This book presents original mathematical models of thermal stresses in
composite materials with three components. In contrast to mathematical
models for two-component materials, which are determined in the first
volume, the three-component materials consist of an isotropic matrix and
isotropic ellipsoidal inclusions with an isotropic ellipsoidal envelope. These
stresses are a consequence of different thermal expansion coefficients of
the material components. The mathematical determination results from
mechanics of an isotropic elastic continuum, and results in different
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Introduction

This book! presents original mathematical models of thermal stresses in com-
posite materials with three components. In contrast to mathematical models of the
thermal stresses in two-component materials, which are determined in the first vol-
ume [1], the three-component materials consist of an isotropic matrix and isotropic
ellipsoidal inclusions with an isotropic ellipsoidal envelope. These stresses origi-
nate during a cooling process, and are a consequence of different thermal expansion
coefficients of the matrix, the ellipsoidal envelope and the ellipsoidal inclusion.

The mathematical models are determined for a suitable model system. The model
system is required to correspond to real isotropic matrix-envelope-inclusion compos-
ites. The thermal stresses are derived within-a suitable coordinate system. The co-
ordinate system is required to correspondto a shape of the ellipsoidal envelope and
inclusion. Consequently, the mathematical determination results from mechanics
of an isotropic elastic continuum, and results in different mathematical solutions for
the thermal stresses in the material components. Due to these different mathematical
solutions, the principle of minimum elastic energy is considered.

The mathematical models for the three-component materials are applicable to
those for the thermal-stress induced micro-/macro-strengthening and crack formation
in the two-component materials, which are determined in the first volume [1].

!'This book was reviewed by the following reviewers:
Assoc. Prof. Ing. Robert Bidulsky, PhD., visiting professor, Politecnico di Torino, Torino, Italy

Assoc. Prof. Ing. Daniel Kottfer, PhD., Alexander Dubéek University of Trenéin, Faculty of Special Technology De-
partment of Mechanical Engineering, Trenéin, Slovak Republic
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Chapter 1

Matrix-Envelope-Inclusion
Composite

1.1 Model System

Figure 1.1 shows a model system, corresponding to real matrix-envelope-inclusion
composites, which is considered within the mathematical models of the thermal
stresses. This model system consists of an infinite isotropic matrix with isotropic
ellipsoidal envelopes on a surface of isotropic ellipsoidal inclusions with the dimen-
sions ayy, azg, azq (g = IN,E) and the inter-inclusion distance d along the axes x1, x2,
x3 of the Cartesian system (Oxx,x3), respectively, where O represents a centre of
the ellipsoidal inclusion. The subscript g =1IN and g = E is related to the inclusion
and envelope, respectively.

As presented in [2]-[23], the thermal stresses are determined in the cubic cells
with the dimension d along the axes x1, x, x3 and with central ellipsoidal inclusions
(see Figure 1.2). Due to the infinite matrix, the thermal stresses, which are deter-
mined for one of the cubic cells, are identical with those, which are determined for
any of the cubic cells [2]<[23]. With regard to the volume V;y =4ma;,aza3 [24] and
Ve = d3 of the ellipsoidal inclusion and the cubic cell, the inter-inclusion distance d
as a function of the inclusion volume fraction vy is derived as

VIN =

Vin _ATaunaunasiy (O’g)’ Je (4nallNa21Na3IN>l/37 (1.1

Ve o 3d3 6 3vy

where the value vyymqx = /6 results from the condition ajjy — aig — d /2 (i=1,2,3).
Accordingly, the thermal stresses are functions of the material parameters ajg(i=1,2,3
q=IN,E), vy, d.

1.2 Coordinate System

Figure 1.3 shows the ellipse E with the dimensiions a, b along the axes x, y, respec-
tively. The ellipse E is described by the function

3
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Figure 1.1: The matrix-envelope-inclusion system with an infinite isotropic matrix
with isotropic ellipsoidal envelopes on a surface of isotropic ellipsoidal inclusions
with the dimensions ay4, azy, az, (q = IN,E) and the inter-inclusion distance d along
the axes xi, x, x3 of the Cartesian system (Oxjxpx3), respectively, where O repre-
sents a centre of the ellipsoidal inclusion. The subscript ¢ = IN and g = E is related
to the inclusion and envelope, respectively.

