+Θ2
(

∂ζ3M

∂ν

)2
]
+

χ4M

s44M

[
∂ζ1M

∂ϕ
∂ζ2M

∂ϕ
+Θ2 ∂ζ1M

∂ν
∂ζ2M

∂ν

]

+
χ5M

s44M

[
∂ζ1M

∂ϕ
∂ζ3M

∂ϕ
+Θ2 ∂ζ1M

∂ν
∂ζ3M

∂ν

]
+

χ6M

s44M

[
∂ζ2M

∂ϕ
∂ζ3M

∂ϕ
+Θ2 ∂ζ2M

∂ν
∂ζ3M

∂ν

]
,

(4.118)

WM = 4

π/2∫
0

π/2∫
0

(
Φ1M ζ2

1M+Φ2M ζ2
2M+Φ3M ζ2

3M

)
dϕ dν
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+ 4¢

π/2∫
0

π/2∫
0

(Φ4M ζ1M ζ2M+Φ5M ζ1M ζ3M+Φ6M ζ2M ζ3M) dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

[(
∂ζ1M

∂ϕ

)2

+Θ2
(

∂ζ1M

∂ν

)2
]

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

[(
∂ζ2M

∂ϕ

)2

+Θ2
(

∂ζ2M

∂ν

)2
]

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M

[(
∂ζ3M

∂ϕ

)2

+Θ2
(

∂ζ3M

∂ν

)2
]

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ4M

[
∂ζ1M

∂ϕ
∂ζ2M

∂ϕ
+Θ2 ∂ζ1M

∂ν
∂ζ2M

∂ν

]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ5M

[
∂ζ1M

∂ϕ
∂ζ3M

∂ϕ
+Θ2 ∂ζ1M

∂ν
∂ζ3M

∂ν

]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ6M

[
∂ζ2M

∂ϕ
∂ζ3M

∂ϕ
+Θ2 ∂ζ2M

∂ν
∂ζ3M

∂ν

]
dϕ dν, (4.119)

where Θ, xE , xM, s44M, ciM and κ jE , χ jE ; Φ jE , Ψ jE (i = 1,2,3; j = 1, . . . , 6) are given
by Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and ζiM

(i = 1,2,3), ζ M have the forms

ζ1M =−
p1n ρ2ME xE c3M xc3M−1

M

ζ M
, ζ2M =−

p1n ρ2ME xe

ζ M

(
2
3
+ lnxM

)
,

ζ3M =
p1 ρ2ME xE xc3m

M

ζ M

[
c3m

(
1
3
− lnxM

)
+

(
2
3
+ lnxM

)]
,

ζ M = c3mxc3m−1
M

[
xE

(
1
3
− lnxE

)
− xM

(
1
3
− lnrxM

)]

+ (xc3m
E − xc3m

M )

(
2
3
+ lnxM

)
. (4.120)

The normal stress p1n is given by Equation (2.27), where ρIN and ρ1ME in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum Wc (see Equation (2.23)).
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4.3.2 Envelope

If βIN �= βE = βM, then |unE | = f (xn) represents a decreasing function of xn ∈
〈xIN,xE〉, and then C1E =C3E = 0, C2E �= 0 (see Equation (4.4)), respectively. With
regard to Equations (2.33), (4.4)–(4.11), (2.22), (2.23), we get

εnE =−
p1n c3E

ζE

(
xn

xIN

)c3E−1

, (4.121)

εϕ = εθ =−
p1n

ζE

(
xn

xIN

)c3E−1

, (4.122)

εnϕE = s44E σnϕE =− xc3E−1
n

∂
∂ϕ

(
p1n

ζE xc3E−1
IN

)
, (4.123)

εnθE = s44E σnθE =− Θxc3E−1
n

∂
∂ν

(
p1n

ζE xc3E−1
IN

)
, (4.124)

σnE =− p1n

(
xn

xIN

)c3E−1

, (4.125)

σϕE = σθE =−
p1n (c1E − c2E c3E)

ζE

(
xn

xc3E−1
IN

)c3E−1

, (4.126)

wE = κ2E

(
p1n

ζE xc3E−1
IN

)2

+
χ2E

s44E

⎧⎨
⎩
[

∂C2

∂ϕ

(
p1n

ζE xc3E−1
IN

)]2

+Θ2

[
∂C2

∂ν

(
p1n

ζE xc3E−1
IN

)]2
⎫⎬
⎭ , (4.127)

WE = 4

π/2∫
0

π/2∫
0

Φ2E

(
p1n

ζE xc3E−1
IN

)2

dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ2E

⎧⎨
⎩
[

∂
∂ϕ

(
p1n

ζE xc3E−1
IN

)]2

+Θ2

[
∂

∂ν

(
p1n

ζE xc3E−1
IN

)]2
⎫⎬
⎭ dϕ dν,

(4.128)

where Θ, xE , s44E , ciE (i = 1,2,3) and κ2E , χ2E ; Φ2E , Ψ2E are given by Equations
(1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and ζE has the form

ζE = (c1E+ c2E)c3E −2c2E . (4.129)
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The normal stress p1n is given by Equation (2.27), where ρIN in Equation (2.27)
is given by Equation (6.89). With regard to

(
εϕE
)
xn=xIN

=−p1n ρ1ME ,
(
εϕE
)
xn=xE

=
−p1n ρ2ME (see Equation (4.132)), the coefficients ρ1ME , ρ2ME in Equations (2.27),
(2.31) are derived as

ρ1ME =
1

ζE
, ρ2ME =

1
ζE

(
xE

xIN

)c3E−1

. (4.130)

4.4 Condition βIN = βE �= βM

If βIN = βE �= βM, then the thermal strains and stresses in the cell matrix are de-
termined in Section 4.2.1. The radial stress p2n in Section 4.2.1 is given by Equa-
tions (2.28). The coefficients ρM and ρ2INE in Equations (2.26) are given by Equa-
tions (3.24), (4.24), (4.34), (4.44), (4.54), (5.23), (5.33), (5.43), (5.53), (6.22), (6.32),
(6.42), (6.52), (7.23), (7.33), (7.43), (7.53), (7.63), (7.73) and (3.63), (4.140), (5.129),
(5.139), (6.143), respectively, with respect to minimum Wc (see Equation (2.23)).

4.4.1 Envelope

If βIN = βE �= βM, then |unE | = f (xn) represents an increasing function of xn ∈
〈xIN,xE〉, and then C1E �= 0, C2E =C3E = 0 (see Equation (4.4)), respectively. With
regard to Equations (2.34), (4.4)–(4.11), (2.22), (2.23), we get

εnE =
p2n

ζE

(
2
3
+ lnxn

)
, (4.131)

εϕE = εθE =−
p2n

ζE

(
1
3
− lnxn

)
, (4.132)

εnϕE = s44E σnϕE =−

(
1
3
− lnxn

)
∂

∂ϕ

(
p2n

ζE

)
, (4.133)

εnθE = s44E σnθE =−Θ
(

1
3
− lnxn

)
∂

∂ν

(
p2n

ζE

)
, (4.134)

σnE =
p2n

ζE

[
2(c1E+2c2E)

3
+(c1E − c2E) lnxn

]
, (4.135)

σϕE = σθE =−
p2n

ζE

[
c1E+2c2E

3
− (c1E − c2E) lnxn

]
, (4.136)
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wE = κ1E

(
p2n

ζE

)2

+
χ1E

s44E

{[
∂

∂ϕ

(
p2n

ζE

)]2

+Θ2
[

∂
∂ν

(
p2n

ζE

)]2
}

, (4.137)

WE = 4

π/2∫
0

π/2∫
0

Φ1E

(
p2n

ζE

)2

dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ1E

{[
∂

∂ϕ

(
p2n

ζE

)]2

+Θ2
[

∂
∂ν

(
p2n

ζE

)]2
}

dϕ dν, (4.138)

where Θ, xE , s44E , ciE (i = 1,2,3) and κ1E , χ1E ; Φ1E , Ψ1E are given by Equations (1.21)
(1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and ζE has the form

ζE =
2(c1E+2c2E)

3
+(c1E − c2E) lnxE . (4.139)

The normal stress p2n is given by Equation (2.28), where ρM in Equation (2.28) is
given by Equations (3.24), (4.24), (4.34), (4.44), (4.54), (5.23), (5.33), (5.43), (5.53),
(6.22), (6.32), (6.42), (6.52), (7.23), (7.33), (7.43), (7.53), (7.63), (7.73) with respect
to minimum Wc (see Equation (2.23)). With regard to

(
εϕE
)
xn=xIN

= −p2n ρ1INE ,(
εϕE
)
xn=xE

= −p2n ρ2INE (see Equation (4.86)), the coefficients ρ1INE , ρ2INE in
Equations (2.28), (2.37) are derived as

ρ1INE =
1

ζE

(
1
3
− lnxIN

)
, ρ2INE =

1
ζE

(
1
3
− lnxE

)
. (4.140)
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Chapter 5

Mathematical Model 3

5.1 Mathematical Procedure

Let the mathematical procedure ∂2Eq.(2.19)/∂x2
n be performed, and then we get

[2]–[23]

r
∂3un

∂x3
n
+4x2

n
∂2un

∂x2
n
+

xn

s44 (c1+ c2)

∂Un

∂xn
= 0, (5.1)

where s44, ci (i = 1,2,3) and Un = Un (r,ϕ,ν) are given by Equations (2.13), (2.18)
and (2.21), respectively. With regard to Equations (2.20), (4.2), we get

xn
∂Un

∂xn
= c3 (C1 xn+C2 xc3

n +C3) , (5.2)

where C1, C2, C3 are integration constants, which are determined by the boundary
conditions in Section 2.4. Let Equation (5.2) be substituted to Equation (5.1), and
then we get

x3
n

∂3un

∂x3
n
+4x2

n
∂2un

∂x2
n
=C1 x3

n+C2 xc3
n +C3. (5.3)

The mathematical solution of Equation (5.3), which is determined by Wron-
skian’s method [24], is derived as

un =C1 xn

(
4
3
− lnxn

)
+C2 xc3

n +C3

(
1
2
+ lnxn

)
. (5.4)

With regard to Equations (2.1)–(2.4), (2.14)–(2.17), (2.22), (5.4), we get

εn =C1

(
1
3
− lnxn

)
+C2 c3 xc3−1

n +
C3

xn
, (5.5)

εϕ = εθ =C1

(
4
3
− lnxn

)
+C2 xc3−1

n +
C3

xn

(
1
2
+ lnxn

)
, (5.6)

εnϕ = s44 σnϕ =

(
4
3
− lnxn

)
∂C1

∂ϕ
+ xc3−1

n
∂C2

∂ϕ
+

1
xn

(
1
2
+ lnxn

)
∂C3

∂ϕ
, (5.7)
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εnθ = s44 σnθ =Θ
[(

4
3
− lnxn

)
∂C1

∂ν
+ xc3−1

n
∂C2

∂ν
+

1
xn

(
1
2
+ lnxn

)
∂C3

∂ν

]
, (5.8)

σn =C1

[
c1 −7c2

3
− (c1 − c2) lnxn

]
+C2 [(c1+ c2)c3 −2c2]x

c3−1
n

+
C3

xn
(c1 −2c2 lnxn) , (5.9)

σϕ = σθ =C1

[
4c1 − c2

3
− (c1 − c2) lnxn

]
+C2 (c1 − c2 c3)x

c3−1
n

+
C3

xn

(
c1 −2c2

2
+ c1 lnxn

)
, (5.10)

w=C2
1 κ1+C2

2 κ2+C2
3 κ3+C1C2 κ4+C1C3 κ5+C2C3 κ6

+
χ1

s44

[(
∂C1

∂ϕ

)2

+Θ2
(

∂C1

∂ν

)2
]
+

χ2

s44

[(
∂C2

∂ϕ

)2

+Θ2
(

∂C2

∂ν

)2
]

+
χ3

s44

[(
∂C3

∂ϕ

)2

+Θ2
(

∂C3

∂ν

)2
]
+

χ4

s44

(
∂C1

∂ϕ
∂C2

∂ϕ
+Θ2 ∂C1

∂ν
∂C2

∂ν

)

+
χ5

s44

(
∂C1

∂ϕ
∂C3

∂ϕ
+Θ2 ∂C1

∂ν
∂C3

∂ν

)
+

χ6

s44

(
∂C2

∂ϕ
∂C3

∂ϕ
+Θ2 ∂C2

∂ν
∂C3

∂ν

)
, (5.11)

where Θ is given by Equation (1.21), and κi, χi (i = 1, . . . , 6) are derived as

κ1 =
c2 − c1

2
ln2 xn+

c1 − c2

3
lnxn+

17c1+ c2

18
,

κ2 =

[
c2

3 (c1+ c2)

2
+ c1 (1−2c3)

]
x2(c3−1)
n ,

κ3 =
c1 ln2 xn

x2
n

−
c1 lnxn

x2
n

+
c2 −2c1

4x2
n

,

κ4 = c3 (c1 − c2) xc3−1
n lnxn+

[
2c1+

c3 (c2 −7c1)

3

]
xc3−1
n ,

κ5 = (3c1 − c2)
lnxn

xn
−

4c1 − c2

3xn
,

κ6 = 2c1 (1− c3) x
c3−2
n lnxn+(c2 c3 − c1) x

c3−2
n ,

χ1 = ln2 xn−
8
3

lnxn+
16
9

, χ2 = x2(c3−1)
n ,
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χ3 =
ln2 xn

x2
n
+

lnxn

x2
n
+

1
4x2

n
, χ4 =

8
3

xc3−1
n −2xc3−1

n lnxn,

χ5 =
4

3xn
+

5lnxn

3xn
−

2ln2 xn

xn
, χ6 = 2xc3−2

n lnxn+ xc3−2
n . (5.12)

With regard to Equations (4.14), (5.12), we get

Φ1q =
c2q− c1q

6

{
x3

2n

[(
lnx2n−

1
3

)2

+
1
9

]
− x3

1n

[(
lnx1n−

1
3

)2

+
1
9

]}

+
c1q− c2q

9

[
x3

2n

(
lnx2n−

1
3

)
− x3

1n

(
lnx1n−

1
3

)]
+

17c1q+ c2q

54

(
x3

2n− x3
1n

)
,

Φ2q =
1

2c3q+1

[
c2

3q

(
c1q+ c2q

)
2

+ c1q
(
1−2c3q

)](
x

2c3q+1
2n − x

2c3q+1
1n

)
,

Φ3q = c1q

[
x2n

(
ln2 x2n−2lnx2n+2

)
− x1n

(
ln2 x1n−2lnx1n+2

)]
− c1q [x2n (lnx2n−1)− x1n (lnx1n−1)]+

c2q−2c1q

4
(x2n− x1n) ,

Φ4q =
c3q
(
c1q− c2q

)
c3q+2

[
x

c3q+2
2n

(
lnx2n−

1
c3q+2

)
− x

c3q+2
1n

(
lnx1n−

1
c3q+2

)]

+
1

c3q+2

[
2c1q+

c3q
(
c2q−7c1q

)
3

](
x

c3q+2
2n − x

c3q+2
1n

)
,

Φ5q =
3c1q− c2q

2

[
x2

2n

(
lnx2n−

1
2

)
− x2

1n

(
lnx1n−

1
2

)]

−
4c1q− c2q

6

(
x2

2n− x2
1n

)
,

Φ6q =
2c1q

(
1− c3q

)
c3q+1

[
x

c3q+1
2n

(
lnx2n−

1
c3+1

)
− x

c3q+1
1n

(
lnx1n−

1
c3q+1

)]

+
c2q c3q− c1q

c3q+1

(
x

c3q+1
2n − x

c3q+1
1n

)
,

Ψ1q =
x3

2n

3

[
(lnx2n−3)

(
lnx2n−

1
3

)
+

17
9

]

−
x3

1n

3

[
(lnx1n−3)

(
lnx1n−

1
3

)
+

17
9

]
,

Ψ2q =
x

2c3q+1
2n − x

2c3q+1
1n

2c3q+1
,
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Ψ3q = x2n lnx2n (lnx2n−1)− x1n lnx1n (lnx1n−1)+
5(x2n− x1n)

4
,

Ψ4q =
2

c3q+2

{
x

c3q+2
2n

[
4c3q+11

3
(
c3q+2

)− lnx2n

]
− x

c3q+2
1n

[
4c3q+11

3
(
c3q+2

)− lnx1n

]}
,

Ψ5q =
2
(
x2

2n− x2
1n

)
3

+
5
6

[
x2

2n

(
lnx2n−

1
2

)
− x2

1n

(
lnx1n−

1
2

)]

− x2
2n

(
ln2 x2n− lnx2n+

1
2

)
+ x2

1n

(
ln2 x1n− lnx1n+

1
2

)
,

Ψ6q =
2

c3q+1

[
x

c3q+1
2n

(
lnx2n−

1
c3q+1

)
− x

c3q+1
1n

(
lnx1n−

1
c3q+1

)]

+
1

c3q+1

(
x

c3q+1
2n − x

c3q+1
1n

)
,

q= E ⇒ x1n = xIN, x2n = xE ,

q=M ⇒ x1n = xE , x2n = xM, (5.13)

where xIN , xE , xM are given by Equations (1.22), respectively. In case of the ellip-
soidal inclusion, we get (unIN)xn→0 −→ ± ∞, (εIN)xn−→0 −→± ∞, (σIN)r→0 −→
±∞ due to (lnxn)xn→0 −→ ± ∞ and (xc3

n )xn→0 −→ ± ∞ for c3 < 0 (see Equa-
tions (2.18), (5.4)–(5.10)). Accordingly, the mathematical solutions (5.4)–(5.10) are
suitable for the envelope and matrix.

Additionally, the function f = xn [(4/3)− lnxn] is increasing or decreasing for
xn ≤ 0.513 m or xn ≥ 1.396 m, respectively. With regard to dimensions of com-
ponents of a real three-component material, f = xn [(4/3)− lnxn] represents an in-
creasing function of xn. Finally, f = (1/2)+ lnxn represents an increasing function
of xn.

5.2 Condition βIN �= βE �= βM

5.2.1 Matrix

The integration constants C1M, C2M, C3M for the matrix (see Equation (4.4)) are
determined by the boundary conditions (2.29), (2.30) or 2.29), (2.30) (2.32). The
boundary conditions result in the following combinations of C1M, C2M, C3M. Finally,
such a combination is considered to exhibit a minimum value of the elastic energy
WC of the cubic cell (see Equation (2.23)).
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Conditions C1M �= 0, C2M �= 0, C3M = 0. With regard to Equations (2.29), (2.30),
(5.4)–(5.11), (2.22), (2.23), we get

εnM =−
p2n

ζ M

[
1
3
− lnxn− c3M

(
4
3
− lnxM

)(
xn

xM

)c3M−1
]

, (5.14)

εϕM = εθM =−
p2n

ζ M

[
4
3
− lnxn−

(
4
3
− lnxM

)(
xn

xM

)c3M−1
]

, (5.15)

εnϕM = s44M σnϕM =

(
lnxn−

4
3

)
∂

∂ϕ

(
p2n

ζ M

)

+ xc3M−1
n

∂
∂ϕ

[
p2n

ζ M xc3M−1
M

(
4
3
− lnxM

)]
, (5.16)

εnθM = s44M σnθM =Θ
{(

lnxn−
4
3

)
∂

∂ϕ

(
p2n

ζ M

)

+ xc3M−1
n

∂
∂ϕ

[
p2n

ζ M xc3M−1
M

(
4
3
− lnxM

)]}
, (5.17)

σnM =
p2n

ζ M

{
7c2M − c1M

3
+(c1M − c2M) lnxn

+[(c1M+ c2M)c3M −2c2M]

(
4
3
− lnxM

)(
xn

xM

)c3M−1
}

, (5.18)

σϕM = σθM =
p2n

ζ M

[
c2M −4c1M

3
+(c1M − c2M) lnxn

+(c1M − c2M c3M)

(
4
3
− lnxM

)(
xn

xM

)c3M−1
]

, (5.19)

wM =

(
p2n

ζ M

)2
⎧⎨
⎩κ1M+κ2M

(
4−3lnxM

3xc3M−1
M

)2

+
κ4M (3lnxM −4)

3xc3M−1
M

⎫⎬
⎭

+
χ1M

s44M

{[
∂

∂ϕ

(
p2n

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n

ζ M

)]2
}

+
χ2M

s44M

⎛
⎝{ ∂

∂ϕ

[
p2n (4−3lnxM)

3ζ M xc3M−1
M

]}2

+Θ2

{
∂

∂ν

[
p2n (4−3lnxM)

3ζ M xc3M−1
M

]}2
⎞
⎠
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+
χ4M

s44M

∂
∂ϕ

(
p2n

ζ M

)
∂

∂ϕ

[
p2n (3lnxM −4)

3ζ M xc3M−1
M

]

+
χ4M Θ2

s44M

∂
∂ν

(
p2n

ζ M

)
∂

∂ν

[
p2n (3lnxM −4)

3ζ M xc3M−1
M

]
, (5.20)

WM = 4

π/2∫
0

π/2∫
0

(
p2n

ζ M

)2
⎧⎨
⎩Φ1M+Φ2M

(
4−3lnxM

3xc3M−1
M

)2

+
Φ4M (3lnxM −4)

3xc3M−1
M

⎫⎬
⎭ dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

{[
∂

∂ϕ

(
p2n

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n

ζ M

)]2
}

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

⎛
⎝{ ∂

∂ϕ

[
p2n (4−3lnxM)

3ζ M xc3M−1
M

]}2
⎞
⎠ dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M Θ2

⎛
⎝{ ∂

∂ν

[
p2n (4−3lnxM)

3ζ M xc3M−1
M

]}2
⎞
⎠ dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ4M
∂

∂ϕ

(
p2n

ζ M

)
∂

∂ϕ

[
p2n (3lnxM −4)

3ζ M xc3M−1
M

]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ4M Θ2 ∂
∂ν

(
p2n

ζ M

)
∂

∂ν

[
p2n (3lnxM −4)

3ζ M xc3M−1
M

]
dϕ dν, (5.21)

where Θ, xM, s44M, ciM (i = 1,2,3) and κ jM, χ jM; Φ jM, Ψ jM ( j = 1,2,4) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.13); (4.15), respectively, and ζ M, ζ iM

(i = 1,2) have the forms

ζ M = ζ2M −ζ1M

(
4
3
− lnxM

)
, ζ1M = [(c1M+ c2M)c3M −2c2M]

(
xE

xM

)c3M−1

,

ζ2M =
c1M −7c2M

3
− (c1M − c2M) lnxE , (5.22)

The normal stress p2n is given by Equation (2.26), where ρIN and ρi jE (i, j = 1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum Wc (see Equation (2.23)).
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With regard to
(
εϕM
)
xn=xE

= −p2n ρM and Equation (5.15), the coefficient ρM in
Equation (2.26) is derived as

ρM =
1

ζ M

[
4
3
− lnxE −

(
4
3
− lnxM

)(
xE

xM

)c3M−1
]

. (5.23)

Conditions C1M �= 0, C3M �= 0, C2M = 0. With regard to Equations (2.29), (2.30),
(5.4)–(5.11), (2.21), (2.22), (2.23), we get

εnM =−
p2n

ζ M

[(
1
2
+ lnxM

)(
1
3
− lnxn

)
−

xM

xn

(
4
3
− lnxM

)]
, (5.24)

εϕM = εθM =−
p2n

ζ M

[(
1
2
+ lnxM

)(
4
3
− lnxn

)
−

xM

xn

(
4
3
− lnxM

)(
1
2
+ lnxn

)]
,

(5.25)

εnϕM = s44M σnϕM =

(
lnxn−

4
3

)
∂

∂ϕ

[
p2n

ζ M

(
1
2
+ lnxM

)]

+
1
xn

(
1
2
+ lnxn

)
∂

∂ϕ

[
p2n xM

ζ M

(
lnxM −

4
3

)]
, (5.26)

εnνM = s44M σnϕM =Θ
{(

lnxn−
4
3

)
∂

∂ϕ

[
p2n

ζ M

(
1
2
+ lnxM

)]

+
1
xn

(
1
2
+ lnxn

)
∂

∂ϕ

[
p2n xM

ζ M

(
lnxM −

4
3

)]}
, (5.27)

σnM =
p2n

ζ M

{(
1
2
+ lnxM

)[
c1M −7c2M

3
− (c1M − c2M) lnxn

]

+
xM

xn

(
4
3
− lnxM

)
(c1M −2c2M lnxn)

}
, (5.28)

σϕM = σθM =
p2n

ζ M

{(
1
2
+ lnxM

)[
4c1M − c2M

3
− (c1M − c2M) lnxn

]