2 2
(f) +(X) —1. (12)
a b
Any point P of the ellipse E is-described by the coordinates [24]

x=asinv, y=bcosv, Ve (0,2m), (1.3)
where the normal n of the ellipse E at the point P is derived [24]
X . y
— (x—asinv)+ = (y—bcosv) =0. (1.4)

ov ( av
With regard to Equations (1.3), (1.4), we get

ybsinv —xacosv + (aszz) sinvcosv = 0. (1.5)

The thermal stresses are determined by the spherical coordinates (r,@v) (see Fig-
ure 1.4). The model system in Figures (1.1), (1.2) is symmetric, and then the thermal
stresses are determined within the intervals ¢ € (0,7/2), v € (0,7/2) [2]-[23].

Figure 1.4 shows the ellipsoidal inclusion for @,v € (0,t/2) with the centre O
and with the dimensions ayy = O1, axy;y = 02, a3y = O3 along the axes x1, xp,
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Figure 1.2: The cubic cells with the dimension d along the axes xi, x2, x3 of the
Cartesian system (Oxjxpx3) and with the plane xjpx3, where O represents a centre of
the ellipsoidal inclusion, and (x12 C x1x2, X12x3.-L x1x2.
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Figure 1.3: The ellipse E with the dimensions a, b along the axes x, y of the Cartesian
system (Oxy), respectively, and the point P related to the angle o.

x3 of the Cartesian system (O, x;,x;,x3) (see Figures (1.1), (1.2)), respectively. Due
to clarity of Figure 1.4 the ellipsoidal envelope in Figures 1.1, 1.2 is not depicted in
Figure 1.4. Finally, (PIN,xn,xq,?xV) is a Cartesian system at the point P;y, where the
axes x, and xy represents a normal and a tangent of the ellipse Ejy at the point Py,
respectively, x12x3 L x1x2, (x12 C x1x2, Xo L x12.
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Figure 1.4: The inclusion with the centre O and with the dimensions aj;y = O1,
ayy = 02, azjy = O3 along the axes x1, xp, x3 of the Cartesian system (O, xy,x2,x3),
respectively. The ellipses E12, E 123 in the planes x1x», x12x3 (see Figure 1.4) are given
by Equations (1.6), (1.7), respectively, whete x12x3 L x1x2, (x12 C x1x2, Xo L x12.
The point Pry on the inclusion surface is-defined by ¢,v € (0,7t/2), v € (0,t/2),
and (Pin,Xn,Xe,xy) is a Cartesian system at the point Py, where Py C Ejy. The
axes x, and xy represents a normal and a tangent of the ellipse Ejy at the point Py,
respectively. Due to clarity of Figure 1.4 the ellipsoidal envelope in Figures 1.1, 1.2
is not depicted in Figure 1.4.

Figure 1.5 shows the cross section 0789 of the cubic cell in the plane x12x3 (see
Figures 1.2, 1.4). The angle v € (0,7t/2) defines a position of the point P;y with
the Cartesian system (P,N,xn,x(p,xv) (see Figure 1.4) for v = vq (see Figure 1.5a),
v € (0,vp) (see Figure 1.5b), v € (vo,m/2) (see Figure 1.5¢). The points Pjp, Py
represent intersections of the normal x, with O789. Due to clarity of Figure 1.5, the
angle vip = Z(OPg,x3) (see Equation (1.14)) is depicted in Figure 1.5b only.

Let x,,;y and x,, represent normals on the envelope-inclusion and envelope-matrix
boundaries at the points Py and Pg, respectively. As analysed in [2]-[21], due to the
symmetry of the model system, any points P;y and Pg on the envelope-inclusion and
envelope-matrix boundaries (see Figure 1.5) exhibit the displacements u,;y and u,g
along the normals x,;y and x,g, respectively, i.e., upg = tyg = 0 (¢ = IN,E) [2]-[21],
where ugq, ity are displacements along the tangents xq, Xvq, respectively.
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Figure 1.5: The angle v € (0,m/2)
X3 defines a position of the point Py with
the Cartesian system  (Ppy, Xy, Xg,Xy)
(see Figure 1.4) for (a) v =vq, (b) v €
Xn40,vp), (¢) v € (vo,m/2), where v is
/ given by Equation (1.9). The points P2,
Py represent intersections of the normal
x;,, with 0789, where O789 is a cross sec-
tion of the cubic cell in the plane xj2x3
(see Figures 1.2, 1.4). The angle 6 =
Z(xp,x3) is given by Equation (1.18).
X12  Due to clarity of Figure 1.5, the angle
Ve = Z(OPg,x3) (see Equation (1.14))

c is depicted in Figure 1.5b only.

Consequently, the mathematical models in this book can be determined provided
that ug, = uyqg = 0 (g = IN, E), which results in the condition x,, = x,;y = x,£. Finally,
the condition x,, = x,;y = x,,¢ defines relationships between the dimensions a;;y and
aig (i=1,2,3; see Equation (1.13)). With regard to Equation (1.13), the ellipsoidal
inclusion and ellipsoidal envelope are required to represent a rotational ellipsoid (a
spheroid), i.e., a1y = azq # asq (¢ =IN,E). The relationships (see Equation (1.13))
are determined by the following procedure.

With regard to Equation (1.3), any point of the ellipse Ejz7y in the plane xjx; is
described by the coordinates



. o
X] =aiNcos®, xp» =ayysin@, ¢ € <0,§>. (1.6)

Similarly, any point P;y of the ellipse Ejy in the plane xjox3 (see Figure 1.5) is
described by the coordinates

X12IN = @12INSINV,  X3[y = A3[NCOSV,

T
apy =04 = cz%mcosz(p—|—a%INsin2 9, Q,ve <O, §> (1.7)

Consequently, any point Pg of the ellipse Ef in the plane x12x3 (see Figure 1.5) is
described by the coordinates

X12E = Q12ESINVE, X3 = 435 COSVE,
2 2 2 w2 T
app = 05 =\/ajpcos“Q+as,sin“Q, ©,Vg € 0,5 . (1.8)

With regard to Equation (1.5), (1.7), (1.8), the normals'x,;y and x,g at the points
Py and Pg of the ellipses Ejy and Eg in the plane xox3(see Figure 1.5), respectively,
are derived as

. . s
X3azgn SinV — x2 ajarn cosvV + (a%znv — a%nv) sinvcosv=0, ve& <O, §> , (1.9)

. . T
X3a3g SINVE — X2 d12E COSVE -+ (a%ZE — a%E) SINVE COSVE = O, VE € <0, §> .

(1.10)
With regard to Equations (1.9), (1.10), the condition x,,;y = X, results in
2 2 2 2
a —a Aoy —a
N BN _ ToE — BE (1.11)
ai2IN a3IN a2k a3k
apga
tanvg = —2E 5N oy, (1.12)
a12IN A3E

With regard to a12, (see Equations (1.7), (1.8)) and due to az, # f (¢) (¢ = IN,E),
the relationships between the dimensions a;;y and a;g (i=1,2,3) are derived as

2 2 2 2
AN — 43N _ Y E 93
- )
AalJN A3IN alg asg

a1g = axq # azg, aiNy < aig, i=1,2,3, q=1IN,E,

(1.13)



where the angle vg = £ (OPg,x3) (see Figure 1.5b, Equation (1.12)) has the form

. aig azpy tanv
sinvg =

b
\/(amv asp)? + (aig azy tanv)?
AN G3E

\/(allN azg)* + (a1 asy tanv)?

COSVE = (1.14)

With regard to Equation (1.9), the coordinates xy,, ,, x3 of the point P; have the
forms

2 2 N\
ay —asy) sinv
X120 = (i = i) L x3=0, ve <07E>. (1.15)
aiiN 2
Similarly, the coordinates xy,,,,, X35 Of the point Py in Figure 1.5b for v € (0, vq)

are derived as

sinv [ dcosv d
X12M=—( —&-a%IN—a%IN), X3M:§7 \AS <0,V0>. (1.16)

ayn \ 2azn

The coordinates xy,,,,, X3) of the peint Py in Figure 1.5¢ for v € (vo,m/2) have
the forms

d
MM (@) sinv
T . T T
f((P):COS(P7 (PE <O,Z>’ f((P):sm(Pa (p6<17§>7
COosV aynd 2 2 T
= — —). 1.1
asN [Zf((p) sinv AN a”N} » VE <VO’ 2> (LI7)

The coordinate x2)s of the point Py in Figure 1.5a for v = vg is given by Equa-
tion (1.17), where x3y; = d /2. With regard to Equation (1.9), the angle v represents
a root of the following equation

d

COosVq aynd 2 2 —0
aziy —ain Y

asiN {Zf((p) sinvo
f(9) =cosg, <pe<0,§>; f(9) =sing, cpe<g,g>, (1.18)

and this root is determined by a numerical method. The angle 8 = £ (x,,x3) is de-
rived as



X3p 1

cosO = = ’
\/(X12P—X121)2+X§p \/1+(a31N tanv/ay)?
1
sin@ = . (1.19)
\/1 + (a“N COtV/a31N)2