+
xM

xn

(
4
3
− lnxM

)(
c1M − c2M

2
+ c3M lnxn

)}
, (5.29)

wM =

(
p2n

ζ M

)2
[

κ1M

(
1
2
+ lnxM

)
+κ3M x2

M

(
4
3
− lnxM

)2
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+ κ5M xM

(
1
2
+ lnxM

)(
4
3
− lnxM

)]

+
χ1M

s44M

({
∂

∂ϕ

[
p2n

ζ M

(
1
2
+ lnxM

)]}2

+Θ2
{

∂
∂ν

[
p2n

ζ M

(
1
2
+ lnxM

)]}2
)

+
χ3M

s44M

({
∂

∂ϕ

[
p2n xM

ζ M

(
4
3
− lnxM

)]}2

+Θ2
{

∂
∂ν

[
p2n xM

ζ M

(
4
3
− lnxM

)]}2
)

+
χ5M

s44M

∂
∂ϕ

[
p2n

ζ M

(
1
2
+ lnxM

)]
∂

∂ϕ

[
p2n xM

ζ M

(
4
3
− lnxM

)]

+
χ5M Θ2

s44M

∂
∂ν

[
p2n

ζ M

(
1
2
+ lnxM

)]
∂

∂ν

[
p2n xM

ζ M

(
4
3
− lnxM

)]
, (5.30)

WM = 4

π/2∫
0

π/2∫
0

(
p2n

ζ M

)2
[

Φ1M

(
1
2
+ lnxM

)
+Φ3M x2

M

(
4
3
− lnxM

)2

+ Φ5M xM

(
1
2
+ lnxM

)(
4
3
− lnxM

)]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

({
∂

∂ϕ

[
p2n

ζ M

(
1
2
+ lnxM

)]}2

+ Θ2
{

∂
∂ν

[
p2n

ζ M

(
1
2
+ lnxM

)]}2
)

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

(
Ψ3M

{
∂

∂ϕ

[
p2n xM

ζ M

(
4
3
− lnxM

)]}2

+ Θ2
{

∂
∂ν

[
p2n xM

ζ M

(
4
3
− lnxM

)]}2
)

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ5M
∂

∂ϕ

[
p2n

ζ M

(
1
2
+ lnxM

)]
∂

∂ϕ

[
p2n xM

ζ M

(
4
3
− lnxM

)]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Φ5M Θ2 ∂
∂ν

[
p2n

ζ M

(
1
2
+ lnxM

)]
∂

∂ν

[
p2n xM

ζ M

(
4
3
− lnxM

)]
dϕ dν,

(5.31)

where Θ, xM, s44M, ciM (i = 1,2,5) and κ jM, χ jM; Φ jM, Ψ jM ( j = 1,3,5) are given by
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Equations (1.21), (1.22), (2.13), (2.18) and (4.13); (4.15), respectively, and ζ M, ζ iM

(i = 1,2) have the forms

ζ M =
ζ2M

xM

(
1
2
+ lnxM

)
−ζ1M

(
4
3
− lnxM

)
, ζ1M =

xM

xE
(c1M −2c2M lnxE) ,

ζ2M = xM

[
c1M −7c2M

3
− (c1M − c2M) lnxE

]
. (5.32)

The normal stress p2n is given by Equation (2.26), where ρIN and ρi jE (i, j = 1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum Wc (see Equation (2.23)).
With regard to

(
εϕM
)
xn=xE

= −p2n ρM and Equation (5.25), the coefficient ρM in
Equation (2.26) is derived as

ρM =
1

ζ M

[(
1
2
+ lnxM

)(
4
3
− lnxE

)
−

xM

xE

(
4
3
− lnxM

)(
1
2
+ lnxE

)]
. (5.33)

Conditions C2M �= 0, C3M �= 0, C1M = 0. With regard to Equations (2.29), (2.30),
(5.4)–(5.11), (2.21), (2.22), (2.23), we get

εnM =−
p2n

ζ M

[
c3M

(
1
2
+ lnxM

)
xc3M−1
n −

xc3M
M

xn

]
, (5.34)

εϕM = εθM =−
p2n

ζ M

[(
1
2
+ lnxM

)
xc3M−1
n −

xc3M
M

xn

(
1
2
+ lnxn

)]
,

(5.35)

εnϕM = s44M σnϕM =
1
xn

(
1
2
+ lnxn

)
∂

∂ϕ

(
p2n xc3M

M

ζ M

)

− xc3M−1
n

∂
∂ϕ

[
p2n

ζ M

(
1
2
+ lnxM

)]
, (5.36)

εnνM = s44M σnνM =Θ
{

1
xn

(
1
2
+ lnxn

)
∂

∂ν

(
p2n xc3M

M

ζ M

)

− xc3M−1
n

∂
∂ν

[
p2n

ζ M

(
1
2
+ lnxM

)]}
, (5.37)

σnM =−
p2n xc3M−1

n

ζ M

×

{
[c3M (c1M+ c2M)−2c2M]

(
1
2
+ lnxM

)
−

xM

xn
(c1M −2c2M lnxn)

}
,

(5.38)
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σϕM = σθM =

−
p2n xc3M−1

n

ζ M

[
(c1M − c2M c3M)

(
1
2
+ lnxM

)
−

xM

xn

(
c1M −2c2M

2
+ c1M lnxn

)]
,

(5.39)

wM =

(
p2n

ζ M

)2
[

κ2M

(
1
2
+ lnxM

)2

+κ3M x2c3M
M +κ6M xc3M

M

(
1
2
+ lnxM

)]

+
χ2M

s44M

{
∂

∂ϕ

[
p2n

ζ M

(
1
2
+ lnxM

)]2

+Θ2 ∂
∂ν

[
p2n

ζ M

(
1
2
+ lnxM

)]2
}

+
χ3M

s44M

[
∂C3M

∂ϕ

(
p2n xc3M

M

ζ M

)2

+Θ2 ∂C3M

∂ν

(
p2n xc3M

M

ζ M

)2
]

−
χ6M Θ
s44M

{
∂

∂ϕ

[
p2n

ζ M

(
1
2
+ lnxM

)]
∂

∂ϕ

(
p2n xc3M

M

ζ M

)

+
∂

∂ν

[
p2n

ζ M

(
1
2
+ lnxM

)]
∂

∂ν

(
p2n xc3M

M

ζ M

)}
, (5.40)

WM = 4

π/2∫
0

π/2∫
0

(
p2n

ζ M

)2
[

Φ2M

(
1
2
+ lnxM

)2

+Φ3M x2c3M
M

+ Φ6M xc3M
M

(
1
2
+ lnxM

)]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

{
∂

∂ϕ

[
p2n

ζ M

(
1
2
+ lnxM

)]2

+Θ2 ∂
∂ν

[
p2n

ζ M

(
1
2
+ lnxM

)]2
}

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M

[
∂C3M

∂ϕ

(
p2n xc3M

M

ζ M

)2

+Θ2 ∂C3M

∂ν

(
p2n xc3M

M

ζ M

)2
]

dϕ dν

−
4

s44M

π/2∫
0

π/2∫
0

Ψ6M Θ
{

∂
∂ϕ

[
p2n

ζ M

(
1
2
+ lnxM

)]
∂

∂ϕ

(
p2n xc3M

M

ζ M

)

+
∂

∂ν

[
p2n

ζ M

(
1
2
+ lnxM

)]
∂

∂ν

(
p2n xc3M

M

ζ M

)}
dϕ dν, (5.41)

where Θ, xM, s44M, ciM (i = 1,2,3) and κ jM, χ jM; Φ jM, Ψ jM ( j = 2,3,6) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.13); (4.15), respectively, and ζ M, ζ iM
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(i = 1,2) have the forms

ζ M =
ζ2M

xM

(
1
2
+ lnxM

)
−ζ1M xc3M−1

M , ζ1M =
xM

xE
(c1M −2c2M lnxE) ,

ζ2M = xM [c3M (c1M+ c2M)−2c2M]x
c3M−1
E . (5.42)

The normal stress p2n is given by Equation (2.26), where ρIN and ρi jE (i, j = 1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum Wc (see Equation (2.23)).
With regard to

(
εϕM
)
xn=xE

= −p2n ρM and Equation (5.35), the coefficient ρM in
Equation (2.26) is derived as

ρM =
1

ζ M

[(
1
2
+ lnxM

)
xc3M−1
E −

xc3M
M

xE

(
1
2
+ lnxE

)]
. (5.43)

Conditions C1M �= 0, C2M �= 0, C3M �= 0. With regard to Equations (2.29)–(2.32),
(5.4)–(5.11), (2.21), (2.22), (2.23), we get

εnM =−
p2n

ζ M

[
ζ1M

(
1
3
− lnxn

)
+ζ2M c3M xc3M−1

n +
ζ3M

xn

]
, (5.44)

εϕM = εθM =−
p2n

ζ M

[
ζ1M

(
4
3
− lnxn

)
+ζ2M xc3M−1

n +
ζ3M

xn

(
1
2
+ lnxn

)]
, (5.45)

εnϕM = s44M σnϕM =−

[(
4
3
− lnxn

)
∂

∂ϕ

(
p2n ζ1M

ζ M

)
+ xc3M−1

n
∂

∂ϕ

(
p2n ζ2M

ζ M

)

+
1
xn

(
1
2
+ lnxn

)
∂

∂ϕ

(
p2n ζ3M

ζ M

)]
, (5.46)

εnνM = s44M σnϕM =−Θ
[(

4
3
− lnxn

)
∂

∂ϕ

(
p2n ζ1M

ζ M

)
+ xc3M−1

n
∂

∂ν

(
p2n ζ2M

ζ M

)

+
1
xn

(
1
2
+ lnxn

)
∂

∂ν

(
p2n ζ3M

ζ M

)]
, (5.47)

σnM =−
p2n

ζ M

{
ζ1M

[
c1M −7c2M

3
− (c1M − c2M) lnxn

]

+ ζ2M [(c1M+ c2M)c3M −2c2M]x
c3M−1
n +

ζ3M (c1M −2c2M lnxn)

xn

}
, (5.48)
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σϕM = σθM =−
p2n

ζ M

{
ζ1M

[
4c1M − c2M

3
− (c1M − c2M) lnxn

]

+ ζ2M (c1M − c2M c3M)x
c3M−1
n +ζ3M

(
c1M −2c2M

2
+ c1M lnxn

)}
, (5.49)

wM =

(
p2n

ζ M

)2(
κ1M ζ2

1M+κ2M ζ2
2M+κ3M ζ2

3M

+ κ4M ζ1M ζ2M+κ5M ζ1M ζ3M+κ6M ζ2M ζ3M

)

+
χ1M

s44M

{[
∂

∂ϕ

(
p2n ζ1M

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n ζ1M

ζ M

)]2
}

+
χ2M

s44M

{[
∂

∂ϕ

(
p2n ζ2M

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n ζ2M

ζ M

)]2
}

+
χ3M

s44M

{[
∂

∂ϕ

(
p2n ζ3M

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n ζ3M

ζ M

)]2
}

+
χ4M

s44M

∂
∂ϕ

(
p2n ζ1M

ζ M

)
∂

∂ϕ

(
p2n ζ2M

ζ M

)

+
χ4M Θ2

s44M

∂
∂ν

(
p2n ζ1M

ζ M

)
∂

∂ν

(
p2n ζ2M

ζ M

)

+
χ5M

s44M

∂
∂ϕ

(
p2n ζ1M

ζ M

)
∂

∂ϕ

(
p2n ζ3M

ζ M

)

+
χ5M Θ2

s44M

∂
∂ν

(
p2n ζ1M

ζ M

)
∂

∂ν

(
p2n ζ3M

ζ M

)

+
χ6M

s44M

∂
∂ϕ

(
p2n ζ2M

ζ M

)
∂

∂ϕ

(
p2n ζ3M

ζ M

)

+
χ6M Θ2

s44M

∂
∂ν

(
p2n ζ2M

ζ M

)
∂

∂ν

(
p2n ζ3M

ζ M

)
(5.50)

WM = 4

π/2∫
0

π/2∫
0

(
p2n

ζ M

)2(
Φ1M ζ2

1M+Φ2M ζ2
2M+Φ3M ζ2

3M

+ Φ4M ζ1M ζ2M+Φ5M ζ1M ζ3M+Φ6M ζ2M ζ3M

)
dϕ dν
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+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

{[
∂

∂ϕ

(
p2n ζ1M

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n ζ1M

ζ M

)]2
}

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

{[
∂

∂ϕ

(
p2n ζ2M

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n ζ2M

ζ M

)]2
}

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M

{[
∂

∂ϕ

(
p2n ζ3M

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n ζ3M

ζ M

)]2
}

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ4M

[
∂

∂ϕ

(
p2n ζ1M

ζ M

)
∂

∂ϕ

(
p2n ζ2M

ζ M

)

+ Θ2 ∂
∂ν

(
p2n ζ1M

ζ M

)
∂

∂ν

(
p2n ζ2M

ζ M

)]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ5M

[
∂

∂ϕ

(
p2n ζ1M

ζ M

)
∂

∂ϕ

(
p2n ζ3M

ζ M

)

+ Θ2 ∂
∂ν

(
p2n ζ1M

ζ M

)
∂

∂ν

(
p2n ζ3M

ζ M

)]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ6M

[
∂

∂ϕ

(
p2n ζ2M

ζ M

)
∂

∂ϕ

(
p2n ζ3M

ζ M

)

+ Θ2 ∂
∂ν

(
p2n ζ2M

ζ M

)
∂

∂ν

(
p2n ζ3M

ζ M

)]
dϕ dν, (5.51)

where Θ, xM, s44M, ciM (i = 1,2,3) and κ jM, χ jM; Φ jM, Ψ jM ( j = 1, . . . , 6) are given
by Equations (1.21), (1.22), (2.13), (2.18) and (4.13); (4.15), respectively, and ζ M,
ζ iM (i = 1,2,3) have the forms

ζ1M = xc3M−1
M

[
c3M

(
1
2
+ lnxM

)
−1

]
,

ζ2M =
4
3
− lnxM −

(
1
2
+ lnxM

)(
1
3
− lnxM

)
,

ζ3M = xc3M
M

[
1
3
− lnxM − c3M

(
4
3
− lnxM

)]
,

ζ M = xc3M−1
M

[
c1M −7c2M

3
− (c1M − c2M) lnxE

]

69



+ [(c1M+ c2M)c3M −2c2M]

(
1
2
+ lnxM

)(
1
3
− lnxM

)
xc3M−1
E

+ (c1M −2c2M lnxE)

(
4
3
− lnxM

)
c3M xc3M

M

xE

−

{
c3M

[
c1M −7c2M

3
− (c1M − c2M) lnxE

](
1
2
+ lnxM

)
xc3M−1
M

+ [(c1M+ c2M)c3M −2c2M]

(
4
3
− lnxM

)
xc3M−1
E

+
(c1M −2c2M lnxE)x

c3M
M

xE

(
1
3
− lnxM

)}
. (5.52)

The normal stress p2n is given by Equation (2.26), where ρIN and ρi jE (i, j = 1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum Wc (see Equation (2.23)).
With regard to

(
εϕM
)
xn=xE

= −p2n ρM and Equation (5.45), the coefficient ρM in
Equation (2.26) is derived as

ρM =
1

ζ M

[
ζ1M

(
4
3
− lnxE

)
+ζ2M xc3M−1

E +
ζ3M

xE

(
1
2
+ lnxE

)]
. (5.53)

5.2.2 Envelope

The integration constants C1E , C2E , C3E for the envelope (see Equation (5.4)) are de-
termined by the boundary conditions (2.33), (2.34). The boundary conditions result
in the following combinations of C1E , C2E , C3E , i.e., C1E �= 0, C2E �= 0, C3E = 0;
C1E �= 0, C3E �= 0, C2E = 0; C2E �= 0, C3E �= 0, C1E = 0. Finally, such a combina-
tion is considered to exhibit a minimum value of the elastic energy WC of the cubic
cell (see Equation (2.23)).

Conditions C1E �= 0, C2E �= 0, C3E = 0. With regard to Equations (2.33), (2.34),
(5.4)–(5.11), (2.22), (2.23), we get

εnE =−

[
ζ1E

(
1
3
− lnxn

)
− c3E ζ2E xc3E−1

n

]
, (5.54)

εϕE = εθE =−

[
ζ1E

(
4
3
− lnxn

)
+ζ2E xc3E−1

n

]
(5.55)

εnϕE = s44E σnϕE =−

[(
4
3
− lnxn

)
∂ζ1E

∂ϕ
+ xc3E−1

n
∂ζ2E

∂ϕ

]
, (5.56)
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εnθE = s44E σnθE =− Θ
[(

4
3
− lnxn

)
∂ζ1E

∂ν
+ xc3E−1

n
∂ζ2E

∂ν

]
, (5.57)

σnE =−

{
ζ1E

[
c1E −7c2E

3
− (c1E − c2E) lnxn

]

+ ζ2E [(c1E+ c2E)c3E −2c2E ]x
c3E−1
n

}
, (5.58)

σϕE = σθE =−

{
ζ1E

[
4c1E − c2E

3
− (c1E − c2E) lnxn

]

+ ζ2E (c1E − c2E c3E)x
c3E−1
n

}
, (5.59)

wE = κ1E ζ2
1E+κ2E ζ2

2E+κ4E ζ1E ζ2E+
χ1

s44E

[(
∂ζ1E

∂ϕ

)2

+Θ2
(

∂ζ1E

∂ν

)2
]

+
χ2

s44E

[(
∂ζ2E

∂ϕ

)2

+Θ2
(

∂ζ2E

∂ν

)2
]
+

χ4

s44E

(
∂ζ1E

∂ϕ
∂ζ2E

∂ϕ
+Θ2 ∂ζ1E

∂ν
∂ζ2E

∂ν

)
,(5.60)

WE = 4

π/2∫
0

π/2∫
0

(
Φ1E ζ2

1E+Φ2E ζ2
2E+Φ4 ζ1E ζ2E

)
dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ1E

[(
∂ζ1E

∂ϕ

)2

+Θ2
(

∂ζ1E

∂ν

)2
]

dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ2E

[(
∂ζ2E

∂ϕ

)2

+Θ2
(

∂ζ2E

∂ν

)2
]

dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ4E

(
∂ζ1E

∂ϕ
∂ζ2E

∂ϕ
+Θ2 ∂ζ1E

∂ν
∂ζ2E

∂ν

)
dϕ dν, (5.61)

where Θ, xE , s44E , ciE (i = 1,2,3) and κ jE , χ jE ; Φ jE , Ψ je ( j = 1,3,4) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.13); (4.15), respectively, and ζE , ζ iE

(i = 1,2) have the forms

ζ iE = p1n ζ i1E+ p2n ζ i2E , i= 1,2,
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ζ11E =
1

ζE
[(c1E+ c2E)c3E −2c2E ]x

c3E−1
E ,

ζ12E =−
1

ζE
[(c1E+ c2E)c3E −2c2E ]x

c3E−1
IN ,

ζ21E =−
1

ζE

[
c1E −7c2E

3
− (c1E − c2E) lnxE

]
,

ζ22E =
1

ζE

[
c1E −7c2E

3
− (c1E − c2E) lnxIN

]
,

ζE = [(c1E+ c2E)c3E −2c2E ]

×

[
c1E −7c2E

3

(
xc3E−1
E − xc3E−1

IN

)
− (c1E − c2E)

(
xc3E−1
E lnxIN − xc3E−1

IN lnxE

)]
, (5.62)

The normal stresses p1n, p2n in Equation (5.62) are given by Equations (2.25),
(2.26), where ρIN and ρM in Equations (2.25), (2.26) are given by Equation (6.89)
and (5.23), (5.33), (5.43), (5.53), respectively. With regard to(
εϕE
)
xn=xIN

=−(p1n ρ11E+ p2n ρ12E),
(
εϕE
)
xn=xE

=, −(p1n ρ21E+ p2n ρ22E)
and Equation (5.55), the coefficient ρi jE (i, j = 1,2) in Equations (2.25), (2.26) is
derived as

ρ1iE = ζ1iE

(
4
3
− lnxIN

)
+ζ2iE xc3E−1

IN , ρ2iE = ζ1iE

(
4
3
− lnxE

)
+ζ2iE xc3E−1

E ,

i= 1,2. (5.63)

Conditions C1E �= 0, C3E �= 0, C2E = 0. With regard to Equations (2.33), (2.34),
(5.4)–(5.11), (2.22), (2.23), we get

εnE =−

[
ζ1E

(
1
3
− lnxn

)
+

ζ3E

xn

]
, (5.64)

εϕE = εθE =−

[
ζ1E

(
4
3
− lnxn

)
+

ζ3E

xn

(
1
2
+ lnxn

)]
, (5.65)

εnϕE = s44E σnϕE =−

[
∂ζ1E

∂ϕ

(
4
3
− lnxn

)
+

1
xn

∂ζ3E

∂ϕ

(
1
2
+ lnxn

)]
, (5.66)

εnθE = s44E σnθE =−

[
∂ζ1E

∂ν

(
4
3
− lnxn

)
+

1
xn

∂ζ3E

∂ν

(
1
2
+ lnxn

)]
, (5.67)
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σnE =−

{
ζ1E

[
2(c1E+2c2E)

3
+(c1E − c2E) lnxn

]
−

2c2E ζ3E

xn

}
, (5.68)

σϕE = σθE =−

{
ζ1E

[
c1E+2c2E

3
− (c1E − c2E) lnxn

]
+

c1E ζ3E

xn

}
. (5.69)

wE = κ1E ζ2
1E+κ3E ζ2

3E+κ5E ζ1E ζ3E+
χ1E

s44E

[(
∂ζ1E

∂ϕ

)2

+Θ2
(

∂ζ1E

∂ν

)2
]

+
χ3E

s44E

[(
∂ζ3E

∂ϕ

)2

+Θ2
(

∂ζ3E

∂ν

)2
]
+

χ4E

s44E

(
∂ζ1E

∂ϕ
∂ζ3E

∂ϕ
+Θ2 ∂ζ1E

∂ν
∂ζ3E

∂ν

)
,

(5.70)

WE = 4

π/2∫
0

π/2∫
0

(
Φ1E ζ2

1E+Φ3E ζ2
3E+Φ5 ζ1E ζ3E

)
dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ1E

[(
∂ζ1E

∂ϕ

)2

+Θ2
(

∂ζ1E

∂ν

)2
]

dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ3E

[(
∂ζ3E

∂ϕ

)2

+Θ2
(

∂ζ3E

∂ν

)2
]

dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ5E

(
∂ζ1E

∂ϕ
∂ζ3E

∂ϕ
+Θ2 ∂ζ1E

∂ν
∂ζ3E

∂ν

)
dϕ dν, (5.71)

where Θ, xE , s44E , ciE (i = 1,2,3) and κ jE , χ jE ; Φ jE , Ψ jE ( j = 1,3,5) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.13); (4.15), respectively, and ζ iE

(i = 1,3) has the forms

ζ iE = p1n ζ i1E+ p2n ζ i2E , i= 1,3,

ζ11E =
c1E −2c2E lnxE

ζE xE
, ζ12E =−

c1E −2c2E lnxIN

ζE xIN
,

ζ31E =−
1

ζE

[
c1E −7c2E

3
− (c1E − c2E) lnxE

]
,
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ζ32E =
1

ζE

[
c1E −7c2E

3
− (c1E − c2E) lnxIN

]
,

ζE =
c1E −7c2E

3

(
c1E −2c2E lnxE

xE
−

c1E −2c2E lnxIN

xIN

)

− (c1E − c2E)

[
(c1E −2c2E lnxE) lnxIN

xE
−
(c1E −2c2E lnxIN) lnxE

xIN

]
. (5.72)

The normal stresses p1n, p2n in Equation (5.62) are given by Equations (2.25),
(2.26), where ρIN and ρM in Equations (2.25), (2.26) are given by Equation (6.89)
and (5.23), (5.33), (5.43), (5.53), respectively. With regard to

(
εϕE
)
xn=xIN

=

−(p1n ρ11E+ p2n ρ12E),
(
εϕE
)
xn=xE

= −(p1n ρ21E+ p2n ρ22E) and Equation (5.65),
the coefficient ρi jE (i, j = 1,2) in Equations (2.25), (2.26) is derived as

ρ1iE = ζ1iE

(
4
3
− lnxIN

)
+

ζ3iE

xIN

(
1
2
+ lnxIN

)
,

ρ2iE = ζ1iE

(
4
3
− lnxE

)
+

ζ3iE

xE2

(
1
2
+ lnxE

)
, i= 1,2. (5.73)

Conditions C2E �= 0, C3E �= 0, C1E = 0. With regard to Equations (2.33), (2.34),
(5.4)–(5.11), (2.22), (2.23), we get

εnE =−

[
c3E ζ2E xc3E−1

n +
ζ3E

xn

]
, (5.74)

εϕE = εθE =−

[
ζ2E xc3E−1

n +
ζ3E

xn

(
1
2
+ lnr

)]
, (5.75)

εnϕE = s44E σnϕE =−

[
∂ζ2E

∂ϕ
xc3E−1
n +

1
xn

∂ζ3E

∂ϕ

(
1
2
+ lnr

)]
, (5.76)

εnθE = s44E σnθE =−

[
∂ζ2E

∂ν
xc3E−1
n +

1
xn

∂ζ3E

∂ν

(
1
2
+ lnr

)]
, (5.77)

σnE =−

[
ζ2E [(c1E+ c2E)c3E −2c2E ]x

c3E−1
n +

ζ3E (c1E −2c2E lnr)
xn

]
, (5.78)

σϕE = σθE =−

[
ζ2E (c1E − c2E c3E)x

c3E−1
n +

ζ3E

xn

(
c1E −2c2E

2
+ c1E lnr

)]
.