Consequently, we get [24]

a (a8 o d
Z [ — -0 1.2
0 <3<p> a9~ o (120
where the function © = © (¢) has the form
a azy sinv 2
0= <ﬂ> [(3’”—> +cos2v] : (1.21)
a3IN ain

As presented in [2]-[23], the thermal stresses, which are determined along the
axes Xy, Xg, Xg of the Cartesian system (P, xn,xq,,xe), represent function of the spheri-
cal coordinates (x,,®,0) for ¢,0 € (0,t/2). The intervals x,, € (0,x/n), X, € (X1, XE)
and x, € (xg,xy) are related to the ellipsoidal inclusion, envelope and cell matrix,
respectively. Finally, we get

xiN = PPy = \/(auN sinv’—x120)> + (a3v cosv)?,

Xg = PiNPg = \/(alE sinvg —ayn sinv)2 + (asgcosvg — agmcosv)z,

Xy = PpPy = \/(xle —aig sinvE)2 + (x3p — a3g COSVE)z, (1.22)

where sinvg, cosvg and x129, X123, X33 are given by Equations (1.12) and (1.15)-
(1.16), respectively.
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Chapter 2

Elastic Solid Continuum

2.1 Fundamental Equations

As analysed in [2]-[21], any point P of the normal x;, exhibits the displacement u,
along x,,. The thermal stresses are determined along the axes x;, x¢, Xg of the Carte-
sian system (P, xn,xq,,xe). Fundamental equations of mechanics of a solid continuum
are represented by Cauchy’s equations, the equilibrium equations and Hooke’s law.
Cauchy’s equations represent functions of strains and displacements. With respect
to the normal displacement u,,, Cauchy’s equations have the forms [2]-[21, 23]

ouy,
= — 2.1
gn aXny ( )
£o =g = % 2.2)
n
1 ou
€np = Egn = X 8_(;})1’ (2.3)
® Ju
€n0 = Eop = x_ B_Vn’ (24)
n

where €, is a normal strain along the axis x,, and © is given by Equation (1.21).
Consequently, € and €¢ are tangential strains along the axes x¢ and xg, respectively.
Finally, €,¢, €,¢ and €¢y, €g, represent shear strains along the axes x, and x¢, xp,
respectively. Due to up = uy = 0, we get €¢y = €y = 0 [2]-[23], where uq, uy
are displacements along the axes xg, Xy, respectively, and €y is a shear strain. As
presented in [2]-[23], the equilibrium equations are derived as

dG,  OCug 0G0
2cnfc(pfov+xn§:+ a:;; +0 83 =0, (2.5)
dG¢ dCg
—a(p + 3Gn(p +Xn 8); =0, (2.6)
do 0
(C] 78\16 + 30650 +Xn ax’:le =0, 2.7

11



where G, is a normal stess along the axis x,. Consequently, G and Gy are tangen-
tial stresses along the axes x¢ and xg, respectively. Finally, 6,9, Gn9 and G, Oy
represent shear stresses along the axes x,, and Xps X0 respectively, where Gno = Opn»
G,9 = Ogp. Due 10 €9y = &yp = 0, we get Gyy = Oy = 0 [2]-[23], where Oy is a
shear stress. With regard to € g = 0, 0¢pg = 0, Hooke’s law has the form [2]-[21, 23]

€y = 5110, + 512 (G + Gp) , (2.8)
€¢ = 512 (0n +0g) + 5110, (2.9)
€9 = 512 (Gn + G¢) + 51106, (2.10)
€, = 54409, (2.11)
€np = 440, (2.12)

where 511, 512, S44 are derived as [25]

é, 512:_%; S44=@- (2.13)

Finally, E and p are Young’s modulus and Poisson’s ratio, respectively. In case of
the ellipsoidal inclusion and the cell matrix, we get E = Ejy, u = ujy and E = E)yy,
o = uy, respectively.  With regard to Equations (2.1)-(2.4), (2.8)—(2.12), we get

[2]1-23]

S11 =

0
o = (c1 +cz)a—j‘c’h2C2 % (2.14)
n n
d
Gp=0Cp=—02 a_ﬁz"m?, (2.15)
n n
1 du,
o = —— . 2.16
0= e 2.16)
© ou 2.17)

"o $44Xy OV ’
where c1, ¢3, ¢3 (see Equation (2.20)) have the forms

___E o BE 40—
S TEm-20 2T Uxma—zm @~ HI-w<0 I8

12



and c3 < 0 due to u < 0.5 for real isotropic components [26]. Let Equations (2.14)—
(2.17) be substituted to Equation (2.18) and to [0Eq.(2.6)/d¢] + © [dEq.(2.7)/dV].
Consequently, Equations (2.5)—(2.7) are derived as

%u Ju U,
2 n n n
2 -2 —— =0 2.19
" ax,% + 2 0x, o+ S44 (C] Jrcz) ’ ( )
oy,
Xn — = c3Uy, (2.20)
ox,
where U, is derived as
U, = (S} . 2.21
=50 T B 2.21)

The system of the differential equations (2.19), (2.21) is solved by the mathemat-
ical procedures in Sections 3.1, 4.1, 5.1, 6.1, 7.1.