(5.79)
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wE = κ2E ζ2
2E+κ3E ζ2

3E+κ6E ζ2E ζ3E+
χ2E

s44E

[(
∂ζ2E

∂ϕ

)2

+Θ2
(

∂ζ2E

∂ν

)2
]

+
χ3E

s44E

[(
∂ζ3E

∂ϕ

)2

+Θ2
(

∂ζ3E

∂ν

)2
]
+

χ6E

s44E

(
∂ζ2E

∂ϕ
∂ζ3E

∂ϕ
+Θ2 ∂ζ2E

∂ν
∂ζ3E

∂ν

)
,

(5.80)

WE = 4

π/2∫
0

π/2∫
0

(
Φ1E ζ2

2E+Φ3E ζ2
3E+Φ5 ζ2E ζ3E

)
dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ1E

[(
∂ζ2E

∂ϕ

)2

+Θ2
(

∂ζ2E

∂ν

)2
]

dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ3E

[(
∂ζ3E

∂ϕ

)2

+Θ2
(

∂ζ3E

∂ν

)2
]

dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ5E

(
∂ζ2E

∂ϕ
∂ζ3E

∂ϕ
+Θ2 ∂ζ2E

∂ν
∂ζ3E

∂ν

)
dϕ dν, (5.81)

where Θ, xE , s44E , ciE (i = 1,2,3) and κ jE , χ jE ; Φ jE , Ψ jE ( j = 2,3,6) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.13); (4.15), respectively, and ζ iE

(i = 2,3) has the forms

ζ iE = p1n ζ i1E+ p2n ζ i2E , i= 2,3,

ζ21 =
c1E −2c2E lnxE

ζE xE
, ζ22E =−

c1E −2c2E lnxIN

ζE xIN
,

ζ31E =−
[(c1E+ c2E)c3E −2c2E ]x

c3E−1
E

ζE
,

ζ32E =
[(c1E+ c2E)c3E −2c2E ]x

c3E−1
IN

ζE
,

ζE = [(c1E+ c2E)c3E −2c2E ]

×

[
xc3E−1
IN (c1E −2c2E lnxE)

xE
−

xc3E−1
E (c1E −2c2e lnxIN)

xIN

]
. (5.82)

The normal stresses p1n, p2n in Equation (5.62) are given by Equations (2.25),
(2.26), where ρIN and ρM in Equations (2.25), (2.26) are given by Equation (6.89)
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and (5.23), (5.33), (5.43), (5.53), respectively. With regard to
(
εϕE
)
xn=xIN

=

−(p1n ρ11E+ p2n ρ12E),
(
εϕE
)
xn=xE

= −(p1n ρ21E+ p2n ρ22E) and Equation (5.75),
the coefficient ρi jE (i, j = 1,2) in Equations (2.25), (2.26) is derived as

ρ1iE = ζ2iE xc3E−1
IN +

ζ3iE

xIN

(
1
2
+ lnxIN

)
, ρ2iE = ζ2iE xc3E−1

E +
ζ3iE

xE

(
1
2
+ lnxE

)
,

i= 1,2. (5.83)

5.3 Condition βIN �= βE = βM

If βIN �= βE = βM, then |unE | = f (xn) represents a decreasing function of xn ∈
〈xIN,xE〉, and then C1E =C3E = 0, C2E �= 0 (see Equation (5.4)), respectively. With
regard to Equations (4.4), (5.4), the thermal strains and stresses in the ellipsoidal
envelope are determined in Section 4.3.2. The normal stress p1n in Section 4.3.2
is given by Equation (2.27), where ρIN and ρ1ME in Equation (2.27) are given by
Equations (6.89) and (4.130), respectively.

5.3.1 Matrix

The integration constants C1M, C2M, C3M for the matrix (see Equation (5.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)–(2.32). The boundary
conditions result in the following combinations of C1M, C2M, C3M, i.e., C1M �= 0,
C2M �= 0, C3M = 0; C1M �= 0, C3M �= 0, C2M = 0; C2M �= 0, C3M �= 0, C1M = 0;
C1M �= 0, C2M �= 0, C3M �= 0. Finally, such a combination is considered to exhibit a
minimum value of the elastic energy WC of the cubic cell (see Equation (2.23)).

Conditions C1M �= 0, C2M �= 0, C3M = 0. With regard to Equations (2.30), (2.31),
(5.4)–(5.11), (2.22), (2.23), we get

εnM = ζ1M

(
1
3
− lnxn

)
+ c3M ζ2M xc3M−1

n , (5.84)

εϕM = εθM = ζ1M

(
4
3
− lnxn

)
+ζ2M xc3M−1

n , (5.85)

εnϕM = s44M σnϕM =

(
4
3
− lnxn

)
∂ζ1M

∂ϕ
+ xc3M−1

n
∂ζ2M

∂ϕ
, (5.86)

εnθM = s44M σnθM =Θ
[(

4
3
− lnxn

)
∂ζ1M

∂ν
+ xc3M−1

n
∂ζ2M

∂ν
,

]
, (5.87)
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σnM =− ζ1M

[
c1M −7c2M

3
− (c1M − c2M) lnxn

]
+ ζ2M [(c1M+ c2M)c3M −2c2M]x

c3M−1
n , (5.88)

σϕM = σθM = ζ1M

[
4c1M − c2M

3
− (c1M − c2M) lnxn

]
+ ζ2M (c1M − c2M c3M)x

c3M−1
n , (5.89)

wM = κ1M ζ2
1M+κ2M ζ2

2M+κ4M ζ1M ζ2M+
χ1M

s44M

[(
∂ζ1M

∂ϕ

)2

+Θ2
(

∂ζ1M

∂ν

)2
]

+
χ2M

s44M

[(
∂ζ2M

∂ϕ

)2

+Θ2
(

∂ζ2M

∂ν

)2
]
+

χ4M

s44M

[
∂ζ1M

∂ϕ
∂ζ2M

∂ϕ
+Θ2 ∂ζ1M

∂ν
∂ζ2M

∂ν

]
,

(5.90)

WM = 4

π/2∫
0

π/2∫
0

(
Φ1M ζ2

1M+Φ2M ζ2
2M+Φ4M ζ1M ζ2M

)
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

[(
∂ζ1M

∂ϕ

)2

+Θ2
(

∂ζ1M

∂ν

)2
]

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

[(
∂ζ2M

∂ϕ

)2

+Θ2
(

∂ζ2M

∂ν

)2
]

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ4M

[
∂ζ1M

∂ϕ
∂ζ2M

∂ϕ
+Θ2 ∂ζ1M

∂ν
∂ζ2M

∂ν

]
dϕ dν, (5.91)

where Θ, xE , xM, s44M, ciM and κ jE , χ jE ; Φ jE , Ψ jE (i = 1,2,3; j = 1,2,4) are given
by Equations (1.21), (1.22), (2.13), (2.18) and (5.12); (5.13), respectively, and ζ1M,
ζ2M, ζ M have the forms

ζ1M =−
p1n ρ2ME xE xc3M

M

ζ M
, ζ2M =

p1n ρ2ME xE xM

ζ M

(
4
3
− lnxM

)
,

ζ M = xc3M
M xE

(
4
3
− lnxE

)
− xM xc3M

E

(
4
3
− lnxM

)
. (5.92)
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The normal stress p1n is given by Equation (2.27), where ρIN and ρ2ME in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum Wc (see Equation (2.23)).

Conditions C1M �= 0, C3M �= 0, C2M = 0. With regard to Equations (2.30), (2.31),
(5.4)–(5.11), (2.22), (2.23), we get

εnM = ζ1M

(
1
3
− lnxn

)
+

ζ3M

xn
, (5.93)

εϕM = εθM = ζ1M

(
4
3
− lnxn

)
+

ζ3M

xn

(
1
2
+ lnxn

)
, (5.94)

εnϕM = s44M σnϕM =

(
4
3
− lnxn

)
∂ζ1M

∂ϕ
+

1
xn

(
1
2
+ lnxn

)
∂ζ3M

∂ϕ
, (5.95)

εnθM = s44M σnθM =Θ
[(

4
3
− lnxn

)
∂ζ1M

∂ν
+

1
xn

(
1
2
+ lnxn

)
∂ζ3M

∂ν

]
, (5.96)

σnM = ζ1M

[
c1M −7c2M

3
− (c1M − c2M) lnxn

]
+

ζ3M (c1M −2c2M lnxn)

xn
, (5.97)

σϕM = σθM = ζ1M

[
4c1M − c2M

3
− (c1M − c2M) lnxn

]

+
ζ3M

xn

(
c1M −2c2M

2
+ c1M lnxn

)
, (5.98)

wM = κ1M ζ2
1M+κ3M ζ2

3M+κ5M ζ1M ζ3M+
χ1M

s44M

[(
∂ζ1M

∂ϕ

)2

+Θ2
(

∂ζ1M

∂ν

)2
]

+
χ3M

s44M

[(
∂ζ3M

∂ϕ

)2

+Θ2
(

∂ζ3M

∂ν

)2
]
+

χ5M

s44M

[
∂ζ1M

∂ϕ
∂ζ3M

∂ϕ
+Θ2 ∂ζ1M

∂ν
∂ζ3M

∂ν

]
,

(5.99)

WM = 4
∫

0π/2

π/2∫
0

(
Φ1M ζ2

1M+Φ3M ζ2
3M+Φ5M ζ1M ζ3M

)
dϕ dν
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+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

[(
∂ζ1M

∂ϕ

)2

+Θ2
(

∂ζ1M

∂ν

)2
]

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M

[(
∂ζ3M

∂ϕ

)2

+Θ2
(

∂ζ3M

∂ν

)2
]

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ5M

[
∂ζ1M

∂ϕ
∂ζ3M

∂ϕ
+Θ2 ∂ζ1M

∂ν
∂ζ3M

∂ν

]
dϕ dν, (5.100)

where Θ, xE , xM, s44M, ciM and κ jE , χ jE ; Φ jE , Ψ jE (i = 1,2,3; j = 1,3,5) are given
by Equations (1.21), (1.22), (2.13), (2.18) and (5.12); (5.13), respectively, and ζ1M,
ζ3M, ζ M have the forms

ζ1M =−
p1n ρ2ME xE

ζ M

(
1
2
+ lnxM

)
, ζ3M =

p1n ρ2ME xE xM

ζ M

(
4
3
− lnxM

)
,

ζ M = xE

(
4
3
− lnxE

)(
1
2
+ lnxM

)
− xM

(
4
3
− lnxM

)(
1
2
+ lnxE

)
. (5.101)

The normal stress p1n is given by Equation (2.27), where ρIN and ρ2ME in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum Wc (see Equation (2.23)).

Conditions C2M �= 0, C3M �= 0, C1M = 0. With regard to Equations (2.30), (2.31),
(5.4)–(5.11), (2.22), (2.23), we get

εnM = c3M ζ2M xc3M−1
n +

ζ3M

xn
, (5.102)

εϕM = εθM = ζ2M xc3M−1
n +

ζ3M

xn

(
1
2
+ lnxn

)
, (5.103)

εnϕM = s44M σnϕM = xc3M−1
n

∂ζ2M

∂ϕ
+

1
xn

(
1
2
+ lnxn

)
∂ζ3M

∂ϕ
, (5.104)

εnθM = s44M σnθM =Θ
[
xc3M−1
n

∂ζ2M

∂ν
+

1
xn

(
1
2
+ lnxn

)
∂ζ3M

∂ν

]
, (5.105)

σnM = ζ2M [(c1M+ c2M)c3M −2cMm]x
c3M−1
n +

ζ3M

xn
(c1M −2c2M lnxn) , (5.106)
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σϕM = σ′
θM = ζ2M (c1M − c2M c3M)x

c3M−1
n +

ζ3M

xn

(
c1M −2c2M

2
+ c1M lnxn

)
,

(5.107)

wM = κ2M ζ2
2M+κ3M ζ2

3M+κ6M ζ2M ζ3M+
χ2M

s44M

[(
∂ζ2M

∂ϕ

)2

+Θ2
(

∂ζ2M

∂ν

)2
]

+
χ3M

s44M

[(
∂ζ3M

∂ϕ

)2

+Θ2
(

∂ζ3M

∂ν

)2
]
+

χ6M

s44M

[
∂ζ2M

∂ϕ
∂ζ3M

∂ϕ
+Θ2 ∂ζ2M

∂ν
∂ζ3M

∂ν

]
,

(5.108)

WM = 4

π/2∫
0

π/2∫
0

(
Φ2M ζ2

2M+Φ3M ζ2
3M+Φ6M ζ2M ζ3M

)
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

[(
∂ζ2M

∂ϕ

)2

+Θ2
(

∂ζ2M

∂ν

)2
]

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M

[(
∂ζ3M

∂ϕ

)2

+Θ2
(

∂ζ3M

∂ν

)2
]

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ6M

[
∂ζ2M

∂ϕ
∂ζ3M

∂ϕ
+Θ2 ∂ζ2M

∂ν
∂ζ3M

∂ν

]
dϕ dν, (5.109)

where Θ, xE , xM, s44M, ciM and κ jE , χ jE ; Φ jE , Ψ jE (i = 1,2,3; j = 2,3,6) are given
by Equations (1.21), (1.22), (2.13), (2.18) and (5.12); (5.13), respectively, and ζ2M,
ζ3M, ζ M have the forms

ζ2M =−
p1n ρ2ME xE

ζ M

(
1
2
+ lnxM

)
, ζ3M =

p1n ρ2ME xE xc3M
M

ζ M
,

ζ M = xc3M
E

(
1
2
+ lnxM

)
− xc3M

M

(
1
2
+ lnxE

)
. (5.110)

The normal stress p1n is given by Equation (2.27), where ρIN and ρ2ME in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum Wc (see Equation (2.23)).
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Conditions C1M �= 0, C2M �= 0, C3M �= 0. With regard to Equations (2.30), (2.31),
(2.32), (5.4)–(5.11), (2.22), (2.23), we get

εnM = ζ1M

(
1
3
− lnxn

)
+ c3M ζ2M xc3M−1

n +
ζ3M

xn
, (5.111)

εϕM = εθM = ζ1M

(
4
3
− lnxn

)
+ζ2M xc3M−1

n +
ζ3M

xn

(
1
2
+ lnxn

)
, (5.112)

εnϕM = s44M σnϕM =

(
4
3
− lnxn

)
∂ζ1M

∂ϕ
+ xc3M−1

n
∂ζ2M

∂ϕ
+

1
xn

(
1
2
+ lnxn

)
∂ζ3M

∂ϕ
,

(5.113)

εnθM = s44M σnθM =

Θ
[(

4
3
− lnxn

)
∂ζ1M

∂ν
+ xc3M−1

n
∂ζ2M

∂ν
+

1
xn

(
1
2
+ lnxn

)
∂ζ3M

∂ν

]
, (5.114)

σnM = ζ1M

[
c1M −7c2M

3
− (c1M − cMm) lnxn

]

+ ζ2M [(c1M+ c2M)c3M −2c2M]x
c3M−1
n +

ζ3M

xn
(c1M −2c2M lnxn) , (5.115)

σϕM = σθM = ζ1M

[
4c1M − c2M

3
− (c1M − c2M) lnxn

]

+ ζ2M (c1M − c2M c3M)x
cMm−1
n +

ζ3M

xn

(
c1M −2c2M

2
+ c1M lnxn

)
, (5.116)

wM = κ1M ζ2
1M+κ2M ζ2

2M+κ3M ζ2
3M+κ4M ζ1M ζ2M+κ5M ζ1M ζ3M+κ6M ζ2M ζ3M

+
χ1M

s44M

[(
∂ζ1M

∂ϕ

)2

+Θ2
(

∂ζ1M

∂ν

)2
]
+

χ2M

s44M

[(
∂ζ2M

∂ϕ

)2

+Θ2
(

∂ζ2M

∂ν

)2
]

+
χ3M

s44M

[(
∂ζ3M

∂ϕ

)2

+Θ2
(

∂ζ3M

∂ν

)2
]
+

χ4M

s44M

[
∂ζ1M

∂ϕ
∂ζ2M

∂ϕ
+Θ2 ∂ζ1M

∂ν
∂ζ2M

∂ν

]

+
χ5M

s44M

[
∂ζ1M

∂ϕ
∂ζ3M

∂ϕ
+Θ2 ∂ζ1M

∂ν
∂ζ3M

∂ν

]

+
χ6M

s44M

[
∂ζ2M

∂ϕ
∂ζ3M

∂ϕ
+Θ2 ∂ζ2M

∂ν
∂ζ3M

∂ν

]
, (5.117)
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WM = 4

π/2∫
0

π/2∫
0

(
Φ1M ζ2

1M+Φ2M ζ2
2M+Φ3M ζ2

3M

)
dϕ dν

+ 4¢

π/2∫
0

π/2∫
0

(Φ4M ζ1M ζ2M+Φ5M ζ1M ζ3M+Φ6M ζ2M ζ3M) dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

[(
∂ζ1M

∂ϕ

)2

+Θ2
(

∂ζ1M

∂ν

)2
]

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

[(
∂ζ2M

∂ϕ

)2

+Θ2
(

∂ζ2M

∂ν

)2
]

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M

[(
∂ζ3M

∂ϕ

)2

+Θ2
(

∂ζ3M

∂ν

)2
]

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ4M

[
∂ζ1M

∂ϕ
∂ζ2M

∂ϕ
+Θ2 ∂ζ1M

∂ν
∂ζ2M

∂ν

]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ5M

[
∂ζ1M

∂ϕ
∂ζ3M

∂ϕ
+Θ2 ∂ζ1M

∂ν
∂ζ3M

∂ν

]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ6M

[
∂ζ2M

∂ϕ
∂ζ3M

∂ϕ
+Θ2 ∂ζ2M

∂ν
∂ζ3M

∂ν

]
dϕ dν, (5.118)

where Θ, xE , xM, s44M, ciM and κ jE , χ jE ; Φ jE , Ψ jE (i = 1,2,3; j = 1, . . . , 6) are given
by Equations (1.21), (1.22), (2.13), (2.18) and (5.12); (5.13), respectively, and ζiM

(i = 1,2,3), ζ M have the forms

ζ1M =−
p1n ρ2ME xE xc3M−1

M

ζ M

[
1− c3M

(
1
2
+ lnxM

)]
,

ζ2M =
p1n ρ2ME xe

ζ M

[
4
3
− lnxM −

(
1
3
− lnxM

)(
1
2
+ lnxM

)]
,

ζ3M =−
p1 ρ2ME xE xc3M

M

ζ M

[
c3M

(
4
3
− lnxM

)
−

(
1
3
− lnxM

)]
,
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ζ M = c3M xc3M−1
M

[
xE

(
1
3
− lnxE

)
− xM

(
1
3
− lnxM

)]

+ (xc3M
E − xc3M

M )

(
2
3
+ lnxM

)
,

ζ M = xc3M−1
M xE

(
4
3
− lnxE

)[
1− c3M

(
1
2
+ lnxM

)]

− xc3M
E

[
4
3
− lnxM −

(
1
3
− lnxM

)(
1
2
+ lnxM

)]

+ xc3M
M

(
1
2
+ lnxE

)[
c3M

(
4
3
− lnxM

)
−

(
1
3
− lnxM

)]
. (5.119)

The normal stress p1n is given by Equation (2.27), where ρIN and ρ2ME in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum Wc (see Equation (2.23)).

5.4 Condition βIN = βE �= βM

If βIN = βE �= βM, then the thermal strains and stresses in the cell matrix are de-
termined in Section 5.2.1. The radial stress p2n in Section 5.2.1 is given by Equa-
tions (2.28). The coefficients ρM and ρ2INE in Equations (2.26) are given by Equa-
tions (5.24), (5.34), (5.44), (5.54) and (5.129), (5.139), respectively.

5.4.1 Envelope

If βIN = βE �= βM, then |unE | = f (xn) represents an increasing function of xn ∈
〈xIN,xE〉, and then C1E �= 0, C2E =C3E = 0; or C3E �= 0, C1E =C3E = 0 (see Equa-
tion (5.4)).