2.2 Elastic Energy

As analysed in [2]-[23] with respect to the different mathematical procedures (see
Sections 3.1, 4.1, 5.1, 6.1, 7.1), such a mathematical solution, which exhibits a min-
imum value of the elastic energy Wc-of the cubic cell, is considered, where Wyy, Wg
and Wy, is elastic energy, which is accumulated in the volume Vyy, Vg and Vy; of
the ellipsoidal inclusion, envelope and cell matrix, respectively. The elastic energy
density w is derived as [25]

1
w=> (€40n + €90 + €000) + EngOnp + €n60n6, (2.22)

and Wyy, Wi, Wys and W have the forms

/2 ®/2 xn
Wuv:/wuvdVlN:g// / win X2 dx, do dv,
Vin 0 0 0
n/2 /2 xy
WM:/deVM:S/ / /wa,fdxnd(pdv,
Vu 0 0 xw
n/2 /2 xy
WE:/wEdVE:S/ / /wEx,fdxndq)dv,
VE 0 0 );E

13



We = Wiy + Wg + Wy (2.23)

2.3 Reason of Thermal Stresses

The thermal stresses are a consequence of the condition oyy # O # Oy, Oy =
O # Oy, Oy 7 O = Oy, where 0 is a thermal expansion coefficient of the el-
lipsoidal inclusion (g = IN), the ellipsoidal envelope (¢ = E) and the matrix (¢ = M)
(see Figure 1.1). The thermal stresses originate at the temperature 7T < T,, where
T, is relaxation temperature. If T > T, then the thermal stresses are relaxed by
thermal-activated processes [26]. The temperature 7, is defined by the formula
T, = (0.35—-0.4) x T, [26], where T,, is melting temperature of a three-component
material. If oy = 0, (T') (¢ = IN,E,M), then the coefficient B, is derived as

Tr
B, = / 0,dT, q=IN,E;M. (2.24)
T

The thermal stresses are a consequence of the normal stresses p1,, pa,, Which act
on the envelope-inclusion and envelope-matrix boundaries for x,, = x;y and x = xg,
respectively.

If By # BE # Bum, then py,, pa, arederived as [2]-[23]

Do — (pm+p22e) (Be —Biv) +p212 (Be — Bum) ’ 2.25)

(piv+p1iE) (PM + P22E) — P12E P21E

~ (piv+p11£) By — Be) +p12e (Biv — Be)
Do = , (2.26)
(PN +P11E) (PM +P22E) — P12E P21E
where the coefficients pyy; pije (i, j=1,2); py are given by Equations (6.89); (6.62),
(6.72), (6.82), (7.83), (7.93), (7.103); (3.24), (4.24), (4.34), (4.44), (4.54), (5.23),
(5.33), (5.43), (5.53), (6.22), (6.32), (6.42), (6.52), (7.23), (7.33), (7.43), (7.53),
(7.63), (7.73), respectively, with respect to minimum W, (see Equation (2.23)).

If By # Be = Bu, then the stress py, has the form [2]-[23]

Be — By
PN +PimE’
where p;y and piyg are given by Equations (6.89) and (3.53), (4.130), (6.136),
respectively, with respect to minimum W, (see Equation (2.23)).

If B;v = BE # B, then the stress po, is derived as [2]-[23]

Pin = (2.27)
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By —Be
PM +P2NE’
where pyy and poyg are given by Equations (6.89) and (3.63), (4.140), (5.129),
(5.139), (6.143), respectively, with respect to minimum W, (see Equation (2.23)).

As an example of minimum W, with respect to different mathematical solutions
of the thermal stresses in the matrix, the ellipsoidal envelope and inclusion, let a real
three-component material with the thermal expansion coefficients oy # op # oy
be considered. Let Wy, Wg, Wiy given by Equations (3.22), (4.72), (6.88), respec-
tively, result in minimum W, for this real material. Consequently, the thermal stresses
in the matrix; the ellipsoidal envelope and inclusion, which are functions of py,, pa,
(see Equations (2.25), (2.26)), are given by Equations (3.15)—(3.24); (4.65)-(4.74)
and (6.83)—(6.89), respectively. Finally, the coefficients py, p;je (i, j=1,2) and pyy
in Equations (2.25), (2.26) are given by Equations (3.24), (4.74) and (6.89), respec-
tively.