ConditionsC1E �= 0,C2E =C3E = 0. With regard to Equations (2.34), (5.4)–(5.11),
(2.22), (2.23), we get

εnE =−
p2n

ζE

(
1
3
− lnxn

)
, (5.120)

εϕE = εθE =−
p2n

ζE

(
4
3
− lnxn

)
, (5.121)

εnϕE = s44E σnϕE =−

(
4
3
− lnxn

)
∂

∂ϕ

(
p2n

ζE

)
, (5.122)
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εnθE = s44E σnθE =−Θ
(

4
3
− lnxn

)
∂

∂ν

(
p2n

ζE

)
, (5.123)

σnE =−
p2n

ζE

[
c1E −7c2E

3
− (c1E − c2E) lnxn

]
, (5.124)

σϕE = σθE =−
p2n

ζE

[
4c1E − c2E

3
− (c1E − c2E) lnxn

]
, (5.125)

wE = κ1E

(
p2n

ζE

)2

+
χ1E

s44E

{[
∂

∂ϕ

(
p2n

ζE

)]2

+Θ2
[

∂
∂ν

(
p2n

ζE

)]2
}

, (5.126)

WE = 4

π/2∫
0

π/2∫
0

Φ1E

(
p2n

ζE

)2

dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ1E

{[
∂

∂ϕ

(
p2n

ζE

)]2

+Θ2
[

∂
∂ν

(
p2n

ζE

)]2
}

dϕ dν, (5.127)

where Θ, xE , s44E , ciE (i = 1,2,3) and κ1E , χ1E ; Φ1E , Ψ1E are given by Equations
(1.21), (1.22), (2.13), (2.18) and (5.12); (5.13), respectively, and ζE has the form

ζE =
c1E −7c2E

3
− (c1E − c2E) lnxE . (5.128)

The normal stress p2n is given by Equation (2.28), where ρM in Equation (2.28) is
given by Equations (3.24), (4.24), (4.34), (4.44), (4.54), (5.23), (5.33), (5.43), (5.53),
(6.22), (6.32), (6.42), (6.52), (7.23), (7.33), (7.43), (7.53), (7.63), (7.73) with respect
to minimum Wc (see Equation (2.23)). With regard to

(
εϕE
)
xn=xIN

= −p2n ρ1INE ,(
εϕE
)
xn=xE

= −p2n ρ2INE (see Equation (5.121)), the coefficients ρ1INE , ρ2INE in
Equations (2.28), (2.37) are derived as

ρ1INE =
1

ζE

(
4
3
− lnxIN

)
, ρ2INE =

1
ζE

(
4
3
− lnxE

)
. (5.129)

ConditionsC3E �= 0,C1E =C3E = 0. With regard to Equations (2.34), (5.4)–(5.11),
(2.22), (2.23), we get

εnE =−
p2n

ζE xn
, (5.130)
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εϕE = εθE =−
p2n

ζE xn

(
1
2
+ lnxn

)
, (5.131)

εnϕE = s44E σnϕE =−
1
xn

(
1
2
+ lnxn

)
∂

∂ϕ

(
p2n

ζE

)
, (5.132)

εnθE = s44E σnθE =−
Θ
xn

(
1
2
+ lnxn

)
∂

∂ν

(
p2n

ζE

)
, (5.133)

σnE =−
p2n

ζE xn
(c1E −2c2E lnxn) , (5.134)

σϕE = σθE =−
p2n

ζE xn

(
c1E −2c2E

2
+ c1E lnxn

)
, (5.135)

wE = κ3E

(
p2n

ζE

)2

+
χ3E

s44E

{[
∂

∂ϕ

(
p2n

ζE

)]2

+Θ2
[

∂
∂ν

(
p2n

ζE

)]2
}

, (5.136)

WE = 4

π/2∫
0

π/2∫
0

Φ3E

(
p2n

ζE

)2

dϕ dν

+
4

s44E

π/2∫
0

π/2∫
0

Ψ3E

{[
∂

∂ϕ

(
p2n

ζE

)]2

+Θ2
[

∂
∂ν

(
p2n

ζE

)]2
}

dϕ dν, (5.137)

where Θ, xE , s44E , ciE (i = 1,2,3) and κ3E , χ3E ; Φ3E , Ψ3E are given by Equations
(1.21), (1.22), (2.13), (2.18) and (5.12); (5.13), respectively, and ζE has the form

ζE =
c1E −2c2E lnxE

xE
. (5.138)

The normal stress p2n is given by Equation (2.28), where ρM in Equation (2.28) is
given by Equations (3.24), (4.24), (4.34), (4.44), (4.54), (5.23), (5.33), (5.43), (5.53),
(6.22), (6.32), (6.42), (6.52), (7.23), (7.33), (7.43), (7.53), (7.63), (7.73) with respect
to minimum Wc (see Equation (2.23)). With regard to

(
εϕE
)
xn=xIN

= −p2n ρ1INE ,(
εϕE
)
xn=xE

= −p2n ρ2INE (see Equation (5.121)), the coefficients ρ1INE , ρ2INE in
Equations (2.28), (2.37) are derived as

ρ1INE =
1

ζE xIN

(
1
2
+ lnxIN

)
, ρ2INE =

1
ζE xE

(
1
2
+ lnxE

)
. (5.139)
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Chapter 6

Mathematical Model 4

6.1 Mathematical Procedure

The differential equation (2.19) is transformed to the form

Un =−s44 (c1+ c2)

(
x2
n

∂2un

∂x2
n
+2xn

∂un

∂xn
−2un

)
, (6.1)

where s44, ci (i = 1,2) and Un=Un (xn,ϕ,ν) are given by Equations (2.13), (2.18) and
(2.21), respectively. Let xn [∂Eq.(6.1)/∂xn] be performed, and then we get

xn
∂Un

∂xn
=−s44 (c1+ c2)

(
x3
n

∂3un

∂x3
n
+4x2

n
∂2un

∂x2
n

)
. (6.2)

Let Equations (6.1), (6.2 be substituted to Equation (2.20, and then we get

x3
n

∂3un

∂x3
n
+(4− c3)x

2
n

∂2un

∂x2
n
−2c3xn

∂un

∂xn
+2c3un = 0. (6.3)

Let un be assumed in the form un = xλ
n , then we get [2]–[23]

un =C1 xn+C2 xc3
n +

C3

x2
n
, (6.4)

where c3 < 0 is given by Equation (2.18), and C1, C2, C3 are integration constants,
which are determined by the boundary conditions in Section 2.4. With regard to
Equations (2.1)–(2.4), (2.14)–(2.17), (2.22), (6.6), we get

εn =C1+C2 c3 xc3−1
n −

2C3

x3
n

, (6.5)

εϕ = εθ =C1+C2 xc3−1
n +

C3

x3
n
, (6.6)

εnϕ = s44 σnϕ =
∂C1

∂ϕ
+ xc3−1

n
∂C2

∂ϕ
+

1
x3
n

∂C3

∂ϕ
, (6.7)

εnθ = s44 σnθ =Θ
[

∂C1

∂ν
+ xc3−1

n
∂C2

∂ν
+

1
x3
n

∂C3

∂ν

]
, (6.8)
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σn =C1 (c1 − c2)+C2 [(c1+ c2)c3 −2c2]x
c3−1
n −

2C3 (c1+2c2)

x3
n

, (6.9)

σϕ = σθ =C1 (c1 − c2)+C2 (c1 − c2 c3)x
c3−1
n +

C3 (c1+2c2)

x3
n

, (6.10)

w= κ1+κ2 x2(c3−1)
n +

κ3

x6
n
+κ4 xc3−1

n +
κ5

x3
n
+κ6 xc3−4

n , (6.11)

where Θ is given by Equation (1.21), and κi (i = 1, . . . , 6) is derived as

κ1 =
3(c1 − c2)C2

1

2
+

1
s44

[(
∂C1

∂ϕ

)2

+Θ2
(

∂C1

∂ν

)2
]

,

κ2 =

[
(c1+ c2)c2

3

2
+ c1−2c2 c3

]
C2

2+
1

s44

[(
∂C2

∂ϕ

)2

+Θ2
(

∂C2

∂ν

)2
]

,

κ3 = 3(c1+2c2)C
2
3+

1
s44

[(
∂C3

∂ϕ

)2

+Θ2
(

∂C3

∂ν

)2
]

,

κ4 = (c1 − c2)(2+ c3)C1C2+
2

s44

(
∂C1

∂ϕ
∂C2

∂ϕ
+Θ2 ∂C1

∂ν
∂C2

∂ν

)
,

κ5 =
2

s44

(
∂C1

∂ϕ
∂C3

∂ϕ
+Θ2 ∂C1

∂ν
∂C3

∂ν

)
,

κ6 = [2c2 (1− c3)− c1]C2C3+
2

s44

(
∂C2

∂ϕ
∂C3

∂ϕ
+Θ2 ∂C2

∂ν
∂C3

∂ν

)
. (6.12)

6.2 Condition βIN �= βE �= βM

6.2.1 Matrix

The integration constants C1M, C2M, C3M for the matrix (see Equation (6.4)) are
determined by the boundary conditions (2.29), (2.30) or (2.29)–(2.32). The boundary
conditions result in the following combinations of C1M, C2M, C3M. Finally, such a
combination is considered to exhibit a minimum value of the elastic energy WC of
the cubic cell (see Equation (2.23)).

Conditions C1M �= 0, C2M �= 0, C3M = 0. With regard to Equations (2.29), (2.30),
(6.4)–(6.11), (2.21), (2.22), (2.23), we get
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εnM =−
p2n

ζ M

[
1− c3M

(
xn

xM

)c3M−1
]

, (6.13)

εϕM = εθM =−
p2n

ζ M

[
1−

(
xn

xM

)c3M−1
]

, (6.14)

εnϕM = s44M σnϕM =−

[
∂

∂ϕ

(
p2n

ζ M

)
− xc3M−1

n
∂

∂ϕ

(
p2n

ζ M xc3M−1
M

)]
, (6.15)

εnθM = s44M σnθM =−Θ

[
∂

∂ν

(
p2n

ζ M

)
− xc3M−1

n
∂

∂ν

(
p2n

ζ M xc3M−1
M

)]
, (6.16)

σnM =−
p2n

ζ M

{
c1M − c2M − [c3M (c1M+ c2M)−2c2M]

(
xn

xM

)c3M−1
}

, (6.17)

σϕM = σθM =−
p2n

ζ M

[
c1M − c2M − (c1M − c2Mc3M)

(
xn

xM

)c3M−1
]

, (6.18)

wM =
1
2

(
κ1M+κ2M x2(c3M−1)

n +κ4M xc3M−1
n

)
, (6.19)

WM = 4

π/2∫
0

π/2∫
0

[
κ1M

3

(
x3
M − x3

E

)
+

κ2M

2c3M+1

(
x2c3M+1
M − x2c3M+1

E

)

+
κ4M

c3M+2

(
xc3M+2
M − xc3M+2

E

)]
dϕdν, (6.20)

where Θ, xE , xM and s44M, ciM (i = 1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and ζ M, κiM (i = 1,2,4; see Equation (6.12)) have the
forms

ζ M = c1M − c2M − [c3M (c1M+ c2M)−2c2M]

(
xE

xM

)c3M−1

,

κ1M =
3(c1M − c2M)

2

(
p2n

ζ M

)2

+
1

s44M

{[
∂

∂ϕ

(
p2n

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n

ζ M

)]2
}

,

κ2M =

[
(c1M+ c2M)c2

3M

2
+ c1M −2c2M c3M

](
p2n

ζ M xc3M−1
M

)2
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+
1

s44M

⎧⎨
⎩
[

∂
∂ϕ

(
p2n

ζ M xc3M−1
M

)]2

+Θ2

[
∂

∂ν

(
p2n

ζ M xc3M−1
M

)]2
⎫⎬
⎭ ,

κ4M =
(c2M − c1M)(2+ c3M)

xc3M−1
M

(
p2n

ζ M

)2

−
2

s44M

[
∂

∂ϕ

(
p2n

ζ M

)
∂

∂ϕ

(
p2n

ζ M xc3M−1
M

)
+Θ2 ∂

∂ν

(
p2n

ζ M

)
∂

∂ν

(
p2n

ζ M xc3M−1
M

)]
.

(6.21)

The normal stress p2n is given by Equation (2.26), where ρIN and ρi jE (i, j = 1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum Wc (see Equation (2.23)).
With regard to

(
εϕM
)
xn=xE

= −p2n ρM and Equation (6.14), the coefficient ρM in
Equation (2.26) is derived as

ρM =
1

ζ M

[
1−

(
xE

xM

)c3M−1
]

. (6.22)

Conditions C1M �= 0, C3M �= 0, C2M = 0. With regard to Equations (2.29), (2.30),
(6.5)–(6.11), (2.21), (2.22), (2.23), we get

εnM =−
p2n

ζ M

[
1− c3M

(
xM

xn

)3
]

, (6.23)

εϕM = εθM =−
p2n

ζ M

[
1−

(
xM

xn

)3
]

, (6.24)

εnϕM = s44M σnϕM =−

[
∂

∂ϕ

(
p2n

ζ M

)
−

1
x3
n

∂
∂ϕ

(
p2n x3

M

ζ M

)]
, (6.25)

εnθM = s44M σnθM =−Θ
[

∂
∂ν

(
p2n

ζ M

)
−

1
x3
n

∂
∂ν

(
p2n x3

M

ζ M

)]
, (6.26)

σnM =−
p2n

ζ M

[
c1M − c2M+2(c1M+2c2M)

(
xM

xn

)3
]

, (6.27)

σϕM = σθM =−
p2n

ζ M

[
c1M − c2M − (c1M+2c2M)

(
xM

xn

)3
]

, (6.28)
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wM = κ1M+
κ3M

x6
n
+

κ5M

x3
n

, (6.29)

WM = 4

π/2∫
0

π/2∫
0

[
κ1M

3

(
x3
M − x3

E

)
+

κ3M

3

(
1

x3
E

−
1

x3
M

)
+κ5M ln

(
xM

xE

)]
dϕdν,

(6.30)

where Θ, xE , xM and s44M, ciM (i = 1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and ζ M, κiM (i = 3,5; see Equation (6.12)) have the forms

ζ M = c1M − c2M+2(c1M+2c2M)

(
xM

xE

)3

,

κ3M = 3(c1M+2c2M)

(
p2n x3

M

ζ M

)2

+
1

s44M

[
∂

∂ϕ

(
p2n x3

M

ζ M

)]2

+
Θ2

s44M

[
∂

∂ν

(
p2n x3

M

ζ M

)]2

,

κ5M =−
2

s44M

[
∂

∂ϕ

(
p2n

ζ M

)
∂

∂ϕ

(
p2n x3

M

ζ M

)
+Θ2 ∂

∂ν

(
p2n

ζ M

)
∂

∂ν

(
p2n x3

M

ζ M

)]
. (6.31)

The coefficient κ1M is given by Equation (6.21), where ζ M in Equation (6.21) is
given by Equation (6.31). The normal stress p2n is given by Equation (2.26), where
ρIN and ρi jE (i, j = 1,2) in Equation (2.26) are given by Equations (6.89) and (6.62),
(6.72), (6.82), (7.83), (7.93), (7.103), respectively, with respect to minimum Wc (see
Equation (2.23)). With regard to

(
εϕM
)
xn=xE

= −p2n ρM and Equation (6.24), the
coefficient ρM in Equation (2.26) is derived as

ρM =
1

ζ M

[
1−

(
xM

xE

)−3
]

. (6.32)

Conditions C2M �= 0, C3M �= 0, C1M = 0. With regard to Equations (2.29), (2.30),
(6.5)–(6.11), (2.21), (2.22), (2.23), we get

εnM =−
p2n

ζ M

[
c3M

(
xn

xM

)c3M−1

−2

(
xM

xn

)3
]

, (6.33)

εϕM = εθM =−
p2n

ζ M

[(
xn

xM

)c3M−1

−

(
xM

xn

)3
]

, (6.34)
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εnϕM = s44M σnϕM =−

[
∂

∂ϕ

(
p2n

ζ M xc3M−1
M

)
xc3M−1
n −

1
x3
n

∂
∂ϕ

(
p2n x3

M

ζ M

)]
, (6.35)

εnθM = s44M σnθM =−Θ

[
∂

∂ν

(
p2n

ζ M xc3M−1
M

)
xc3M−1
n −

1
x3
n

∂
∂ν

(
p2n x3

M

ζ M

)]
, (6.36)

σnM =−
p2n

ζ M

{
[c3M (c1M+ c2M)−2c2M]

(
xn

xM

)c3M−1

−2(c1M+2c2M)

(
xM

xn

)3
}

,

(6.37)

σϕM = σθM =−
p2n

ζ M

[
(c1M − c2Mc3M)

(
xn

xM

)c3M−1

+(c1M+2c2M)

(
xM

xn

)3
]

,

(6.38)

wM = κ2M x2(c3M−1)
n +

κ3M

x6
n
+κ6M xc3M−4

n , (6.39)

WM = 4

π/2∫
0

π/2∫
0

[
κ2M

2c3M+1

(
x2c3M+1
M − x2c3M+1

E

)
+

κ3M

3

(
1

x3
E

−
1

x3
M

)

+
κ6M

c3M −1

(
xc3M−1
M − xc3M−1

E

)]
dϕdν, (6.40)

where Θ, xE , xM and s44M, ciM (i = 1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and ζ M, κ6M (see Equation (6.12)) have the forms

ζ M =

{
[c3M (c1M+ c2M)−2c2M]

(
xE

xM

)c3M+2

+2(c1M+2c2M)

}(
xM

xE

)3

,

κ6M =−
x3
M [2c2M (1− c3M)− c1M]

xc3M−1
M

(
p2n

ζ M

)2

−
2

s44M

∂
∂ϕ

(
p2n

ζ M xc3M−1
M

)
∂

∂ϕ

(
p2n x3

M

ζ M

)

−
2Θ2

s44M

∂
∂ν

(
p2n

ζ M xc3M−1
M

)
∂

∂ν

(
p2n x3

M

ζ M

)
. (6.41)
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The coefficients κ2M, κ3M are given by Equations (6.21), (6.31), respectively,
where ζ M in Equations (6.21), (6.31) is given by Equation (6.41). The normal stress
p2n is given by Equation (2.26), where ρIN and ρi jE (i, j = 1,2) in Equation (2.26)
are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83), (7.93), (7.103),
respectively, with respect to minimum Wc (see Equation (2.23)). With regard to(
εϕM
)
xn=xE

=−p2n ρM and Equation (6.34), the coefficient ρM in Equation (2.26) is
derived as

ρM =
1

ζ M

[(
xE

xM

)c3M−1

−

(
xM

xE

)3
]

. (6.42)

Conditions C1M �= 0, C2M �= 0, C3M �= 0. With regard to Equations (2.29)–(2.32),
(6.5)–(6.11), (2.21), (2.22), (2.23), we get

εnM =−
p2n

ζ M

{
1−

1
c3M+2

[
3c3M

(
xn

xM

)c3M−1

−2(c3M −1)

(
xM

xn

)3
]}

, (6.43)

εϕM = εθM =−
p2n

ζ M

{
1−

1
c3M+2

[
3

(
xn

xM

)c3M−1

+(c3M −1)

(
xM

xn

)3
]}

,

(6.44)

εnϕM = s44M σnϕM =−

{
∂

∂ϕ

(
p2n

ζ M

)

−
1

c3M+2

[
3

∂
∂ϕ

(
p2n

ζ M xc3M−1
M

)
xc3M−1
n +

c3M −1
x3
n

∂
∂ϕ

(
p2n x3

M

ζ M

)]}
,

(6.45)

εnθM = s44M σnθM =−Θ
{

∂
∂ν

(
p2n

ζ M

)

−
1

c3M+2

[
3

∂
∂ν

(
p2n

ζ M xc3M−1
M

)
xc3M−1
n +

c3M −1
x3
n

∂
∂ν

(
p2n x3

M

ζ M

)]}
,

(6.46)

σnM =−
p2n

ζ M

{
c1M − c2M −

3
c3M+2

[c3M (c1M+ c2M)−2c2M]

(
xn

xM

)c3M−1

+
2(c1M+2c2M)

c3M+2

(
xM

xn

)3
}

, (6.47)
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σϕM = σθM =−
p2n

ζ M

{
c1M − c2M −

3(c1M − c2Mc3M)

c3M+2

(
xn

xM

)c3M−1

−
c1M+2c2M

c3M+2

(
xM

xn

)3
}

, (6.48)

wM = κ1M+κ2M x2(c3M−1)
n +

κ3M

x6
n
+κ4M xc3M−1

n +
κ5M

x3
n
+κ6M xc3M−4

n , (6.49)

WM = 4

π/2∫
0

π/2∫
0

[
κ1M

3

(
x3
M − x3

E

)
+

κ2M

2c3M+1

(
x2c3M+1
M − x2c3M+1

E

)

+
κ3M

3

(
1

x3
E

−
1

x3
M

)
+

κ4M

c3M+2

(
xc3M+2
M − xc3M+2

E

)

+ κ5M ln

(
xM

xE

)
+

κ6M

c3M −1

(
xc3M−1
M − xc3M−1

E

)]
dϕdν, (6.50)

where Θ, xE , xM and s44M, ciM (i = 1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and ζ M, κiM (i = 2 . . . , 6; see Equation (6.12)) have the
forms

ζ M = c1M − c2M+
1

c3M+2

(
xM

xE

)3
{

2(c3M −1)(c1M+2cMm)

−3 [c3M (c1M+ c2M)−2c2M]

(
xE

xM

)c3M+2
}

,

κ2M =

(
3

c3M+2

)2
⎛
⎝[(c1M+ c2M)c2

3M

2
+ c1M −2c2M c3M

](
p2n

ζ M xc3M−1
M

)2

+
1

s44M

⎧⎨
⎩
[

∂
∂ϕ

(
p2n

ζ M xc3M−1
M

)]2

+Θ2

[
∂

∂ν

(
p2n

ζ M xc3M−1
M

)]2
⎫⎬
⎭
⎞
⎠ ,

κ3M =

(
c3M −1
c3M+2

)2
(

3(c1M+2c2M)

(
p2n x3

M

ζ M

)2

+
1

s44M

{[
∂

∂ϕ

(
p2n x3

M

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n x3

M

ζ M

)]2
})

,
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κ4M =
3(c2M − c1M)

xc3M−1
M

(
p2n

ζ M

)2

−
6

s44M (c3M+2)

×

[
∂

∂ϕ

(
p2n

ζ M

)
∂

∂ϕ

(
p2n

ζ M xc3M−1
M

)
+Θ2 ∂

∂ν

(
p2n

ζ M

)
∂

∂ν

(
p2n

ζ M xc3M−1
M

)]
,

κ5M =
2(1− c3M)

s44M (c3M+2)

[
∂

∂ϕ

(
p2n

ζ M

)
∂

∂ϕ

(
p2n x3

M

ζ M

)
+Θ2 ∂

∂ν

(
p2n

ζ M

)
∂

∂ν

(
p2n x3

M

ζ M

)]
,

κ6M =
3(c3M −1) [2c2M (1− c3M)− c1M]

xc3M−4
M

[
p2n

ζ M (c3M+2)

]2

+
6(c3M −1)

s44M (c3M+2)2
∂

∂ϕ

(
p2n

ζ M xc3M−1
M

)
∂

∂ϕ

(
p2n x3

M

ζ M

)

+
6Θ2 (c3M −1)

s44M (c3M+2)2
∂

∂ν

(
p2n

ζ M xc3M−1
M

)
∂

∂ν

(
p2n x3

M

ζ M

)
. (6.51)

The coefficient κ1M is given by Equation (6.21), where ζ M in Equation (6.21) is
given by Equation (6.51). The normal stress p2n is given by Equation (2.26), where
ρIN and ρi jE (i, j = 1,2) in Equation (2.26) are given by Equations (6.89) and (6.62),
(6.72), (6.82), (7.83), (7.93), (7.103), respectively, with respect to minimum Wc (see
Equation (2.23)). With regard to

(
εϕM
)
xn=xE

= −p2n ρM and Equation (6.44), the
coefficient ρM in Equation (2.26) is derived as

ρM =
1

ζ M

{
1−

1
c3M+2

[
3

(
xE

xM

)c3M−1

+(c3M −1)

(
xM

xE

)3
]}

. (6.52)

6.2.2 Envelope

The integration constants C1E , C2E , C3E for the envelope (see Equation (6.4)) are de-
termined by the boundary conditions (2.33), (2.34). The boundary conditions result
in the following combinations of C1E , C2E , C3E , i.e., C1E �= 0, C2E �= 0, C3E = 0;
C1E �= 0, C3E �= 0, C2E = 0; C2E �= 0, C3E �= 0, C1E = 0. Finally, such a combina-
tion is considered to exhibit a minimum value of the elastic energy WC of the cubic
cell (see Equation (2.23)).

Conditions C1E �= 0, C2E �= 0, C3E = 0. With regard to Equations (2.33), (2.34),
(6.4)–(6.11), (2.22), (2.23), we get
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εnE =−

[
p1n

ζ1E
−

p2n

ζ2E
+

c3E (p1n− p2n)

ζ3E
xc3E−1
n

]
, (6.53)

εϕE = εθE =−

[
p1n

ζ1E
−

p2n

ζ2E
+

p1n− p2n

ζ3E
xc3E−1
n

]
, (6.54)

εnϕE = s44E σnϕE =−

[
∂

∂ϕ

(
p1n

ζ1E
−

p2n

ζ2E

)
+ xc3E−1

n
∂

∂ϕ

(
p1n− p2n

ζ3E

)]
, (6.55)

εnθE = s44E σnθE =− Θ
[

∂
∂ν

(
p1n

ζ1E
−

p2n

ζ2E

)
+ xc3E−1

n
∂

∂ν

(
p1n− p2n

ζ3E

)]
, (6.56)

σnE =−

{(
p1n

ζ1E
−

p2n

ζ2E

)
(c1E − c2E)

+
(p1n− p2n) [(c1E+ c2E)c3E −2c2E ]

ζ3E
xc3E−1
n

}
, (6.57)

σϕE = σθE = (c1E − c2E)

(
p1n

ζ1E
−

p2n

ζ2E

)
+
(c1E − c2E c3E)(p1n− p2n)

ζ3E
xc3E−1
n ,

(6.58)

wE = κ1E+κ2E x2(c3E−1)
n +κ4E xc3E−1

n , (6.59)

WE = 4

π/2∫
0

π/2∫
0

[
κ1E

3

(
x3
E − x3

IN

)
+

κ2E

2c3E+1

(
x2c3E+1
E − x2c3C+1

IN

)

+
κ3E

c3e+2

(
xc3e+2
e − xc3E+2

IN

)]
dϕdν, (6.60)

where Θ, xIN , xE and s44E , ciE (i = 1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and ζ iE (i = 1,2,3), κ jE ( j = 1,2,4; see Equation (6.12))
have the forms

ζ1E = (c1E − c2E)

[
1−

(
xIN

xE

)c3E−1
]

,

ζ2E = (c1E − c2E)

[(
xE

xIN

)c3E−1

−1

]
,
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ζ3E = [c3E (c1E+ c2E)−2c2E ]
(
xc3E−1
IN − xc3E−1

E

)
,

κ1E =
3(c1E − c2E)

2

(
p1n

ζ1E
−

p2n

ζ2E

)2

+
1

s44E

{[
∂

∂ϕ

(
p1n

ζ1E
−

p2n

ζ2E

)]2

+Θ2
[

∂
∂ν

(
p1n

ζ1E
−

p2n

ζ2E

)]2
}

,

κ2E =

[
(c1E+ c2E)c2

3E

2
+ c1E −2c2E c3E

](
p1n− p2n

ζ3E

)2

+
1

s44E

{[
∂

∂ϕ

(
p1n− p2n

ζ3E

)]2

+Θ2
[

∂
∂ν

(
p1n− p2n

ζ3E

)]2
}

,

κ4E = (c1E − c2E)(2+ c3E)

(
p1n

ζ1E
−

p2n

ζ2E

)(
p1n− p2n

ζ3E

)

+
2

s44E

∂
∂ϕ

(
p1n

ζ1E
−

p2n

ζ2E

)
∂

∂ϕ

(
p1n− p2n

ζ3E

)

+
2Θ2

s44E

∂
∂ν

(
p1n

ζ1E
−

p2n

ζ2E

)
∂

∂ν

(
p1n− p2n

ζ3E

)
, (6.61)

The normal stresses p1n, p2n are given by Equations (2.25), (2.26), where ρIN

and ρM in Equations (2.25), (2.26) are given by Equation (6.89) and (6.22), (6.32),
(6.42), (6.52), respectively. With regard to

(
εϕE
)
xn=xIN

= −(p1n ρ11E+ p2n ρ12E),(
εϕE
)
xn=xE

=−(p1n ρ21E+ p2n ρ22E) and Equation (6.54), the coefficient ρi jE (i, j =
1,2) in Equations (2.25), (2.26) is derived as

ρ1iE = (δ1i−δ2i)

(
1

ζ iE
+

xc3E−1
IN

ζ3E

)
, ρ2iE = (δ1i−δ2i)

(
1

ζiE
+

xc3E−1
E

ζ3E

)
,

i= 1,2, (6.62)

where δi j represents Kronecker’s delta [24], i.e., δi j = 0 or δi j = 1 for i �= j or i= j,
respectively.