P2n = (2.28)

2.4 Boundary Conditions

The mathematical solutions of the system-of the differential equations (2.19), (2.21)
include integration constants. As presented in [2]-[23], these constants are deter-
mined by the following boundary conditions for the ellipsoidal inclusion, envelope
and cell matrix.

2.4.1 Matrix

The absolute value |u,)y| is required to represent a decreasing function of x, €
(xg,xpr) with a maximum on the envelope-matrix boundary, i.e., for x,, = xg.

If Biv = Be # Bu or Brv # Be # Bum, then the mandatory boundary conditions
have the forms [2]-[23]

(OnM)y,—x, = —P2ns (2.29)

(M"M)xn:xM = 07 (230)

where xg and py, are given by Equations (1.22) and (2.26), (2.28), respectively.
Equations (2.29) and (2.30) represent stress and geometric boundary conditions, re-
spectively.

If Biv # Be = B, then we get (”nM)x,,:xE = (u"E)x”:xE' With regard to Equa-
tion (2.2), we get (u"M)x,,:xE =Xxg (S‘PE)x,,:xE’ (u,,E)x”:xE = Xg (8@E>xn:x5' If By #
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Be = Bum, then Equation 2.29 is replaced by the following mandatory boundary con-
dition [2]-[23]

(Bom),, -, = (B0E), _,, = —P1nP2ME, 231)

where poyf is given by Equations (3.53), (4.130), (6.135) with respect to minimum
W, (see Equation (2.23)). In this case, two integration constants for the cell ma-
trix, which are included in (E‘PM)xn:xE’ are functions of (a(pE)x,,:xE' The tangential
strain (S(pE) — includes the integration constant C,, which is determined by Equa-

tion (2.33). The tangential strain (Sq)M) _— is a function of the normal stress pq,
and the coefficient poyg (see Equations (2 27) (3.53), (4.130), (6.135)).

As analysed in [2]-[23], the following additional boundary condition can be con-
sidered

(&nm)y,—x,, = O- (2.32)

2.4.2 Envelope
If By # BE # Pum, then the boundary conditions have the forms [2]-[23]

(OnE)y, =1y =>Pln; (2.33)
(OnE)y,—ip = —P2n- (2.34)

If Biy # Be = PBum, then |u,g| = £ (x,) represents a decreasing function of x, €
(x1n,xE) (see Equation (1.22)). Consequently, the integration constant C, is deter-
mined by Equation (2.33) [2]-[23].

If B;nv = Be # Bum, then |u,g| = f (x,) represents an increasing function of x, €
(x1n,xg) (see Equation (1.22)). Consequently, the integration constant C, is deter-
mined by Equation (2.34) [2]-[23].

2.4.3 Inclusion

The absolute value |u,r| = f (x,) represents an increasing function of x, € (0,x7y)
with a maximum value on the envelope-inclusion boundary, i.e., for x,, = x;y. Addi-
tionally, the conditions (uun), o +— Fo°, (€v),, .o 7 £, (OIN), g 7 oo
are required to be fulfilled [2]-[23].

If Brv # BE # Bas or Brv # Be = Pas, then the boundary conditions have the forms
[2]-[23]

(tn)y,—0 =0, (2.35)
16



(GflIN)x,,=x1N = —Pln, (2.36)

where xjy is given by Equation (1.22), and the integration constant Cyy is deter-
mined by Equation (2.36). Equations (2.35) and (2.36) represent geometric and
stress boundary conditions, respectively. If B;y # Be # Ba or Biv # Be = B, then
the normal stress pi,, which acts on the envelope-inclusion boundary, is given by
Equations (2.25) or (2.27) [2]-[23], respectively.