Conditions C1E �= 0, C3E �= 0, C2E = 0. With regard to Equations (2.33), (2.34),
(6.4)–(6.11), (2.22), (2.23), we get

εnE =−

(
p1n

ζ1E
−

p2n

ζ2E
−

2(p1n− p2n)

ζ3E x3
n

)
, (6.63)

εϕE = εθE =−

(
p1n

ζ1E
−

p2n

ζ2E
+

p1n− p2n

ζ3E x3
n

)
, (6.64)
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εnϕE = s44E σnϕE =−

[
∂

∂ϕ

(
p1n

ζ1E
−

p2n

ζ2E

)
+

1
x3
n

∂
∂ϕ

(
p1n− p2n

ζ3E

)]
, (6.65)

εnθE = s44E σnθE =− Θ
[

∂
∂ν

(
p1n

ζ1E
−

p2n

ζ2E

)
+

1
x3
n

∂
∂ν

(
p1n− p2n

ζ3E

)]
, (6.66)

σnE =−

[
(c1E − c2E)

(
p1n

ζ1E
−

p2n

ζ2E

)
−

2(c1E+2c2E)(p1n− p2n)

ζ3E x3
n

]
, (6.67)

σϕE = σθE =

[
(c1E − c2E)

(
p1n

ζ1E
−

p2n

ζ2E

)
+
(c1E+2c2E)(p1n− p2n)

ζ3E x3
n

]
, (6.68)

wE = κ1E+
κ3E

x6
n
+

κ5E

x3
n

, (6.69)

WE = 4

π/2∫
0

π/2∫
0

[
κ1E

3

(
x3
E − x3

IN

)
+

κ3E

3

(
1

x3
IN

−
1

x3
E

)
+κ5E ln

(
xE

xIN

)]
dϕdν, (6.70)

where Θ, xIN , xE and s44E , ciE (i = 1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and ζ iE , κiE (i = 3,5; see Equation (6.12)) have the forms

ζ1E = (c1E − c2E)

[
1−

(
xE

xIN

)3
]

,

ζ2E = (c1E − c2E)

[(
xIN

xE

)3

−1

]
,

ζ3E = 2(c1E+2c2E)

(
1

x3
IN

−
1

x3
E

)
,

κ3E = 3(c1E+2c2E)

(
p1n− p2n

ζ3E

)2

+
1

s44E

{[
∂

∂ϕ

(
p1n− p2n

ζ3E

)]2

+Θ2
[

∂
∂ν

(
p1n− p2n

ζ3E

)]2
}

,

κ5E =
2

s44E

∂
∂ϕ

(
p1n

ζ1E
−

p2n

ζ2E

)
∂

∂ϕ

(
p1n− p2n

ζ3E

)

+
2Θ2

s44E

∂
∂ν

(
p1n

ζ1E
−

p2n

ζ2E

)
∂

∂ν

(
p1n− p2n

ζ3E

)
. (6.71)
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The coefficient κ1E is given by Equation (6.61), where ζ M in Equation (6.61) is
given by Equation (6.71). The normal stresses p1n, p2n are given by Equations (2.25),
(2.26), where ρIN and ρM in Equations (2.25), (2.26) are given by Equation (6.89)
and (6.22), (6.32), (6.42), (6.52), respectively. With regard to

(
εϕE
)
xn=xIN

=

−(p1n ρ11E+ p2n ρ12E),
(
εϕE
)
xn=xE

=−(p1n ρ21E+ p2n ρ22E) and Equation (6.64),
the coefficient ρi jE (i, j = 1,2) in Equations (2.25), (2.26) is derived as

ρ1iE = (δ1i−δ2i)

(
1

ζ iE
+

1

ζ3E x3
IN

)
, ρ2iE = (δ1i−δ2i)

(
1

ζiE
+

1

ζ3E x3
E

)
,

i= 1,2, (6.72)

where δi j represents Kronecker’s delta [24], i.e., δi j = 0 or δi j = 1 for i �= j or i= j,
respectively.

Conditions C1E �= 0, C3E �= 0, C2E = 0. With regard to Equations (2.33), (2.34),
(6.4)–(6.11), (2.22), (2.23), we get

εn =C2 c3E xc3E−1
n −

2C3

x3
n

, (6.73)

εϕ = εθ =C2 xc3E−1
n +

C3

x3
n
, (6.74)

εnϕ = s44E σnϕ = xc3E−1
n

∂C2

∂ϕ
+

1
x3
n

∂C3

∂ϕ
, (6.75)

εnθ = s44E σnθ =Θ
[
xc3E−1
n

∂C2

∂ν
+

1
x3
n

∂C3

∂ν

]
, (6.76)

σn =C2 [(c1E+ c2E)c3E −2c2E ]x
c3E−1
n −

2C3 (c1E+2c2E)

x3
n

, (6.77)

σϕ = σθ =C2 (c1E − c2E c3E)x
c3E−1
n +

C3 (c1E+2c2E)

x3
n

, (6.78)

wE = κ2E x2(c3E−1)
n +

κ3E

x6
n
+κ6E xc3E−4

n , (6.79)

WE = 4

π/2∫
0

π/2∫
0

[
κ2E

2c3E+1

(
x2c3E+1
E − x2c3C+1

IN

)
+

κ3E

3

(
1

x3
IN

−
1

x3
E

)

+
κ6E

c3E −1

(
xc3E−1
E − xc3C−1

IN

)]
dϕdν, (6.80)
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where Θ, xIN , xE and s44E , ciE (i = 1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and ζ iE (i = 1, . . . , 4), κ jM ( j = 2,3,6; see Equation (6.12))
have the forms

ζ1E = xc3E−1
IN [c3E (c1E+ c2E)−2c2E ]

[
1−

(
xE

xIN

)c3E+2
]

,

ζ2E = xc3E−1
E [c3E (c1E+ c2E)−2c2E ]

[(
xIN

xE

)c3E+2

−1

]
,

ζ3E =
2(c1E+2c2E)

x3
IN

[(
xIN

xE

)c3E+2

−1

]
,

ζ3E =
2(c1E+2c2E)

x3
E

[
1−

(
xE

xIN

)c3E+2
]

,

κ2E =

[
(c1E+ c2E)c2

3E

2
+ c1E −2c2E c3E

](
p1n

ζ1E
−

p2n

ζ2E

)2

+
1

s44E

{[
∂

∂ϕ

(
p1n

ζ1E
−

p2n

ζ2E

)]2

+Θ2
[

∂
∂ν

(
p1n

ζ1E
−

p2n

ζ2E

)]2
}

,

κ3E = 3(c1E+2c2E)

(
p1n

ζ1E
−

p2n

ζ2E

)2

+
1

s44E

{[
∂

∂ϕ

(
p1n

ζ3E
−

p2n

ζ4E

)]2

+Θ2
[

∂
∂ν

(
p1n

ζ3E
−

p2n

ζ4E

)]2
}

,

κ6E = [2c2E (1− c3E)− c1E ]

(
p1n

ζ1E
−

p2n

ζ2E

)(
p1n

ζ3E
−

p2n

ζ4E

)

+
2

s44E

∂
∂ϕ

(
p1n

ζ1E
−

p2n

ζ2E

)
∂

∂ϕ

(
p1n

ζ3E
−

p2n

ζ4E

)

+
2Θ2

s44E

∂
∂ν

(
p1n

ζ1E
−

p2n

ζ2E

)
∂

∂ν

(
p1n

ζ3E
−

p2n

ζ4E

)
. (6.81)

The normal stresses p1n, p2n are given by Equations (2.25), (2.26), where ρIN

and ρM in Equations (2.25), (2.26) are given by Equation (6.89) and (6.22), (6.32),
(6.42), (6.52), respectively. With regard to

(
εϕE
)
xn=xIN

= −(p1n ρ11E+ p2n ρ12E),(
εϕE
)
xn=xE

=−(p1n ρ21E+ p2n ρ22E) and Equation (6.74), the coefficient ρi jE (i, j =
1,2) in Equations (2.25), (2.26) is derived as
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ρ1iE = (δ1i−δ2i)

(
xc3E−1
IN

ζiE
+

1

ζ3E x3
IN

)
, ρ2iE = (δ1i−δ2i)

(
xc3E−1
E

ζiE
+

1

ζ3E x3
E

)
,

i= 1,2, (6.82)

where δi j represents Kronecker’s delta [24], i.e., δi j = 0 or δi j = 1 for i �= j or i= j,
respectively.

6.2.3 Inclusion

In case of the ellipsoidal inclusion, we get C2IN = C3IN = 0, otherwise we get
(unIN)xn→0 −→ ± ∞, (εIN)xn−→0 −→ ± ∞, (σIN)r→0 −→ ±∞ due to c3 < 0 (see
Equations (2.18), (6.4)–(6.10)). With regard to Equations (2.35), (2.36), (6.4)–
(6.11), (2.21), (2.22), (2.23), we get [2]–[23]

εnIN = εϕIN = εθIN =−p1n ρIN, (6.83)

εnϕIN = s44IN σnϕIN =−ρIN
∂p1n

∂ϕ
, (6.84)

εnθIN = s44IN σnθIN =−Θ ρIN
∂p1n

∂ν
, (6.85)

σnIN = σϕIN = σθIN =−p1n, (6.86)

wIN =
ρ2

IN

2

{
3p2

1n

2ρIN
+

2
s44IN

[(
∂p1n

∂ϕ

)2

+

(
∂p1n

∂ν

)2
]}

, (6.87)

WIN =
4ρ2

IN

3

π/2∫
0

π/2∫
0

x3
IN

{
3p2

1n

2ρIN
+

2
s44IN

[(
∂p1n

∂ϕ

)2

+

(
∂p1n

∂ν

)2
]}

dϕdν, (6.88)

where Θ, s44IN are given by Equations (1.21), (2.13), respectively. The normal stress
p1n is given by Equation (2.25). With regard to

(
εϕIN

)
xn=xIN

= −p1n ρIN and Equa-
tion (6.83), the coefficient ρIN in Equation (2.26) is derived as

ρIN =
1−2μIN

EIN
. (6.89)
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6.3 Condition βIN �= βE = βM

If βIN �= βE = βM, then the thermal strains and stresses in the ellipsoidal inclusion are
determined in Section 6.2.3. The normal stress p1n in Section 6.2.3 is given by Equa-
tion (2.27), where ρIN and ρ1ME in Equation (2.27) are given by Equations (6.89) and
(6.135), respectively.

6.3.1 Matrix

The integration constants C1M, C2M, C3M for the matrix (see Equation (5.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)–(2.32). The boundary
conditions result in the following combinations of C1M, C2M, C3M, i.e., C1M �= 0,
C2M �= 0, C3M = 0; C1M �= 0, C3M �= 0, C2M = 0; C2M �= 0, C3M �= 0, C1M = 0;
C1M �= 0, C2M �= 0, C3M �= 0. Finally, such a combination is considered to exhibit a
minimum value of the elastic energy WC of the cubic cell (see Equation (2.23)).

Conditions C1M �= 0, C2M �= 0, C3M = 0. With regard to Equations (2.30), (2.31),
(6.4)–(6.11), (2.22), (2.23), we get

εnM =−
p1n ρ2ME

ζ M

[
1− c3M

(
xn

xM

)c3M−1
]

, (6.90)

εϕM = εθM =−
p1n ρ2ME

ζ M

[
1−

(
xn

xM

)c3M−1
]

, (6.91)

εnϕM = s44M σnϕM =−

[
∂

∂ϕ

(
p1n ρ2ME

ζ M

)
− xc3M−1

n
∂

∂ϕ

(
p1n ρ2ME

ζ M xc3M−1
M

)]
, (6.92)

εnθM = s44M σnθM =−Θ

[
∂

∂ν

(
p1n ρ2ME

ζ M

)
− xc3M−1

n
∂

∂ν

(
p1n ρ2ME

ζ M xc3M−1
M

)]
, (6.93)

σnM =−
p1n ρ2ME

ζ M

{
c1M − c2M − [c3M (c1M+ c2M)−2c2M]

(
xn

xM

)c3M−1
}

,

(6.94)

σϕM = σθM =−
p1n ρ2ME

ζ M

[
c1M − c2M − (c1M − c2Mc3M)

(
xn

xM

)c3M−1
]

, (6.95)
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wM =
1
2

(
κ1M+κ2M x2(c3M−1)

n +κ4M xc3M−1
n

)
, (6.96)

WM = 4

π/2∫
0

π/2∫
0

[
κ1M

3

(
x3
M − x3

E

)
+

κ2M

2c3M+1

(
x2c3M+1
M − x2c3M+1

E

)

+
κ4M

c3M+2

(
xc3M+2
M − xc3M+2

E

)]
dϕdν, (6.97)

where Θ, xE , xM and s44M, ciM (i = 1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and ζ M, κiM (i = 1,2,4; see Equation (6.12)) have the
forms

ζ M = 1−

(
xE

xM

)c3M−1

,

κ1M =
3(c1M − c2M)

2

(
p1n ρ2ME

ζ M

)2

+
1

s44M

{[
∂

∂ϕ

(
p1n ρ2ME

ζ M

)]2

+Θ2
[

∂
∂ν

(
p1n ρ2ME

ζ M

)]2
}

,

κ2M =

[
(c1M+ c2M)c2

3M

2
+ c1M −2c2M c3M

](
p1n ρ2ME

ζ M xc3M−1
M

)2

+
1

s44M

⎧⎨
⎩
[

∂
∂ϕ

(
p1n ρ2ME

ζ M xc3M−1
M

)]2

+Θ2

[
∂

∂ν

(
p1n ρ2ME

ζ M xc3M−1
M

)]2
⎫⎬
⎭ ,

κ4M =
(c2M − c1M)(2+ c3M)

xc3M−1
M

(
p1n ρ2ME

ζ M

)2

−
2

s44M

∂
∂ϕ

(
p1n ρ2ME

ζ M

)
∂

∂ϕ

(
p1n ρ2ME

ζ M xc3M−1
M

)

−
2Θ2

s44M

∂
∂ν

(
p1n ρ2ME

ζ M

)
∂

∂ν

(
p1n ρ2ME

ζ M xc3M−1
M

)
. (6.98)

The normal stress p1n is given by Equation (2.27), where ρIN and ρ2ME in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum Wc (see Equation (2.23)).
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Conditions C1M �= 0, C3M �= 0, C2M = 0. With regard to Equations (2.30), (2.31),
(6.4)–(6.11), (2.22), (2.23), we get

εnM =−
p1n ρ2ME

ζ M

[
1− c3M

(
xM

xn

)3
]

, (6.99)

εϕM = εθM =−
p1n ρ2ME

ζ M

[
1−

(
xM

xn

)3
]

, (6.100)

εnϕM = s44M σnϕM =−

[
∂

∂ϕ

(
p1n ρ2ME

ζ M

)
−

1
x3
n

∂
∂ϕ

(
p1n ρ2ME x3

M

ζ M

)]
, (6.101)

εnθM = s44M σnθM =−Θ
[

∂
∂ν

(
p1n ρ2ME

ζ M

)
−

1
x3
n

∂
∂ν

(
p1n ρ2ME x3

M

ζ M

)]
, (6.102)

σnM =−
p1n ρ2ME

ζ M

[
c1M − c2M+2(c1M+2c2M)

(
xM

xn

)3
]

, (6.103)

σϕM = σθM =−
p1n ρ2ME

ζ M

[
c1M − c2M − (c1M+2c2M)

(
xM

xn

)3
]

, (6.104)

wM = κ1M+
κ3M

x6
n
+

κ5M

x3
n

, (6.105)

WM = 4

π/2∫
0

π/2∫
0

[
κ1M

3

(
x3
M − x3

E

)
+

κ3M

3

(
1

x3
E

−
1

x3
M

)
+κ5M ln

(
xM

xE

)]
dϕdν,

(6.106)

where Θ, xE , xM and s44M, ciM (i = 1,2,3) are given by Equations (1.21), (1.22) and
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(2.13), (2.18), respectively, and ζ M, κiM (i = 3,5; see Equation (6.12)) have the forms

ζ M = 1−

(
xM

xE

)3

,

κ3M = 3(c1M+2c2M)

(
p1n ρ2ME x3

M

ζ M

)2

+
1

s44M

{[
∂

∂ϕ

(
p1n ρ2ME x3

M

ζ M

)]2

+Θ2
[

∂
∂ν

(
p1n ρ2ME x3

M

ζ M

)]2
}

,

κ5M =−
2

s44M

∂
∂ϕ

(
p1n ρ2ME

ζ M

)
∂

∂ϕ

(
p1n ρ2ME x3

M

ζ M

)

−
2Θ2

s44M

∂
∂ν

(
p1n ρ2ME

ζ M

)
∂

∂ν

(
p1n ρ2ME x3

M

ζ M

)
. (6.107)

The coefficient κ1M is given by Equation (6.98), where ζ M in Equation (6.98) is
given by Equation (6.107). The normal stress p1n is given by Equation (2.27), where
ρIN and ρ2ME in Equation (2.27) are given by Equations (6.89) and (3.53), (4.130),
(6.135), respectively, with respect to minimum Wc (see Equation (2.23)).

Conditions C2M �= 0, C3M �= 0, C1M = 0. With regard to Equations (2.30), (2.31),
(6.4)–(6.11), (2.22), (2.23), we get

εnM =−
p1n ρ2ME

ζ M

[
c3M

(
xn

xM

)c3M−1

−2

(
xM

xn

)3
]

, (6.108)

εϕM = εθM =−
p1n ρ2ME

ζ M

[(
xn

xM

)c3M−1

−

(
xM

xn

)3
]

, (6.109)

εnϕM = s44M σnϕM =−

[
∂

∂ϕ

(
p1n ρ2ME

ζ M xc3M−1
M

)
xc3M−1
n −

1
x3
n

∂
∂ϕ

(
p1n ρ2ME x3

M

ζ M

)]
,

(6.110)

εnθM = s44M σnθM =−Θ

[
∂

∂ν

(
p1n ρ2ME

ζ M xc3M−1
M

)
xc3M−1
n −

1
x3
n

∂
∂ν

(
p1n ρ2ME x3

M

ζ M

)]
,

(6.111)
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σnM =−
p1n ρ2ME

ζ M

{
[c3M (c1M+ c2M)−2c2M]

(
xn

xM

)c3M−1

− 2(c1M+2c2M)

(
xM

xn

)3
}

, (6.112)

σϕM = σθM =−
p1n ρ2ME

ζ M

[
(c1M − c2Mc3M)

(
xn

xM

)c3M−1

+(c1M+2c2M)

(
xM

xn

)3
]

,

(6.113)

wM = κ2M x2(c3M−1)
n +

κ3M

x6
n
+κ6M xc3M−4

n , (6.114)

WM = 4

π/2∫
0

π/2∫
0

[
κ2M

2c3M+1

(
x2c3M+1
M − x2c3M+1

E

)
+

κ3M

3

(
1

x3
E

−
1

x3
M

)

+
κ6M

c3M −1

(
xc3M−1
M − xc3M−1

E

)]
dϕdν, (6.115)

where Θ, xE , xM and s44M, ciM (i = 1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and ζ M, κ6M (see Equation (6.12)) have the forms

ζ M =

(
xE

xM

)c3M−1

−

(
xM

xE

)3

,

κ6M =−
x3
M [2c2M (1− c3M)− c1M]

xc3M−1
M

(
p1n ρ2ME

ζ M

)2

−
2

s44M

∂
∂ϕ

(
p1n ρ2ME

ζ M xc3M−1
M

)
∂

∂ϕ

(
p1n ρ2ME x3

M

ζ M

)

−
2Θ2

s44M

∂
∂ν

(
p1n ρ2ME

ζ M xc3M−1
M

)
∂

∂ν

(
p1n ρ2ME x3

M

ζ M

)
. (6.116)

The coefficients κ2M, κ3M are given by Equations (6.21), (6.31), respectively,
where ζ M in Equations (6.21), (6.31) is given by Equation (6.116). The normal
stress p1n is given by Equation (2.27), where ρIN and ρ2ME in Equation (2.27) are
given by Equations (6.89) and (3.53), (4.130), (6.135), respectively, with respect to
minimum Wc (see Equation (2.23)).
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Conditions C1M �= 0, C2M �= 0, C3M �= 0. With regard to Equations (2.30), (2.31),
(6.4)–(6.11), (2.22), (2.23), we get

εnM =−
p1n ρ2ME

ζ M

{
1−

1
c3M+2

[
3c3M

(
xn

xM

)c3M−1

−2(c3M −1)

(
xM

xn

)3
]}

,

(6.117)

εϕM = εθM =−
p1n ρ2ME

ζ M

{
1−

1
c3M+2

[
3

(
xn

xM

)c3M−1

+(c3M −1)

(
xM

xn

)3
]}

,

(6.118)

εnϕM = s44M σnϕM =−

{
∂

∂ϕ

(
p1n ρ2ME

ζ M

)

−
1

c3M+2

[
3

∂
∂ϕ

(
p1n ρ2ME

ζ M xc3M−1
M

)
xc3M−1
n +

c3M −1
x3
n

∂
∂ϕ

(
p1n ρ2ME x3

M

ζ M

)]}
,

(6.119)

εnθM = s44M σnθM =−Θ
{

∂
∂ν

(
p1n ρ2ME

ζ M

)

−
1

c3M+2

[
3

∂
∂ν

(
p1n ρ2ME

ζ M xc3M−1
M

)
xc3M−1
n +

c3M −1
x3
n

∂
∂ν

(
p1n ρ2ME x3

M

ζ M

)]}
,

(6.120)

σnM =−
p1n ρ2ME

ζ M

{
c1M − c2M −

3
c3M+2

[c3M (c1M+ c2M)−2c2M]

(
xn

xM

)c3M−1

+
2(c1M+2c2M)

c3M+2

(
xM

xn

)3
}

, (6.121)

σϕM = σθM =−
p1n ρ2ME

ζ M

{
c1M − c2M −

3(c1M − c2Mc3M)

c3M+2

(
xn

xM

)c3M−1

−
c1M+2c2M

c3M+2

(
xM

xn

)3
}

, (6.122)
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wM = κ1M+κ2M x2(c3M−1)
n +

κ3M

x6
n
+κ4M xc3M−1

n +
κ5M

x3
n
+κ6M xc3M−4

n , (6.123)

WM = 4

π/2∫
0

π/2∫
0

[
κ1M

3

(
x3
M − x3

E

)
+

κ2M

2c3M+1

(
x2c3M+1
M − x2c3M+1

E

)

+
κ3M

3

(
1

x3
E

−
1

x3
M

)
+

κ4M

c3M+2

(
xc3M+2
M − xc3M+2

E

)

+ κ5M ln

(
xM

xE

)
+

κ6M

c3M −1

(
xc3M−1
M − xc3M−1

E

)]
dϕdν, (6.124)

where Θ, xE , xM and s44M, ciM (i = 1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and ζ M, κiM (i = 2 . . . , 6; see Equation (6.12)) have the
forms

ζ M = c1M − c2M+
1

c3M+2

(
xM

xE

)3
{

2(c3M −1)(c1M+2cMm)

−3 [c3M (c1M+ c2M)−2c2M]

(
xE

xM

)c3M+2
}

,

κ2M =

(
3

c3M+2

)2
⎛
⎝[(c1M+ c2M)c2

3M

2
+ c1M −2c2M c3M

](
p1n ρ2ME

ζ M xc3M−1
M

)2

+
1

s44M

⎧⎨
⎩
[

∂
∂ϕ

(
p1n ρ2ME

ζ M xc3M−1
M

)]2

+Θ2

[
∂

∂ν

(
p1n ρ2ME

ζ M xc3M−1
M

)]2
⎫⎬
⎭
⎞
⎠ ,

κ3M =

(
c3M −1
c3M+2

)2
(

3(c1M+2c2M)

(
p1n ρ2ME x3

M

ζ M

)2

+
1

s44M

{[
∂

∂ϕ

(
p1n ρ2ME x3

M

ζ M

)]2

+Θ2
[

∂
∂ν

(
p1n ρ2ME x3

M

ζ M

)]2
})

,

κ4M =
3(c2M − c1M)

xc3M−1
M

(
p1n ρ2ME

ζ M

)2

−
6

s44M (c3M+2)

[
∂

∂ϕ

(
p1n ρ2ME

ζ M

)
∂

∂ϕ

(
p1n ρ2ME

ζ M xc3M−1
M

)

+ Θ2 ∂
∂ν

(
p1n ρ2ME

ζ M

)
∂

∂ν

(
p1n ρ2ME

ζ M xc3M−1
M

)]
,
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κ5M =
2(1− c3M)

s44M (c3M+2)

[
∂

∂ϕ

(
p1n ρ2ME

ζ M

)
∂

∂ϕ

(
p1n ρ2ME x3

M

ζ M

)

+ Θ2 ∂
∂ν

(
p1n ρ2ME

ζ M

)
∂

∂ν

(
p1n ρ2ME x3

M

ζ M

)]
,

κ6M =
3(c3M −1) [2c2M (1− c3M)− c1M]

xc3M−4
M

[
p1n ρ2ME

ζ M (c3M+2)

]2

+
6(c3M −1)

s44M (c3M+2)2
∂

∂ϕ

(
p1n ρ2ME

ζ M xc3M−1
M

)
∂

∂ϕ

(
p1n ρ2ME x3

M

ζ M

)

+
6Θ2 (c3M −1)

s44M (c3M+2)2
∂

∂ν

(
p1n ρ2ME

ζ M xc3M−1
M

)
∂

∂ν

(
p1n ρ2ME x3

M

ζ M

)
. (6.125)

The coefficient κ1M is given by Equation (6.21), where ζ M in Equation (6.21) is
given by Equation (6.125). The normal stress p1n is given by Equation (2.27), where
ρIN and ρ2ME in Equation (2.27) are given by Equations (6.89) and (3.53), (4.130),
(6.135), respectively, with respect to minimum Wc (see Equation (2.23)).

6.3.2 Envelope

If βIN �= βE = βM, then |unE | = f (xn) represents a decreasing function of xn ∈
〈xIN,xE〉, and then the mathematical solutions, which are related to the integration
constants C2E , C3E (see Equation (6.4)), are considered, i.e., C1E = 0. With regard to
one boundary condition (see Equation (2.33)), the thermal stresses in the ellipsoidal
envelope are determined on the conditions C2E �= 0, C3E = 0; C3E �= 0, C2E = 0. If
C2E �= 0, C3E = 0, then the thermal strains and stresses in the ellipsoidal envelope
are determined in Section 4.3.2 (see Equations (4.4), (6.4)). The normal stress p1n

in Section 4.3.2 is given by Equation (2.27), where ρIN and ρ1ME in Equation (2.27)
are given by Equations (6.89) and (6.135), respectively.

Condition C3E �= 0, C2E = 0. With regard to Equations (2.33), (6.4)–(6.11), (2.22),
(2.23), we get

εnE =−
2p1n

ζE

(
xIN

xn

)3

, (6.126)

εϕE = εθE =
p1n

ζE

(
xIN

xn

)3

, (6.127)

εnϕE = s44E σnϕ =
1

ζE x3
n

∂
∂ϕ

(
p1n x3

IN

)
, (6.128)
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εnθE = s44E σnθ =
Θ

ζE x3
n

∂
∂ν

(
p1n x3

IN

)
, (6.129)

σnE =−p1n

(
xIN

xn

)3

, (6.130)

σϕE = σθE =
p1n

2

(
xIN

xn

)3

, (6.131)

wE =
κ3E

x6
n

, (6.132)

WE =
4
3

π/2∫
0

π/2∫
0

κ3E

(
1

x3
E

−
1

x3
M

)
dϕdν, (6.133)

where Θ, xE , xM and s44E , ciE (i = 1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and ζE , κ3E (see Equation (6.12)) have the forms

ζE = 2(c1E+2c2E) ,

κ3E =
1

ζ2
E

(
3(c1E+2c2E)

(
p1n x3

IN

)2

+
1

s44E

{[
∂

∂ϕ

(
p1n x3

IN

)]2

+Θ2
[

∂
∂ν

(
p1n x3

IN

)]2
})

. (6.134)

The normal stress p1n is given by Equation (2.27), where ρIN in Equation (2.27)
is given by Equation (6.89). With regard to

(
εϕE
)
xn=xIN

=−p1n ρ1ME ,
(
εϕE
)
xn=xE

=
−p1n ρ2ME (see Equation (6.127)), the coefficients ρ1ME , ρ2ME in Equations (2.27),
(2.31) are derived as

ρ1ME =−
1

ζE
, ρ2ME =−

1
ζE

(
xIN

xE

)3

, (6.135)

6.4 Condition βIN = βE �= βM

If βIN = βE �= βM, then the thermal strains and stresses in the cell matrix are de-
termined in Section 6.2.1. The radial stress p2n in Section 6.2.1 is given by Equa-
tions (2.28). The coefficients ρM and ρ2INE in Equations (2.26) are given by Equa-
tions (6.22), (6.32), (6.42), (6.52) and (6.143), respectively.
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6.4.1 Envelope

If βIN = βE �= βM, then |unE | = f (xn) represents an increasing function of xn ∈
〈xIN,xE〉, and then C1E �= 0, C2E = C3E = 0 (see Equation (6.4)). With regard to
Equations (2.34), (6.4)–(6.11), (2.22), (2.23), we get

εnE = εϕE = εθE =−
p2n

ζE
, (6.136)

εnϕE = s44E σnϕE =−
1

ζE

∂p2n

∂ϕ
, (6.137)

εnθE = s44E σnθE =−
Θ
ζE

∂p2n

∂ν
, (6.138)

σnE = σϕE = σθE =−p2n, (6.139)

wE =
1

ζ2
E

(
3(c1E − c2E) p2

2n

2
+

1
s44E

[(
∂p2n

∂ϕ

)2

+Θ2
(

∂p2n

∂ν

)2
])

, (6.140)

WE =
4
3

π/2∫
0

π/2∫
0

wE

(
x3
M − x3

E

)
dϕdν, (6.141)

where Θ, xE , xM and s44E , ciE (i = 1,2) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and ζE has the form

ζE = c1E − c2E . (6.142)

The normal stress p2n is given by Equation (2.28), where ρM in Equation (2.28) is
given by Equations (3.24), (4.24), (4.34), (4.44), (4.54), (5.23), (5.33), (5.43), (5.53),
(6.22), (6.32), (6.42), (6.52), (7.23), (7.33), (7.43), (7.53), (7.63), (7.73) with respect
to minimum Wc (see Equation (2.23)). With regard to

(
εϕE
)
xn=xIN

= −p2n ρ1INE ,(
εϕE
)
xn=xE

= −p2n ρ2INE (see Equation (5.121)), the coefficients ρ1INE , ρ2INE in
Equations (2.28), (2.37) are derived as

ρ1INE = ρ2INE =
1

ζE
. (6.143)

6.4.2 Inclusion

In case of the ellipsoidal inclusion, we get C2IN = C3IN = 0, otherwise we get
(unIN)xn→0 −→ ± ∞, (εIN)xn−→0 −→ ± ∞, (σIN)r→0 −→ ±∞ due to c3 < 0 (see
Equations (2.18), (6.4)–(6.10)). With regard to Equations (2.35), (2.37), (6.4)–
(6.11), (2.21), (2.22), (2.23), we get [2]–[23]
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εnIN = εϕIN = εθIN =−p2n ρ1INE , (6.144)

εnϕIN = s44IN σnϕIN =−
∂(p2n ρ1INE)

∂ϕ
, (6.145)

εnθIN = s44IN σnθIN =−Θ
∂(p2n ρ1INE)

∂ν
, (6.146)

σnIN = σϕIN = σθIN =−
p2n ρ1INE

ρIN
, (6.147)

wIN =
3(p2n ρ1INE)

2

ρIN
+

2
s44IN

[(
∂(p2n ρ1INE)

∂ϕ

)2

+Θ
(

∂(p2n ρ1INE)

∂ν

)2
]

,

(6.148)

WIN =
4
3

π/2∫
0

π/2∫
0

wIN x3
IN dϕdν, (6.149)

where Θ, xIN , s44IN , ρIN , ρ1INE are given by Equations (1.21), (1.22), (2.13), (6.89),
(6.143). The normal stress p2n is given by Equation (2.28). The coefficients ρM and
ρ2INE in Equation (2.28) are given by Equations (3.24), (4.24), (4.34), (4.44), (4.54),
(5.23), (5.33), (5.43), (5.53), (6.22), (6.32), (6.42), (6.52), (7.23), (7.33), (7.43),
(7.53), (7.63), (7.73) and (3.63), (4.140), (5.129), (5.139) (6.143), respectively, with
respect to minimum Wc (see Equation (2.23)).
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Chapter 7

Mathematical Model 5

7.1 Mathematical Procedure

Let the mathematical procedures ∂Eq.(2.20)/∂r, Eq.(6.2)/r be performed, and then
we get

xn
∂2Un

∂x2
n
+(1− c3)

∂Un

∂xn
= 0, (7.1)

∂Un

∂xn
=−s44 (c1+ c2)

(
x2
n

∂3un

∂x3
n
+4xn

∂2un

∂x2
n

)
, (7.2)

where s44 and c1, c2, c3 < 0 are given by Equations (2.13) and (2.18), respectively.
Let the mathematical procedure ∂Eq.(7.2)/∂r be performed, and then we get

∂2Un

∂x2
n
=−s44 (c1+ c2)

(
x2
n

∂4un

∂x4
n
+6xn

∂3un

∂x3
n
+4

∂2un

∂x2
n

)
. (7.3)

Let Equations (6.2), (6.3) be substituted to (7.1), and then we get

x2
n

∂4un

∂x4
n
+(7− c3)xn

∂3un

∂x3
n
+4(2− c3)

∂2un

∂x2
n
= 0. (7.4)

Let un be assumed in the form un = xλ
n, then we get

un =C1 xn+C2 xc3
n +

C3

x2
n
+C4, (7.5)

where C1 . . . ,C4 are integration constants, which are determined by the boundary
conditions in Section 2.4. With regard to Equations (2.1)–(2.4), (2.14)–(2.17), (2.22),
(7.6), we get

εn =C1+C2 c3 xc3−1
n −

2C3

x3
n

, (7.6)

εϕ = εθ =C1+C2 xc3−1
n +

C3

x3
n
+

C4

xn
, (7.7)

εnϕ = s44 σnϕ =
∂C1

∂ϕ
+ xc3−1

n
∂C2

∂ϕ
+

1
x3
n

∂C3

∂ϕ
+

1
xn

∂C4

∂ϕ
, (7.8)
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εnθ = s44 σnθ =Θ
[

∂C1

∂ν
+ xc3−1

n
∂C2

∂ν
+

1
x3
n

∂C3

∂ν
+

1
xn

∂C4

∂ν

]
, (7.9)

σn =C1 (c1 − c2)+C2 [(c1+ c2)c3 −2c2]x
c3−1
n −

2C3 (c1+2c2)

x3
n

−
2c2C4

xn
, (7.10)

σϕ = σθ =C1 (c1 − c2)+C2 (c1 − c2 c3)x
c3−1
n +

C3 (c1+2c2)

x3
n

+
c1C4

xn
, (7.11)

w= κ1+κ2 x2(c3−1)
n +

κ3

x6
n
+

κ4

x2
n
+(κ5+κ9)x

c3−1
n +

κ6

x3
n
+κ7 xc3−4

n +
κ8

xn
+

κ10

x4
n

,

(7.12)

where Θ, s44 are given by Equations (1.21), (2.13), respectively, and κi (i = 4,5,6) is
derived as

κ4 = c1C2
4+

1
s44

[(
∂C4

∂ϕ

)2

+Θ2
(

∂C4

∂ν

)2
]

,

κ5 = (c1 − c2)(2+ c3)C1C2+
2

s44

(
∂C1

∂ϕ
∂C2

∂ϕ
+Θ2 ∂C1

∂ν
∂C2

∂ν

)
,

κ6 =
2

s44

(
∂C1

∂ϕ
∂C3

∂ϕ
+Θ2 ∂C1

∂ν
∂C3

∂ν

)
,

κ7 = [2c2 (1− c3)− c1]C2C3+
2

s44

(
∂C2

∂ϕ
∂C3

∂ϕ
+Θ2 ∂C2

∂ν
∂C3

∂ν

)
,

κ8 = (c1 − c2)C1C4+
1

s44

(
∂C1

∂ϕ
∂C4

∂ϕ
+Θ2 ∂C1

∂ν
∂C4

∂ν

)
,

κ9 = (c1 − c2 c3)C2C4+
1

s44

(
∂C2

∂ϕ
∂C4

∂ϕ
+Θ2 ∂C2

∂ν
∂C4

∂ν

)
,

κ10 = (c1+2c2)C3C4+
1

s44

(
∂C3

∂ϕ
∂C4

∂ϕ
+Θ2 ∂C3

∂ν
∂C4

∂ν

)
. (7.13)

The coefficient κi (i = 1,2,3) is given by Equation (6.13). In case of the ellipsoidal
inclusion, we get C2IN = C3IN = C4IN = 0, otherwise we get (unIN)xn→0 −→ ± ∞,
(εIN)xn−→0 −→± ∞, (σIN)r→0 −→±∞ due to c3 < 0 (see Equations (2.18), (6.4)–
(6.10)). In case of C1IN �= 0 (see Equations (6.4), (7.5)), the mathematical solutions
for the ellipsoidal inclusion is presented in Section 6.3.
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7.2 Condition βIN �= βE �= βM

7.2.1 Matrix

The integration constants C1M, C2M, C3M, C4M for the matrix (see Equation (7.5)) are
determined by the boundary conditions (2.29), (2.30) or (2.29)–(2.32). The bound-
ary conditions result in the following combinations of C1M, C2M, C3M, C4M, where
the combinations of C1M, C2M, C3M are presented in Section 6.2.1. Finally, such a
combination is considered to exhibit a minimum value of the elastic energy WC of
the cubic cell (see Equation (2.23)).

Conditions C1M �= 0, C4M �= 0, C2M =C3M = 0. With regard to Equations (2.29),
(2.30), (7.5)–(7.12), (2.21), (2.22), (2.23), we get

εnM =−
p2n

ζ M
, (7.14)

εϕM = εθM =−
p2n

ζ M

(
1−

1
xn

)
, (7.15)

εnϕM = s44M σnϕM =−

(
1−

1
xn

)
∂

∂ϕ

(
p2n

ζ M

)
, (7.16)

εnθM = s44M σnθM =−Θ
(

1−
1
xn

)
∂

∂ν

(
p2n

ζ M

)
, (7.17)

σnM =−
p2n

ζ M

(
c1M − c2M+

2cMm

xn

)
, (7.18)

σϕM = σθM =−
p2n

ζ M

(
c1M − c2M −

c1M

xn

)
, (7.19)

wM = κ1M+
κ4M

x2
n
+

κ8M

xn
, (7.20)

WM = 4

π/2∫
0

π/2∫
0

[κ1M

3

(
x3
M − x3

E

)
+κ4M (xM − xE)+

κ8M

2

(
x2
M − x2

E

)]
dϕdν,

(7.21)

where Θ, xE , xM and s44M, ciM (i = 1,2) are given by Equations (1.21)–(1.17) and
(2.13), (2.18), respectively, and ζ M, κ jM ( j = 4,8; see Equation (7.13)) have the forms
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ζ M = c1M − c2M+
2c2M xM

xE
,

κ4M = c1M

(
p2n

ζ M

)2

+
1

s44M

{[
∂

∂ϕ

(
p2n

ζ M

)]2

+

[
∂

∂ν

(
p2n

ζ M

)]2
}

,

κ8m = (c2M − c1M)

(
p2n

ζ M

)2

−
1

s44M

{[
∂

∂ϕ

(
p2n

ζ M

)]2

+

[
∂

∂ν

(
p2n

ζ M

)]2
}

.(7.22)

The coefficient κ1M is given by Equation (6.21), where ζ M in Equation (6.21)
is given by Equation (7.22). The normal stress p2n is given by Equation (2.26),
where ρIN and ρi jE (i, j = 1,2) in Equation (2.26) are given by Equations (6.89) and
(6.62), (6.72), (6.82), (7.83), (7.93), (7.103), respectively, with respect to minimum
Wc (see Equation (2.23)). With regard to Equation (7.15), the coefficient ρM in
Equation ((2.26)) is derived as

ρM =
1

ζ M

(
1−

1
xE

)
. (7.23)

Conditions C2M �= 0, C4M �= 0, C1M =C3M = 0. With regard to Equations (2.29),
(2.30), (7.5)–(7.12), (2.21), (2.22), (2.23), we get

εnM =−
p2n c3M

ζ M

(
xn

xM

)c3M−1

, (7.24)

εϕM = εθM =−
p2n

ζ M

[(
xn

xM

)c3M−1

−
1
xn

]
, (7.25)

εnϕM = s44M σnϕM =−

[
∂

∂ϕ

(
p2n

κxc3M−1
M

)
−

∂
∂ϕ

(
p2n

ζ M

)]
, (7.26)

εnθM = s44M σnθM =−Θ

[
∂

∂ν

(
p2n

κxc3M−1
M

)
−

∂
∂ν

(
p2n

ζ M

)]
, (7.27)

σnM =−
p2n

ζ M

{
[c3M (c1M+ c2M)−2c2M]

(
xn

xM

)c3M−1

+
2c2M

xn

}
, (7.28)

σϕM = σθM =−
p2n

ζ M

[
(c1M − c2Mc3M)

(
xn

xM

)c3M−1

−
c1M

xn

]
, (7.29)
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wM = κ2M x2(c3M−1)
n +

κ4M

x2
n
+κ9M xc3M−1

n , (7.30)

WM = 4

π/2∫
0

π/2∫
0

[
κ2M

2c3M+1

(
x2c3M+1
M − x2c3M+1

E

)
+κ4M (xM − xE)

+
κ9M

c3M+2

(
xc3M+2
M − xc3M+2

E

)]
dϕdν, (7.31)

where Θ, xE , xM and s44M, ciM (i = 1,2,3) are given by Equations (1.21)–(1.17) and
(2.13), (2.18), respectively, and ζ M, κ2M (see Equation (6.13)), κ9M (see Equa-
tion (7.13)) have the forms

ζ M = [c3M (c1M+ c2M)−2c2M]

(
xE

xM

)c3M−1

+
2c2M xM

xE
,

κ2M =

[
c2

3M (c1M+ c2M)

2
+ c1M −2c2Mc3M

](
p2n

ζ M xc3M−1
M

)2

+
1

s44M

⎧⎨
⎩
[

∂
∂ϕ

(
p2n

ζ M xc3M−1
M

)]2

+Θ2

[
∂

∂ν

(
p2n

ζ M xc3M−1
M

)]2
⎫⎬
⎭ ,

κ9M =−
c1M − c2M c3M

xc3M−1
M

(
p2n

ζ M

)2

−
1

s44M

∂
∂ϕ

(
p2n

ζ M xc3M−1
M

)
∂

∂ϕ

(
p2n

ζ M

)

−
Θ2

s44M

∂
∂ν

(
p2n

ζ M xc3M−1
M

)
∂

∂ν

(
p2n

ζ M

)
. (7.32)

The coefficient κ4M is given by Equations (6.21), where ζ M in Equations (6.21)
is given by Equation (7.32). The normal stress p2n is given by Equation (2.26),
where ρIN and ρi jE (i, j = 1,2) in Equation (2.26) are given by Equations (6.89) and
(6.62), (6.72), (6.82), (7.83), (7.93), (7.103), respectively, with respect to minimum
Wc (see Equation (2.23)). With regard to Equation (7.25), the coefficient ρM in
Equation ((2.26)) is derived as

ρM =
1

ζ M

[(
xE

xM

)c3M−1

−
1
xE

]
. (7.33)

117



Conditions C3M �= 0, C4M �= 0, C1M =C2M = 0. With regard to Equations (2.29),
(2.30), (7.5)–(7.12), (2.21), (2.22), (2.23), we get

εnM =
2p2n

ζ M

(
xE

xn

)3

, (7.34)

εϕM = εθM =−
p2n

ζ M

[(
xE

xn

)3

−
1
xn

]
, (7.35)

εnϕM = s44M σnϕM =−

[(
xE

xn

)3

−
1
xn

]
∂

∂ϕ

(
p2n

ζ M

)
, (7.36)

εnθM = s44M σnθM =−

[(
xE

xn

)3

−
1
xn

]
∂

∂ν

(
p2n

ζ M

)
, (7.37)

σnM =
2p2n

ζ M

[
(c1M+2c2M)

(
xE

xn

)3

−
c2M

xn

]
, (7.38)

σϕM = σθM =−
p2n

ζ M

[
(c1M −2c2M)

(
xE

xn

)3

−
c1M

xn

]
, (7.39)

wM =
κ3M

x6
n
+

κ4M

x2
n
+

κ10M

x4
n

, (7.40)

WM = 4

π/2∫
0

π/2∫
0

[
κ3M

3

(
1

x3
E

−
1

x3
M

)
+κ4M (xM − xE)+κ10M

(
1
xE

−
1
xM

)]
dϕdν,

(7.41)

where Θ, xE , xM and s44M, ciM (i = 1,2) are given by Equations (1.21)–(1.17) and
(2.13), (2.18), respectively, and ζ M, κ3M (see Equation (6.13)), κ10M (see Equa-
tion (7.13)) have the forms

ζ M =−

[
2(c1M+2c2M)+2c2M

(
xE

xM

)2
]

,

κ3M = 3(c1M+2c2M)

(
p2n x3

E

ζ M

)2

+
1

s44M

{[
∂

∂ϕ

(
p2n x3

E

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n x3

E

ζ M

)]2
}

,
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κ10M =−x3
E (c1M+2c2M)

(
p2n

ζ M

)2

−
1

s44M

[
∂

∂ϕ

(
p2n x3

E

ζ M

)
∂

∂ϕ

(
p2n

ζ M

)]

−
Θ2

s44M

[
∂

∂ν

(
p2n x3

E

ζ M

)
∂

∂ν

(
p2n

ζ M

)]
. (7.42)

The coefficient κ4M is given by Equations (6.21), where ζ M in Equations (6.21)
is given by Equation (7.42). The normal stress p2n is given by Equation (2.26),
where ρIN and ρi jE (i, j = 1,2) in Equation (2.26) are given by Equations (6.89) and
(6.62), (6.72), (6.82), (7.83), (7.93), (7.103), respectively, with respect to minimum
Wc (see Equation (2.23)). With regard to Equation (7.35), the coefficient ρM in
Equation ((2.26)) is derived as

ρM =
xE −1
ζ M xE

. (7.43)

ConditionsC1M �= 0,C2M �= 0,C4M �= 0,C3M = 0. With regard to Equations (2.29)–
(2.32), (7.5)–(7.12), (2.21), (2.22), (2.23), we get

εnM =−
p2n

ζ M

[
1−

(
xn

xM

)c3M−1
]

, (7.44)

εϕM = εθM =−
p2n

ζ M

{
1−

1
c3M

[(
xn

xM

)c3M−1

+
(c3M −1)xM

xn

]}
, (7.45)

εnϕM = s44M σnϕM =

−

{
∂

∂ϕ

(
p2n

ζ M

)
−

1
c3M

[
xc3M−1
n

∂
∂ϕ

(
p2n

ζ M xc3M−1
M

)
+

c3M −1
xn

∂
∂ϕ

(
p2n xM

ζ M

)]}
,

(7.46)

εnθM = s44M σnθM =

−

{
∂

∂ν

(
p2n

ζ M

)
−

1
c3M

[
xc3M−1
n

∂
∂ν

(
p2n

ζ M xc3M−1
M

)
+

c3M −1
xn

∂
∂ν

(
p2n xM

ζ M

)]}
,

(7.47)

σnM =−
p2n

ζ M

(
c1M − c2M −

1
c3M

{
[c3M (c1M+ c2M)−2c2M]