If B;y = Be # Pum, then we get (“"’N)xn=xl/v = (””E)xn=xl/v' With regard to Equa-
tion (2.2), we get (unin),, —y,, =XIN (S(pIN)xn:xlNa (nE) gy = XIN (EgE )x,l:xuv' Con-
sequently, Equation 2.36 is replaced by the following mathematical boundary condi-
tion [2]-[23]

(eorv), _ = (80E), _, = —P2PiNE; (2.37)

where piyyg is given by Equations (3.63), (4.140), (5.129), (5.139), (6.143) with
respect to minimum W, (see Equation (2.23)). In this case, the integration con-
stant Cp, in (&PIN)X is a function of (s(pE) [2]-[23]. The tangential strain

=XIN Xn=XIN

(s(pE) . includes the integration constant.C,; which is determined by Equation
(2.34). The tangential strain (eq,E) is a function of the normal stress pj, and
the coefficient pisyg (see Equation (3 63)) The normal stress po,,, which acts on the
envelope-matrix boundary, is given by Equation (2.28).
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Chapter 3

Mathematical Model 1

3.1 Mathematical Procedure

Let the mathematical procedure x, [0Eq.(2.20)/dx,] be performed, and then we
get [2]-[23]

R U,
2 n n

1— — =0 3.1
n ax’% +( CS)XVL ax’l ) ( )
where ¢3 < 0 and U, = U, (x,,9,0) are given by Equations (2.18) and (2.21), re-
spectively. Let Equation (2.20) be substituted to Equation (3.1), and then we get

[2]-{23]

2 0°U,
" ox?

Let U, be assumed in the form U,, = x,z‘, then we get [2]-[23]

+e3(1—¢3)U, =0. (3.2)

Uy =C1xM +Cyx2, (3.3)

where C1, C; are integration constants, which are determined by the boundary con-
ditions in Section 2.4, and A, Ay, with respect to u < 0.5 for a real isotropic material
[26], have the forms [2]-[23]

A= % [1+\/1+16(1—y)[1+4(1—u)]} >3,

1
7»225[1—\/14-16(1—,11)[14—4(1—;1)]}<—2. (3.4)
Let Equation (3.3) be substituted to Equation (2.19), and then we get [2]-[23]

8214 al/l A A
x2 ax;+2xna—x:72un:C1xnl+C2x,12. (3.5)
The mathematical solution of Equation (3.5), which is determined by Wron-
skian’s method [24], is derived as
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2
U =Y Cix}m. (3.6)
=1

With regard to Equations (2.1)—-(2.4), (2.14)-(2.17), (2.22), (3.6), we get

2
gn= Y Cihixii! (3.7)
i=1
S A
gp= 2 Cixyi !, (3.8)
i=1
2 9C;
Enp = 5440np = 3, = 1y 3.9)
i=1 99
2, 9C;
ene=~v446ne=®28—lx,3"‘*1, (3.10)
i=1 %Y
z A,
on= CEixy !, (3.11)
i=1
S A
69 =09 = 3. Ci&ayixy ', (3.12)
i=1
w15 L P27 gy i he2, (3.13)

where O, s44 is given by Equations (1.21), (2.13), respectively, and &;, 24, §24i12)s
Kj (i=1,2; j=1,2,3) are derived as

g, BNty o E(+Aiw)
= T [ (-2
Eyirny = EXR (1) 4y 42}
2+i+2j — 2(1_’_#)(1_2”) s

A 2 N2
Ki:ci2g2+3i+$ (%—Z’) +0? (%) ]7

1 /dC, G, ,0C1 9Cy

K3 =C;C — = ==+0"—— i, j=12. (3.14

3 1 2(§6+§7)+S44<8(P a(p Jv ov y L] ’ ( )
In case of the thermal stresses in the ellipsoidal inclusion, |u,n| = f (x,) rep-

resents an increasing function of x, € (0,x7y), and then Cyzy # 0, Coyy = 0 (see

Equation (3.6)). If Ciyy # 0, Coyy = 0, then the thermal stresses in the ellipsoidal
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inclusion are determined in [1]. The radial stress p, which acts on on the inclusion-
matrix boundary is replaced by pi, (see Equations (2.25), (2.27)), where p;y in
Equations (2.25), (2.27) is determined in [1].

3.2 Condition BIN 7é BE 7é BM

3.2.1 Matrix
With regard to Equations (2.29), (2.30), (3.6)—(3.13), (2.22), (2.23), we get

Ny [ x himr—1
& = pznZCM( ) : (3.15)
L
1 Xn A1
EoM = oy = —p2n2 o ( ) 7 (3.16)
L
a 2
€noM = 544M OnoM = — = z ( p2nM 1) xl,M 1, (3.17)
00 S\ Lipgxl
20
P2n dng—1
Enom = S44p Opomt = —O Y, = [ ——=— | a1, (3.18)
i=18V (giMxZ;I:M 1> n
Aiv—1
alM <xn) M
Ot = —p» , (3.19)
nM =P nlz‘{ Tt \xm
}\.;M—l
X,
Gon = Ogy = —pznz éz*ﬂ’;” <XM) : (3.20)
': l
Wy = Kiym (7\1M 1) xn(kzM*I)++K3Mx2l\.1M+7\,2M—27 (321)

n/27/2 Kint (x]%}mﬂ 2>HM+1) Kont (x]%/[MMJrI _xéX2M+1)
- / /
M ;4 2Mm +1 + 2hom+1
30 (XZ;IIM“F}&ZM‘FI _xé1M+)\2M+1>
+ dodv, (3.22)