(
xn

xM

)c3M−1

+
2c2M (c3M −1)xM

c3M xn

})
, (7.48)
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σϕM = σθM =−
p2n

ζ M

{
c1M − c2M −

1
c3M

[
(c1M − c2Mc3M)

(
xn

xM

)c3M−1

+
c1M (c1M −1) xM

xn

]}
, (7.49)

wM = κ1M+κ2M x2(c3M−1)
n +

κ4M

x2
n
+(κ5M+κ9M)x

c3M−1
n +

κ8M

xn
, (7.50)

WM = 4

π/2∫
0

π/2∫
0

[
κ1M

3

(
x3
M − x3

E

)
+

κ2M

2c3M+1

(
x2c3M+1
M − x2c3M+1

E

)
+κ4M (xM − xE)

+
κ5M+κ9M

c3M+2

(
xc3M+2
M − xc3M+2

E

)
+

κ8M

2

(
x2
M − x2

E

)]
dϕdν, (7.51)

where Θ, xE , xM and s44M, ciM (i = 1,2,3) are given by Equations (1.21)–(1.17)
and (2.13), (2.18), respectively, and ζ M, κiM (i = 1,2; see Equation (6.13)), κ jM

( j = 4,5,8,9; see Equation (7.13)) have the forms

ζ M = (c1M − c2M)−
[c3M (c1M+ c2M)−2c2M]

c3M

(
xE

xM

)c3M−1

+
2c2M (c3M −1) xM

c3M xE
,

κ4M = c1M

[
p2n xM (c3M −1)

ζ M c3M

]2

+
1

s44M

{
∂

∂ϕ

[
p2n xM (c3M −1)

ζ M c3M

]}2

+
Θ2

s44M

{
∂

∂ν

[
p2n xM (c3M −1)

ζ M c3M

]}2

,

κ5M =−
(c1M − c2M)(2+ c3M)

c3M xc3M−1
M

(
p2n

ζ M

)2

−
2

s44M

∂
∂ϕ

(
p2n

ζ M

)
∂

∂ϕ

(
p2n

ζ M c3M xc3M−1
M

)

−
2Θ2

s44M

∂
∂ν

(
p2n

ζ M

)
∂

∂ν

(
p2n

ζ M c3M xc3M−1
M

)
,

κ8M =− (c1M − c2M)

(
p2n

ζ M

)[
p2n xM (c3M −1)

ζ M c3M

]

−
1

s44M

∂
∂ϕ

(
p2n

ζ M

)
∂

∂ϕ

[
p2n xM (c3M −1)

ζ M c3M

]

−
Θ2

s44M

∂
∂ν

(
p2n

ζ M

)
∂

∂ν

[
p2n xM (c3M −1)

ζ M c3M

]
,
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κ9M =
(c1M − c2M c3M)(c3M −1)

xc3M−2
M

(
p2n

ζ M c3M

)2

+
(c3M −1)

s44M c2
3M

∂
∂ϕ

(
p2n

ζ M xc3M−1
M

)
∂

∂ϕ

(
p2n xM

ζ M

)

+
Θ2 (c3M −1)

s44M c2
3M

∂
∂ν

(
p2n

ζ M xc3M−1
M

)
∂

∂ν

(
p2n xM

ζ M

)
. (7.52)

The coefficient κiM (i = 1,2) is given by Equations (6.21), where ζ M in Equa-
tions (6.21) is given by Equation (7.52). The normal stress p2n is given by Equa-
tion (2.26), where ρIN and ρi jE (i, j = 1,2) in Equation (2.26) are given by Equa-
tions (6.89) and (6.62), (6.72), (6.82), (7.83), (7.93), (7.103), respectively, with re-
spect to minimum Wc (see Equation (2.23)). With regard to Equation (7.45), the
coefficient ρM in Equation ((2.26)) is derived as

ρM =
1

ζ M

{
1−

1
c3M

[(
xE

xM

)c3M−1

+
(c3M −1)xM

xE

]}
. (7.53)

ConditionsC1M �= 0,C3M �= 0,C4M �= 0,C2M = 0. With regard to Equations (2.29)–
(2.32), (7.5)–(7.12), (2.21), (2.22), (2.23), we get

εnM =−
p2n

ζ M

[
1−

3
2

(
xM

xn

)3
]

, (7.54)

εϕM = εθM =−
p2n

ζ M

[
1+

1
2

(
xM

xn

)3

−
3xM

2xn

]
, (7.55)

εnϕM = s44M σnϕM =−

[
∂

∂ϕ

(
p2n

ζ M

)
+

1
2x3

n

∂
∂ϕ

(
p2n x3

M

ζ M

)
−

3
2xn

∂
∂ϕ

(
p2n xM

ζ M

)]
,

(7.56)

εnθM = s44M σnθM =−

[
∂

∂ν

(
p2n

ζ M

)
+

1
2x3

n

∂
∂ν

(
p2n x3

M

ζ M

)
−

3
2xn

∂
∂ν

(
p2n xM

ζ M

)]
,

(7.57)

σnM =−
p2n

ζ M

[
c1M − c2M − (c1M+2c2M)

(
xM

xn

)3

+
3c2M xM

xn

]
, (7.58)
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σϕM = σθM =−
p2n

ζ M

[
c1M − c2M+

c1M+2c2M

2

(
xM

xn

)3

−
3c1M xM

2xn

]
, (7.59)

wM = κ1M+
κ3M

x6
n
+

κ4M

x2
n
+

κ6M

x3
n
+

κ8M

xn
+

κ10M

x4
n

, (7.60)

WM = 4

π/2∫
0

π/2∫
0

[
κ1M

3

(
x3
M − x3

E

)
+

κ3M

3

(
1

x3
E

−
1

x3
M

)
+κ4M (xM − xE)

+ κ6M ln

(
xM

xE

)
+

κ8M

2

(
x2
M − x2

E

)
+κ10M

(
1
xE

−
1
xM

)]
dϕdν,

(7.61)

where Θ, xE , xM and s44M, ciM (i = 1,2) are given by Equations (1.21)–(1.17) and
(2.13), (2.18), respectively, and ζ M, κ3M (see Equation (6.13)), κiM (i = 4,6,8,10; see
Equation (7.13)) have the forms

ζ M = (c1M − c2M)− (c1M+2c2M)

(
xM

xE

)3

+
3c2M xM

xE
,

κ3M = 3(c1M+2c2M)

(
p2n x3

M

2ζ M

)2

+
1

s44

{[
∂

∂ϕ

(
p2n x3

M

2ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n x3

M

2ζ M

)]2
}

,

κ4M = c1M

(
3p2n xM

2ζ M

)2

+
1

s44

{[
∂

∂ϕ

(
3p2n xM

2ζ M

)]2

+Θ2
[

∂
∂ν

(
3p2n xM

2ζ M

)]2
}

,

κ6M =
2

s44

[
∂

∂ϕ

(
p2n

ζ M

)
∂

∂ϕ

(
p2n x3

M

2ζ M

)
+Θ2 ∂

∂ν

(
p2n

ζ M

)
∂

∂ν

(
p2n x3

M

2ζ M

)]
,

κ8M =−
3xM (c1M − c2M)

2

(
p2n

ζ M

)2

−
3

2s44

[
∂

∂ϕ

(
p2n

ζ M

)
∂

∂ϕ

(
p2n xM

ζ M

)
+Θ2 ∂

∂ν

(
p2n

ζ M

)
∂

∂ν

(
p2n xM

ζ M

)]
,

κ10M =−
3x4

M (c1M+2c2M)

4

(
p2n

ζ M

)2

−
3

4s44

[
∂

∂ϕ

(
p2n x3

M

ζ M

)
∂

∂ϕ

(
p2n xM

ζ M

)
+Θ2 ∂

∂ν

(
p2n x3

M

ζ M

)
∂

∂ν

(
p2n xM

ζ M

)]
.

(7.62)
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The coefficient κ1M is given by Equations (6.21), where ζ M in Equations (6.21)
is given by Equation (7.62). The normal stress p2n is given by Equation (2.26),
where ρIN and ρi jE (i, j = 1,2) in Equation (2.26) are given by Equations (6.89) and
(6.62), (6.72), (6.82), (7.83), (7.93), (7.103), respectively, with respect to minimum
Wc (see Equation (2.23)). With regard to Equation (7.55), the coefficient ρM in
Equation ((2.26)) is derived as

ρM =
1

ζ M

[
1+

1
2

(
xM

xE

)3

−
3xM

2xE

]
. (7.63)

ConditionsC2M �= 0,C3M �= 0,C4M �= 0,C1M = 0. With regard to Equations (2.29)–
(2.32), (7.5)–(7.12), (2.21), (2.22), (2.23), we get

εnM =−
p2n

ζ M

[
c3M

(
xn

xM

)c3M−1

− c3M

(
xM

xn

)3
]

, (7.64)

εϕM = εθM =−
p2n

ζ M

[(
xn

xM

)c3M−1

+
c3M

2

(
xM

xn

)3

−
(c3M+2)xM

2xn

]
, (7.65)

εnϕM = s44M σnϕM =−

[
xc3M−1
n

∂
∂ϕ

(
p2n

ζ M xc3M−1
M

)
+

c3M

2x3
n

∂
∂ϕ

(
p2n x3

M

ζ M

)

+
(c3M+2)

2xn

∂
∂ϕ

(
p2n xM

ζ M

)]
, (7.66)

εnθM = s44M σnθM =−

[
xc3M−1
n

∂
∂ν

(
p2n

ζ M xc3M−1
M

)
+

c3M

2x3
n

∂
∂ν

(
p2n x3

M

ζ M

)

+
(c3M+2)

2xn

∂
∂ν

(
p2n xM

ζ M

)]
, (7.67)

σnM =−
p2n

ζ M

{
[c3M (c1M+ c2M)−2c2M]

(
xn

xM

)c3M−1

− (c3Mc1M+2c2M)

(
xM

xn

)3

+
c2M (c3M+2)xM

xn

}
, (7.68)

σϕM = σθM =
p2n

ζ M

[
(c1M − c2Mc3M)

(
xn

xM

)c3M−1

+
c3M (c1M+2c2M)

2

(
xM

xn

)3

−
c1M (c3M+2)xM

2xn

]
, (7.69)
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wM = κ2M x2(c3M−1)
n +

κ3M

x6
n
+

κ4M

x2
n
+κ7M xc3M−4

n +κ9Mxc3M−1
n +

κ10M

x4
n

, (7.70)

WM = 4

π/2∫
0

π/2∫
0

[
κ2M

2c3M+1

(
x2c3M+1
M − x2c3M+1

E

)
+

κ3M

3

(
1

x3
E

−
1

x3
M

)

+ κ4M (xM − xE)+
κ7M

c3M −1

(
xc3M−1
M − xc3M−1

E

)
+

κ9M

c3M+2

(
xc3M+2
M − xc3M+2

E

)
+κ10M

(
1
xE

−
1
xM

)]
dϕdν, (7.71)

where Θ, xE , xM and s44M, ciM (i = 1,2) are given by Equations (1.21)–(1.17) and
(2.13), (2.18), respectively, and ζ M, κiM (i = 2,3; see Equation (6.13)), κ jM ( j = 4,7,9,10;
see Equation (7.13)) have the forms

ζ M = xc3M−1
M

{
[c3M (c1M+ c2M)−2c2M]

(
xE

xM

)c3M−1

− c3M (c1M+2c2M)

(
xM

xE

)3

+
c2M (c3M+2)xM

xE

}
,

κ2M =

[
(c1M+ c2M)c2

3M

2
+ c1M −2c2M c3M

](
p2n

ζ M xc3M−1
M

)2

+
1

s44M

⎧⎨
⎩
[

∂C2

∂ϕ

(
p2n

ζ M xc3M−1
M

)]2

+Θ2

[
∂C2

∂ν

(
p2n

ζ M xc3M−1
M

)]2
⎫⎬
⎭ ,

κ3M = 3(c1M+2c2M)

(
p2n c3M x3

M

2ζ M

)2

+
1

2s44M

{[
∂

∂ϕ

(
p2n c3M x3

M

ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n c3M x3

M

ζ M

)]2
}

,

κ4M = c1M

[
p2n xM (c3M+2)

2ζ M

]2

+
c3M+2
s44M

{[
∂

∂ϕ

(
p2n xM

2ζ M

)]2

+Θ2
[

∂
∂ν

(
p2n xM

2ζ M

)]2
}

,

κ7M = [2c2M (1− c3M)− c1M]

(
p2n

ζ M xc3M−1
M

)(
p2n c3M x3

M

2ζ M

)
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+
c3M

s44M

∂
∂ϕ

(
p2n

ζ M xc3M−1
M

)
∂

∂ϕ

(
p2n x3

M

ζ M

)

+
Θ2c3M

s44M

∂
∂ν

(
p2n

ζ M xc3M−1
M

)
∂

∂ν

(
p2n x3

M

ζ M

)
,

κ9M =−
xM (c1M − c2M c3M)(c3M+2)

2xc3M−1
M

(
p2n

ζ M

)2

−
c3M+2
2s44M

∂
∂ϕ

(
p2n

ζ M xc3M−1
M

)
∂

∂ϕ

(
p2n xM

ζ M

)

−
Θ2 (c3M+2)

2s44M

∂
∂ν

(
p2n

ζ M xc3M−1
M

)
∂

∂ν

(
p2n xM

ζ M

)

κ10M =− c3M (c1M+2c2M)(c3M+2)

(
p2n x2

M

2ζ M

)2

−
c3M (c3M+2)

4s44M

∂
∂ϕ

(
p2n x3

M

ζ M

)
∂

∂ϕ

(
p2n xM

ζ M

)

−
Θ2 c3M (c3M+2)

4s44M

∂
∂ν

(
p2n x3

M

ζ M

)
∂

∂ν

(
p2n xM

ζ M

)
. (7.72)

The normal stress p2n is given by Equation (2.26), where ρIN and ρi jE (i, j = 1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum Wc (see Equation (2.23)).
With regard to Equation (7.65), the coefficient ρM in Equation ((2.26)) is derived as

ρM =
1

ζ M

[(
xE

xM

)c3M−1

+
c3M

2

(
xM

xE

)3

−
(c3M+2)xM

2xE

]
. (7.73)

7.2.2 Envelope

The integration constants C1E , C2E , C3E for the envelope (see Equation (6.4)) are de-
termined by the boundary conditions (2.33), (2.34). The boundary conditions result
in the following combinations of C1E , C2E , C3E , i.e., C1E �= 0, C2E �= 0, C3E = 0;
C1E �= 0, C3E �= 0, C2E = 0; C2E �= 0, C3E �= 0, C1E = 0. Finally, such a combina-
tion is considered to exhibit a minimum value of the elastic energy WC of the cubic
cell (see Equation (2.23)).

Conditions C1E �= 0, C4E �= 0, C2E =C3E = 0. With regard to Equations (2.33),
(2.34), (7.5)–(7.12), (2.22), (2.23), we get
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εnE =−

(
p1n

ζ1E
−

p2n

ζ2E

)
, (7.74)

εϕE = εθE =−

(
p1n

ζ1E
−

p2n

ζ2E
+

p1n− p2n

ζ3E xn

)
, (7.75)

εnϕE = s44E σnϕE =−

[
∂

∂ϕ

(
p1n

ζ1E
−

p2n

ζ2E

)
+

1
xn

∂
∂ϕ

(
p1n− p2n

ζ3E

)]
, (7.76)

εnθE = s44E σnθE =−Θ
[

∂
∂ν

(
p1n

ζ1E
−

p2n

ζ2E

)
+

1
xn

∂
∂ν

(
p1n− p2n

ζ3E

)]
, (7.77)

σnE =−

[
(c1E − c2E)

(
p1n

ζ1E
−

p2n

ζ2E

)
−

2c2E (p1n− p2n)

ζ3E xn

]
, (7.78)

σϕE = σθE =−

[
(c1E − c2E)

(
p1n

ζ1E
−

p2n

ζ2E

)
+

c1E (p1n− p2n)

ζ3E xn

]
, (7.79)

wE = κ1E+
κ4E

x2
n
+

κ8E

xn
, (7.80)

WE = 4

π/2∫
0

π/2∫
0

[κ1E

3

(
x3
E − x3

IN

)
+κ4E (xE − xIN)+

κ8E

2

(
x2
E − x2

IN

)]
dϕdν, (7.81)

where Θ, xIN , xE and s44E , ciE are given by Equations (1.21), (1.22) and (2.13),
(2.18), respectively, and ζ iE (i = 1,2,3), κ jE (i = 4,8; see Equation (7.13)) have the
forms

ζ1E = (c1E − c2E)

(
1−

xE

xIN

)
, ζ2E = (c1E − c2E)

(
xIN

xE
−1

)
,

ζ3E =
2c2E (xIN − xE)

xIN xE
,

κ4E = c1E C2
4E+

1
s44E

[(
∂C4E

∂ϕ

)2

+Θ2
(

∂C4E

∂ν

)2
]

,

κ8E = (c1E − c2E)C1E C4E+
1

s44E

(
∂C1E

∂ϕ
∂C4E

∂ϕ
+Θ2 ∂C1E

∂ν
∂C4E

∂ν

)
. (7.82)

The coefficient κ1E is given by Equation (6.61), where ζ iE (i = 1,2,3) in Equa-
tion (6.61) is given by Equation (7.82). The normal stresses p1n, p2n are given by
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Equations (2.25), (2.26), where ρIN and ρM in Equations (2.25), (2.26) are given
by Equation (6.89) and (7.23), (7.33), (7.43), (7.53), respectively. With regard
to
(
εϕE
)
xn=xIN

=−(p1n ρ11E+ p2n ρ12E),
(
εϕE
)
xn=xE

=−(p1n ρ21E+ p2n ρ22E) and
Equation (7.75), the coefficient ρi jE (i, j = 1,2) in Equations (2.25), (2.26) is de-
rived as

ρ1iE = (δ1i−δ2i)

(
1

ζiE
+

1
ζ3E xIN

)
, ρ2iE = (δ1i−δ2i)

(
1

ζiE
+

1
ζ3E xE

)
,

i= 1,2,

(7.83)

where δi j represents Kronecker’s delta [24], i.e., δi j = 0 or δi j = 1 for i �= j or i= j,
respectively.

Conditions C2E �= 0, C4E �= 0, C1E =C3E = 0. With regard to Equations (2.33),
(2.34), (7.5)–(7.12), (2.22), (2.23), we get

εnE =−c3E

(
p1n

ζ1E
−

p2n

ζ2E

)
xc3E−1
n , (7.84)

εϕE = εθE =−

[(
p1n

ζ1E
−

p2n

ζ2E

)
xc3E−1
n +

p1n− p2n

ζ3E xn

]
, (7.85)

εnϕE = s44E σnϕE =−

[
xc3E−1
n

∂
∂ϕ

(
p1n

ζ1E
−

p2n

ζ2E

)
+

1
xn

∂
∂ϕ

(
p1n− p2n

ζ3E

)]
, (7.86)

εnθE = s44E σnθE =−Θ
[
xc3E−1
n

∂
∂ν

(
p1n

ζ1E
−

p2n

ζ2E

)
+

1
xn

∂
∂ν

(
p1n− p2n

ζ3E

)]
, (7.87)

σnE =−

[
[(c1E+ c2E)c3E −2c2E ]

(
p1n

ζ1E
−

p2n

ζ2E

)
xc3E−1
n −

2c2E (p1n− p2n)

ζ3E xn

]
,

(7.88)

σϕE = σθE =−

[
(c1E − c2E c3E)

(
p1n

ζ1E
−

p2n

ζ2E

)
xc3E−1
n +

c1E (p1n− p2n)

ζ3E xn

]
, (7.89)

wE = κ2E x2(c3E−1)
n +

κ4E

x2
n
+κ9Exc3E−1

n (7.90)
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WE = 4

π/2∫
0

π/2∫
0

[
κ2E

2c3E+1

(
x2c3E+1
E − x2c3E+1

IN

)
+κ4E (xE − xIN)

+
κ9E

c3E+2

(
xc3E+2
E − xc3E+2

IN

)]
dϕdν, (7.91)

where Θ, xIN , xE and s44E , ciE are given by Equations (1.21), (1.22) and (2.13),
(2.18), respectively, and ζ iE (i = 1,2,3), κ9E (see Equation (7.13)) have the forms

ζiE =
1

xIN
[c3E (c1E+ c2E)−2c2E ]

(
xc3E−1
IN − xc3E−1

E

)
,

ζ2E =
1
xE
[c3E (c1E+ c2E)−2c2E ]

(
xc3E−1
IN − xc3E−1

E

)
,

ζ3E =
xc3E−1
IN − xc3E−1

E

xIN xE
,

κ9E = (c1E − c2E c3E)C2E C4E+
1

s44E

(
∂C2E

∂ϕ
∂C4E

∂ϕ
+Θ2 ∂C2E

∂ν
∂C4E

∂ν

)
. (7.92)

The coefficients κ2E , κ2E are given by Equations (7.82), (6.61), respectively,
where ζ iE (i = 1,2,3) in Equations (7.82), (6.61) is given by Equation (7.92). The
normal stresses p1n, p2n are given by Equations (2.25), (2.26), where ρIN and ρM

in Equations (2.25), (2.26) are given by Equation (6.89) and (7.23), (7.33), (7.43),
(7.53), respectively. With regard to

(
εϕE
)
xn=xIN

=−(p1n ρ11E+ p2n ρ12E),(
εϕE
)
xn=xE

=−(p1n ρ21E+ p2n ρ22E) and Equation (7.85), the coefficient ρi jE (i, j =
1,2) in Equations (2.25), (2.26) is derived as

ρ1iE = (δ1i−δ2i)

(
xc3E−1
IN

ζiE
+

1
ζ3E xIN

)
, ρ2iE = (δ1i−δ2i)

(
xc3E−1
E

ζiE
+

1
ζ3E xE

)
,

i= 1,2, (7.93)

where δi j represents Kronecker’s delta [24], i.e., δi j = 0 or δi j = 1 for i �= j or i= j,
respectively.

Conditions C3E �= 0, C4E �= 0, C1E =C2E = 0. With regard to Equations (2.33),
(2.34), (7.5)–(7.12), (2.22), (2.23), we get

εnE = 2

(
p1n

ζ1E
−

p2n

ζ2E

)
1
x3
n
, (7.94)
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εϕE = εθE =−

[(
p1n

ζ1E
−

p2n

ζ2E

)
1
x3
n
+

(
p1n

ζ3E
−

p2n

ζ4E

)
1
xn

]
, (7.95)

εnϕE = s44E σnϕE =−

[
1
x3
n

∂
∂ϕ

(
p1n

ζ1E
−

p2n

ζ2E

)
+

1
xn

∂
∂ϕ

(
p1n

ζ3E
−

p2n

ζ4E

)]
, (7.96)

εnθE = s44E σnθE =−Θ
[

1
x3
n

∂
∂ν

(
p1n

ζ1E
−

p2n

ζ2E

)
+

1
xn

∂
∂ν

(
p1n

ζ3E
−

p2n

ζ4E

)]
, (7.97)

σnE =−2

[
(c1E+2c2E)

(
p1n

ζ1E
−

p2n

ζ2E

)
1
x3
n
+ c2E

(
p1n

ζ3E
−

p2n

ζ4E

)
1
xn

]
, (7.98)

σϕE = σθE =−

[
(c1E+2c2E)

(
p1n

ζ1E
−

p2n

ζ2E

)
1
x3
n
c1E

(
p1n

ζ3E
−

p2n

ζ4E

)
+

1
xn

]
, (7.99)

wE =
κ3E

x6
n
+

κ4E

x2
n
+

κ10E

x4
n

, (7.100)

WE = 4

π/2∫
0

π/2∫
0

[
κ3E

3

(
1

x3
IN

−
1

x3
E

)
+κ4E (xE − xIN)+

κ10E

2

(
1

xIN
−

1
xE

)]
dϕdν,

(7.101)

where Θ, xIN , xE and s44E , ciE (i = 1,2,3) are given by Equations (1.21), (1.22)
and (2.13), (2.18), respectively, and ζ iE (i = 1, . . . , 4), κ jE ( j = 1,4,10; see Equa-
tions (6.12), (7.13)) have the forms

ζ1E =
2(c1E+2c2E)

x3
IN

[(
xIN

xE

)2

−1

]
, ζ2E =

2(c1E+2c2E)

x3
E

[
1−

(
xE

xIN

)2
]

,

ζ3E =
2c2E

xIN

[(
xE

xIN

)2

−1

]
, ζ4E =

2c2E

xE

[(
xIN

xE

)2

−1

]
.

κ3E = 3(c1E+2c2E)

(
p1n

ζ1E
−

p2n

ζ2E

)2

+
1

s44E

{[
∂

∂ϕ

(
p1n

ζ1E
−

p2n

ζ2E

)]2

+Θ2
[

∂
∂ν

(
p1n

ζ1E
−

p2n

ζ2E

)]2
}

,

κ4E = (c1E − c2E)(2+ c3E)

(
p1n

ζ1E
−

p2n

ζ2E

)(
p1n

ζ3E
−

p2n

ζ4E

)
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+
2

s44E

∂
∂ϕ

(
p1n

ζ1E
−

p2n

ζ2E

)
∂

∂ϕ

(
p1n

ζ3E
−

p2n

ζ4E

)

+
2Θ2

s44E

∂
∂ν

(
p1n

ζ1E
−

p2n

ζ2E

)
∂

∂ν

(
p1n

ζ3E
−

p2n

ζ4E

)
,

κ10E = (c1E+2c2E)

(
p1n

ζ1E
−

p2n

ζ2E

)(
p1n

ζ3E
−

p2n

ζ4E

)

+
1

s44E

∂
∂ϕ

(
p1n

ζ1E
−

p2n

ζ2E

)
∂

∂ϕ

(
p1n

ζ3E
−

p2n

ζ4E

)

+
Θ2

s44E

∂
∂ν

(
p1n

ζ1E
−

p2n

ζ2E

)
∂

∂ν

(
p1n

ζ3E
−

p2n

ζ4E

)
, (7.102)

The normal stresses p1n, p2n are given by Equations (2.25), (2.26), where ρIN

and ρM in Equations (2.25), (2.26) are given by Equation (6.89) and (7.23), (7.33),
(7.43), (7.53), respectively. With regard to

(
εϕE
)
xn=xIN

= −(p1n ρ11E+ p2n ρ12E),(
εϕE
)
xn=xE

=−(p1n ρ21E+ p2n ρ22E) and Equation (7.95), the coefficient ρi jE (i, j =
1,2) in Equations (2.25), (2.26) is derived as

ρ1iE = (δ1i−δ2i)

(
1

ζiE R3
1

+
1

ζ3E R1

)
, ρ2 jE = (δ1i−δ2i)

(
1

ζiE R3
2

+
1

ζ3E R2

)
,

i= 1,2, (7.103)

where δi j represents Kronecker’s delta [24], i.e., δi j = 0 or δi j = 1 for i �= j or i= j,
respectively.

7.3 Condition βIN �= βE = βM

If βIN �= βE = βM, then |unE | = f (xn) represents a decreasing function of xn ∈
〈xIN,xE〉, and then C1E = C4E = 0, C2E �= 0, C3E �= 0 (see Equation (7.5)), re-
spectively. With regard to one boundary condition (see Equation (2.33)), the ther-
mal stresses in the ellipsoidal inclusion are determined on the conditions C2E �= 0,
C3E = 0; C23 �= 0, C2E = 0. With regard to Equations (6.4), (7.5), the thermal strains
and stresses in the ellipsoidal envelope are determined in Sections 4.3.2 and 6.3.2
for C2E �= 0, C3E = 0 and C23 �= 0, C2E = 0, respectively. The normal stress p1n in
Section 4.3.2 is given by Equation (2.27), where ρIN and ρ1ME in Equation (2.27)
are given by Equations (6.89) and (4.130), respectively.
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7.3.1 Matrix

The integration constants C1M, C2M, C3M, C4M for the matrix (see Equation (7.5)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)–(2.32). The bound-
ary conditions result in the following combinations of C1M, C2M, C3M, C4M, where
the combinations of C1M, C2M, C3M are presented in Section 6.3.1. Finally, such a
combination is considered to exhibit a minimum value of the elastic energy WC of
the cubic cell (see Equation (2.23)).

Conditions C1M �= 0, C4M �= 0, C2M =C3M = 0. With regard to Equations (2.30),
(2.31), (7.5)–(7.12), (2.21), (2.22), (2.23), we get

εnM =−
p1n ρ2ME

ζ M
, (7.104)

εϕM = εθM =−
p1n ρ2ME

ζ M

(
1−

xM

xn

)
, (7.105)

εnϕM = s44M σnϕM =−

[
∂

∂ϕ

(
p1n ρ2ME

ζ M

)
−

1
xn

∂
∂ϕ

(
p1n ρ2ME xM

ζ M

)]
, (7.106)

εnθM = s44M σnθM =−Θ
[

∂
∂ν

(
p1n ρ2ME

ζ M

)
−

1
xn

∂
∂ν

(
p1n ρ2ME xM

ζ M

)]
, (7.107)

σnM =−
p1n ρ2ME

ζ M

(
c1M − c2M+

2c2M xM

xn

)
, (7.108)

σϕM = σθM =−
p1n ρ2ME

ζ M

(
c1M − c2M −

c1M xM

xn

)
, (7.109)

wM = κ1M+
κ4M

x2
n
+

κ8M

xn
, (7.110)

WM = 4

π/2∫
0

π/2∫
0

[κ1M

3

(
x3
M − x3

E

)
+κ4M (xM − xE)+

κ8M

2

(
x2
M − x2

E

)]
dϕdν,

(7.111)

where Θ, xE , xM and s44M, ciM (i = 1,2) are given by Equations (1.21)–(1.17) and
(2.13), (2.18), respectively, and ζ M, κ jM ( j = 4,8; see Equation (7.13)) have the forms

ζ M = 1−
xM

xE
,
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κ4M = c1M

(
p1n ρ2ME xM

ζ M

)2

+
1

s44M

{[
∂

∂ϕ

(
p1n ρ2ME xM

ζ M

)]2

+Θ2
[

∂
∂ν

(
p1n ρ2ME xM

ζ M

)]2
}

,

κ8M = xM (c2M − c1M)

(
p1n ρ2ME

ζ M

)2

−
1

s44M

∂
∂ϕ

(
p1n ρ2ME

ζ M

)
∂

∂ϕ

(
p1n ρ2ME xM

ζ M

)

−
Θ2

s44M

∂
∂ν

(
p1n ρ2ME

ζ M

)
∂

∂ν

(
p1n ρ2ME xM

ζ M

)
. (7.112)

The coefficient κ1M is given by Equation (6.98), where ζ M in Equation (6.98) is
given by Equation (7.112). The normal stress p1n is given by Equation (2.27), where
ρIN and ρ2ME in Equation (2.27) are given by Equations (6.89) and (3.53), (4.130),
(6.135), respectively, with respect to minimum Wc (see Equation (2.23)).

Conditions C2M �= 0, C4M �= 0, C1M =C3M = 0. With regard to Equations (2.30),
(2.31), (7.5)–(7.12), (2.21), (2.22), (2.23), we get

εnM =−p1n ρ2ME ζ 1M c3M xc3M−1
n , (7.113)

εϕM = εθM =−p1n ρ2ME

(
ζ 1M xc3M−1

n +
ζ 2M

xn

)
, (7.114)

εnϕM = s44M σnϕM =−

[
xc3M−1
n

∂
∂ϕ
(p1n ρ2ME ζ 1M)+

1
xn

∂
∂ϕ
(p1n ρ2ME ζ 2M)

]
,

(7.115)

εnθM = s44M σnθM =−Θ
[
xc3M−1
n

∂
∂ν
(p1n ρ2ME ζ 1M)+

1
xn

∂
∂ν
(p1n ρ2ME ζ 2M)

]
,

(7.116)

σnM =−p1n ρ2ME

{
ζ 1M [c3M (c1M+ c2M)−2c2M] x

c3M−1
n −

2ζ 2M c2M

xn

}
, (7.117)

σϕM = σθM =−p1n ρ2ME

[
ζ 1M (c1M − c2Mc3M) x

c3M−1
n +

ζ 2M c1M

xn

]
, (7.118)
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wM = κ2M x2(c3M−1)
n +

κ4M

x2
n
+κ9M xc3M−1

n , (7.119)

WM = 4

π/2∫
0

π/2∫
0

[
κ2M

2c3M+1

(
x2c3M+1
M − x2c3M+1

E

)
+κ4M (xM − xE)

+
κ9M

c3M+2

(
xc3M+2
M − xc3M+2

E

)]
dϕdν, (7.120)

where Θ, xE , xM and s44M, ciM (i = 1,2,3) are given by Equations (1.21)–(1.17) and
(2.13), (2.18), respectively, and ζ jM ( j = 1,2), κkM (k = 2,4; see Equation (6.13)), κ9M

(see Equation (7.13)) have the forms

ζ 1M =
xE

xc3M
E − xc3M

M
, ζ 2M =−

xE xc3M
M

xc3M
E − xc3M

M
,

κ2M =

[
(c1M+ c2M)c2

3M

2
+ c1M −2c2M c3M

]
(p1n ρ2ME ζ 1M)

2

+
1

s44M

{[
∂

∂ϕ
(p1n ρ2ME ζ 1M)

]2

+Θ2
[

∂
∂ν
(p1n ρ2ME ζ 1M)

]2
}

,

κ4M = c1M (p1n ρ2ME ζ 2M)
2

+
1

s44M

{[
∂

∂ϕ
(p1n ρ2ME ζ 2M)

]2

+Θ2
[

∂
∂ν
(p1n ρ2ME ζ 2M)

]2
}

,

κ9M = ζ 1M ζ 2M (c1M − c2M c3M)(p1n ρ2ME)
2

+
1

s44M

∂
∂ϕ
(p1n ρ2ME ζ 1M)

∂
∂ϕ
(p1n ρ2ME ζ 2M)

+
Θ2

s44M

∂
∂ν
(p1n ρ2ME ζ 1M)

∂
∂ν
(p1n ρ2ME ζ 2M) . (7.121)

The normal stress p1n is given by Equation (2.27), where ρIN and ρ2ME in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum Wc (see Equation (2.23)).

Conditions C3M �= 0, C4M �= 0, C1M =C2M = 0. With regard to Equations (2.30),
(2.31), (7.5)–(7.12), (2.21), (2.22), (2.23), we get

εnM =
2p1n ρ2ME ζ 1M

x3
n

, (7.122)
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εϕM = εθM =−p1n ρ2ME

(
ζ 1M

x3
n
+

ζ 2M

xn

)
, (7.123)

εnϕM = s44M σnϕM =−

[
1
x3
n

∂
∂ϕ
(p1n ρ2ME ζ 1M)+

1
xn

∂
∂ϕ
(p1n ρ2ME ζ 2M)

]
,

(7.124)

εnθM = s44M σnθM =−Θ
[

1
x3
n

∂
∂ν
(p1n ρ2ME ζ 1M)+

1
xn

∂
∂ν
(p1n ρ2ME ζ 2M)

]
,

(7.125)

σnM = 2p1n ρ2ME

[
ζ 1M (c1M+2c2M)

x3
n

+
ζ 2M c2M

xn

]
, (7.126)

σϕM = σθM =−p1n ρ2ME

[
ζ 1M (c1M+2c2M)

x3
n

+
ζ 2M c1M

xn

]
, (7.127)

wM =
κ3M

x6
n
+

κ4M

x2
n
+

κ10M

x4
n

, (7.128)

WM = 4

π/2∫
0

π/2∫
0

[
κ3M

3

(
1

x3
E

−
1

x3
M

)
+κ4M (xM − xE)+κ10M

(
1
xE

−
1
xM

)]
dϕdν,

(7.129)

where Θ, xE , xM and s44M, ciM (i = 1,2,3) are given by Equations (1.21)–(1.17) and
(2.13), (2.18), respectively, and ζ jM ( j = 1,2), κ3M (see Equation (6.13)), κ10M (see
Equation (7.13)) have the forms

ζ 1M =
x3
E

1−
(

xE
xM

)2 , ζ 2M =
xE

1−
(

xM
xE

)2 ,

κ3M = 3(c1M+2c2M)(p1n ρ2ME ζ 1M)
2

+
1

s44M

{[
∂

∂ϕ
(p1n ρ2ME ζ 1M)

]2

+Θ2
[

∂
∂ν
(p1n ρ2ME ζ 1M)

]2
}

,

κ10M = ζ 1M ζ 2M (c1M+2c2M)(p1n ρ2ME)
2

+
1

s44M

∂
∂ϕ
(p1n ρ2ME ζ 1M)

∂
∂ϕ
(p1n ρ2ME ζ 2M)

+
Θ2

s44M

∂
∂ν
(p1n ρ2ME ζ 1M)

∂
∂ν
(p1n ρ2ME ζ 2M) . (7.130)
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The coefficient κ4M is given by Equation (7.121), where ζ M in Equation (7.121)
is given by Equation (7.130). The normal stress p1n is given by Equation (2.27),
where ρIN and ρ2ME in Equation (2.27) are given by Equations (6.89) and (3.53),
(4.130), (6.135), respectively, with respect to minimum Wc (see Equation (2.23)).

ConditionsC1M �= 0,C2M �= 0,C4M �= 0,C3M = 0. With regard to Equations (2.30)–
(2.32), (7.5)–(7.12), (2.21), (2.22), (2.23), we get

εnM =−p1n ρ2ME

(
ζ 1M+ζ 2M c3M xc3M−1

n

)
, (7.131)

εϕM = εθM =−p1n ρ2ME

(
ζ 1M+ζ 2M xc3M−1

n +
ζ 3M

xn

)
, (7.132)

εnϕM = s44M σnϕM =−

[
∂

∂ϕ
(p1n ρ2ME ζ 1M)+ xc3M−1

n
∂

∂ϕ
(p1n ρ2ME ζ 2M)

+
1
xn

∂
∂ϕ
(p1n ρ2ME ζ 3M)

]
, (7.133)

εnθM = s44M σnθM =−Θ
[

∂
∂ν
(p1n ρ2ME ζ 1M)+ xc3M−1

n
∂

∂ν
(p1n ρ2ME ζ 2M)

+
1
xn

∂
∂ν
(p1n ρ2ME ζ 3M)

]
, (7.134)

σnM =−p1n ρ2ME

{
ζ 1M (c1M − c2M)+ζ 2M [c3M (c1M+ c2M)−2c2M]x

c3M−1
n

−
2ζ 3Mc2M

xn

}
, (7.135)

σϕM = σθM =−p1n ρ2ME

[
ζ 1M (c1M − c2M)+ζ 2M (c1M − c2Mc3M) x

c3M−1
n

+
ζ 3M c1M

xn

]
, (7.136)

wM = κ1M+κ2M x2(c3M−1)
n +

κ4M

x2
n
+(κ5M+κ9M)x

c3M−1
n +

κ8M

xn
, (7.137)

WM = 4

π/2∫
0

π/2∫
0

[
κ1M

3

(
x3
M − x3

E

)
+

κ2M

2c3M+1

(
x2c3M+1
M − x2c3M+1

E

)
+κ4M (xM − xE)

+
κ5M+κ9M

c3M+2

(
xc3M+2
M − xc3M+2

E

)
+

κ8M

2

(
x2
M − x2

E

)]
dϕdν, (7.138)
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where Θ, xE , xM and s44M, ciM (i = 1,2,3) are given by Equations (1.21)–(1.17) and
(2.13), (2.18), respectively, and ζ jM ( j = 1,2,3), κ1M, κ2M (see Equation (6.13)), κkM

(k = 4,5,8,9; see Equation (7.13)) have the forms

ζ 1M =−
c3M xc3M−1

M

ζ M
, ζ 2M =

1
ζ M

, ζ 3M =
(c3M −1)xc3M

M

ζ M
,

ζ M =
(c3M −1) xc3M

M

xE
− c3M xc3M−1

M + xc3E−1
E ,

κ1M =
3(c1M − c2M)(p1n ρ2ME ζ 1M)

2

2

+
1

s44

{[
∂

∂ϕ
(p1n ρ2ME ζ 1M)

]2

+Θ2
[

∂
∂ν
(p1n ρ2ME ζ 1M)

]2
}

,

κ2M =

[
(c1M+ c2M)c2

3M

2
+ c1M −2c2M c3M

]
(p1n ρ2ME ζ 2M)

2

+
1

s44

{[
∂

∂ϕ
(p1n ρ2ME ζ 2M)

]2

+Θ2
[

∂
∂ν
(p1n ρ2ME ζ 2M)

]2
}

,

κ4M = c1M (p1n ρ2ME ζ 3M)
2

+
1

s44

{[
∂

∂ϕ
(p1n ρ2ME ζ 3M)

]2

+Θ2
[

∂
∂ν
(p1n ρ2ME ζ 3M)

]2
}

,

κ5M = ζ 1M ζ 2M (c1M − c2M)(2+ c3M)C1MC2M (p1n ρ2ME)
2

+
2

s44M

∂
∂ϕ
(p1n ρ2ME ζ 1M)

∂
∂ϕ
(p1n ρ2ME ζ 2M)

+
2Θ2

s44M

∂
∂ν
(p1n ρ2ME ζ 1M)

∂
∂ν
(p1n ρ2ME ζ 2M)

κ8M = ζ 1M ζ 3M (c1M − c2M)(p1n ρ2ME)
2

+
2

s44M

∂
∂ϕ
(p1n ρ2ME ζ 1M)

∂
∂ϕ
(p1n ρ2ME ζ 3M)

+
2Θ2

s44M

∂
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(p1n ρ2ME ζ 1M)

∂
∂ν
(p1n ρ2ME ζ 3M)

κ9M = ζ 2M ζ 3M (c1M − c2M c3M)(p1n ρ2ME)
2

+
2

s44M

∂
∂ϕ
(p1n ρ2ME ζ 2M)

∂
∂ϕ
(p1n ρ2ME ζ 3M)

+
2Θ2

s44M

∂
∂ν
(p1n ρ2ME ζ 2M)

∂
∂ν
(p1n ρ2ME ζ 3M) . (7.139)
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The normal stress p1n is given by Equation (2.27), where ρIN and ρ2ME in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum Wc (see Equation (2.23)).

ConditionsC1M �= 0,C3M �= 0,C4M �= 0,C2M = 0. With regard to Equations (2.30)–
(2.32), (7.5)–(7.12), (2.21), (2.22), (2.23), we get

εnM =−p1n ρ2ME

(
ζ 1M −

2ζ 2M

x3
n

)
, (7.140)

εϕM = εθM =−p1n ρ2ME

(
ζ 1M+

ζ 2M

x3
n
+

ζ 3M

xn

)
, (7.141)

εnϕM = s44M σnϕM =−

[
∂

∂ϕ
(p1n ρ2ME ζ 1M)+

1
x3
n

∂
∂ϕ
(p1n ρ2ME ζ 2M)

+
1
xn

∂
∂ϕ
(p1n ρ2ME ζ 3M)

]
, (7.142)

εnθM = s44M σnθM =−Θ
[

∂
∂ν
(p1n ρ2ME ζ 1M)+

1
x3
n

∂
∂ν
(p1n ρ2ME ζ 2M)

+
1
xn

∂
∂ν
(p1n ρ2ME ζ 3M)

]
, (7.143)

σnM =−p1n ρ2ME

[
ζ 1M (c1M − c2M)−

2ζ 2M (c1M+2c2M)

x3
n

−
2ζ 3M c2M

xn

]
,

(7.144)

σϕM = σθM =−p1n ρ2ME

[
ζ 1M (c1M − c2M)+

ζ 2M (c1M+2c2M)

x3
n

+
ζ 3M c1M

xn

]
,

(7.145)

wM = κ1M+
κ3M

x6
n
+

κ4M

x2
n
+

κ6M

x3
n
+

κ8M

xn
+

κ10M

x4
n

, (7.146)
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E

)
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(
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)
+

κ8M

2

(
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E

)
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(
1
xE

−
1
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)]
dϕdν,

(7.147)
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where Θ, xE , xM and s44M, ciM (i = 1,2,3) are given by Equations (1.21)–(1.17) and
(2.13), (2.18), respectively, and ζ jM ( j = 1,2,3), κ3M (see Equation (6.13)), κkM

(k = 6,10; see Equation (7.13)) have the forms

ζ 1M =
2

ζ M x3
M

, ζ 2M =
1

ζ M
, ζ 3M =−

3

ζ M x2
M

, ζ M =
2

x3
M

+
1

x3
E

−
3

xE x2
M

,

κ3M = 3(c1M+2c2M)(p1n ρ2ME ζ 2M)
2

+
1

s44M

{[
∂

∂ϕ
(p1n ρ2ME ζ 2M)

]2

+Θ2
[

∂
∂ν
(p1n ρ2ME ζ 2M)

]2
}

,

κ6M =
2

s44M

∂
∂ϕ
(p1n ρ2ME ζ 1M)

∂
∂ϕ
(p1n ρ2ME ζ 3M)

+
2Θ2

s44M

∂
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(p1n ρ2ME ζ 1M)

∂
∂ν
(p1n ρ2ME ζ 3M) ,

κ10M = ζ 2M ζ 3M (c1M+2c2M)(p1n ρ2ME)
2

+
1

s44M

∂
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(p1n ρ2ME ζ 2M)

∂
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(p1n ρ2ME ζ 3M)

+
Θ2

s44M

∂
∂ν
(p1n ρ2ME ζ 2M)

∂
∂ν
(p1n ρ2ME ζ 3M) . (7.148)

The coefficients κ1M, κ4M, κ8M are given by Equation (7.121), where ζ iM (i = 1,2,3)
in Equation (7.121) is given by Equation (7.148). The normal stress p1n is given
by Equation (2.27), where ρIN and ρ2ME in Equation (2.27) are given by Equa-
tions (6.89) and (3.53), (4.130), (6.135), respectively, with respect to minimum Wc

(see Equation (2.23)).

ConditionsC2M �= 0,C3M �= 0,C4M �= 0,C1M = 0. With regard to Equations (2.30)–
(2.32), (7.5)–(7.12), (2.21), (2.22), (2.23), we get

εnM =−p1n ρ2ME

(
ζ 1Mc3M xc3M−1

n −
2ζ 2M

x3
n

)
, (7.149)

εϕM = εθM =−p1n ρ2ME

(
ζ 1M xc3M−1

n +
ζ 2M

x3
n
+

ζ 3M

xn

)
, (7.150)

εnϕM = s44M σnϕM =−p1n ρ2ME

(
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n

∂ζ 1M

∂ϕ
+

1
x3
n

∂ζ 2M

∂ϕ
+

1
xn

∂ζ 3M

∂ϕ

)
, (7.151)

εnθM = s44M σnθM =−Θp1n ρ2ME

(
xc3M−1
n

∂ζ 1M

∂ν
+

1
x3
n

∂ζ 2M

∂ν
+

1
xn

∂ζ 3M

∂ν

)
, (7.152)

138



σnM =−p1n ρ2ME

{
ζ 1M [c3M (c1M+ c2M)−2c2M]x

c3M−1
n −

2ζ 2M (c1M+2c2M)

x3
n

−
2ζ 3Mc2M

xn

}
, (7.153)

σϕM = σθM =−p1n ρ2ME

[
ζ 1M (c1M − c2Mc3M) x

c3M−1
n +

ζ 2M (c1M+2c2M)

x3
n

+
ζ 3M c1M

xn

]
, (7.154)

wM = κ2M x2(c3M−1)
n +

κ3M

x6
n
+

κ4M

x2
n
+κ7M xc3M−4

n +κ9M xc3M−1
n +

κ10M

x4
n

, (7.155)
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π/2∫
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)]
dϕdν, (7.156)

where Θ, xE , xM and s44M, ciM (i = 1,2,3) are given by Equations (1.21)–(1.17) and
(2.13), (2.18), respectively, and ζ jM ( j = 1,2,3), κ3M (see Equation (6.13)), κkM

(k = 3,7,9,10; see Equation (7.13)) have the forms
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ζ M x3
M

, ζ 2M =
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m
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,
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2
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+
2

s44M
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(p1n ρ2ME ζ 2M)
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+
2Θ2

s44M
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(p1n ρ2ME ζ 1M)
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(p1n ρ2ME ζ 2M) ,

κ9M = ζ 1M ζ 3M (c1M − c2M c3M)(p1n ρ2ME)
2
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1

s44M
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κ10M = ζ 2M ζ 3M (c1M+2c2M)(p1n ρ2ME)
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+
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∂
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∂
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(p1n ρ2ME ζ 3M) . (7.157)

The coefficients κ2M, κ4M are given by Equations (7.121), (7.139), where ζ iM

(i = 1,2,3) in Equations (7.121), (7.139) is given by Equation (7.157). The normal
stress p1n is given by Equation (2.27), where ρIN and ρ2ME in Equation (2.27) are
given by Equations (6.89) and (3.53), (4.130), (6.135), respectively, with respect to
minimum Wc (see Equation (2.23)).
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