Ay + Aoy + 1

where ©, xg, Xy, Saam, M, ﬁjM (i=12; j=1,...,4) are given by Equations (1.21),
(1.22), (2.13), (3.4), (3.14), respectively, and C;y, Kim (i=1,2; j=1,2,3; see Equa-
tion (3.14)) have the forms
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Aiv—1 A3—im—1
XE XE
=g ()7 e ()
2 1 a 2
P2n P2n
Kiv = i + _—
M §2+3M (Cl Aiv— 1) Saap [a@ <C,1MXXIM 1)]
> a ?
9 P2n
Sa4aM CMX im—1 ’
s 3, Gom +Em) L L9 P 9 [ pm
M G an 2 400 00 \ ¢ b1 ) 90 \ gyt

2
) P _ 9 P ) isn. (3.23)
saam 9@ \ Gyxph =t | 90\ pxppm™

The normal stress py, is given by Equation (2.26), where pyy and p;je (i, j=1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum W, (see Equation (2.23)).
With regard to (S(PM)X,,=XE = —p2,pm and Equation (3.16), the coefficient pys in
Equation (2.26) is derived as

E |:7V1(1#)+2y+k2(1#)+2#]~ (3.24)

Py =

3.2.2 Envelope
With regard to Equations (2.33), (2.34), (3.6)—(3.13), (2.22), (2.23), we get

1 2 \ie <XIN>7"31'E_1 <xn )7»1'1;'—1
€ —— — i n— e — , (3.25)
nE Cr ,'; Eir [pl 1 P2n g .

2 A3_ig—1 Ahig—1
XIN X
EoE =€ =— 7 D, 7— lpln pzn(—> ](—) . (326)
CEH iE XE XIN

e G Z ! Y P <XIN)MIEI
E = S44E E—— n—DP2 " ,
neo ne P S (s Iﬁl n S

(327)
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. 5 o 22: xﬁmfl Py 1 (xIN>7»3iEl
OF = S44E OpoE = — v ) Pln — P2 -

(3.28)

1 2 XN Asoip—1 X, hig—1
Ong = — t_,_ 2 Pln — P2n (E) (a) ) (329)

1 & &avie v\ e\
L
OpE = Opgg = — 3 Z i Pin— P <E> (E\/) , (3.30)
— i
WE = KlEanuE D + K7 xn(}% D + +K3EX2HE+;\2E72, (331)
2
N \ n/2n/2 27»15—&-1 21\?;15—&-1) . K2F (x?‘ZE'*‘l _xINzE+1)
E= // 2MEg+1 20 +1

7u15+7»25+1 7»15"!‘%254—1
K3E XIN

+ dg dv, (3.32)

Me+ME+1

where O, xy, XE, S44E, ME, Z;,-E (i=12; j=1,...,7) are given by Equations (1.21),
(1.22), (2.13), (3.4), (3.14), respectively, and g, ki (i=1,2,3; see Equation (3.14))
have the forms

7\'2E_7\'1E
XIN
()

XE

Eop3i xpy \ el ?
Kie = % [pln_p2n <XE>
(BieCenti ™)

XIN

2
(2 ()
S44E&%e 0 ex,’;jf” " "\ xg
2
@2 0 1 XIN Asoip—1 .
_ - =1,2
+S44E <av{c i Nig—1 [pln PZn(xE y 1 PEd)

1

2
EirEor Gt T

K3g =
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=z

XN hop—1 X1 Ae—1
X (éGE +é’;7E) Pln — P2n (g) Pln — P2n ( )
+ — L 9 Pln — P2 <XIN>ME_1 J Pln — P2 <XIN)ME_1
S44E a(p " " XE a(p " " XE

e’ 9 ay\ 7 2 P
+S44 v [pm Pan <E> ov |Pln ™ Pan (E) .(3.33)

The normal stresses p1,, p2, are given by Equations (2.25), (2.26), where pn, pm
in Equation (2. 25) are given by Equations (6.89), (3. 24) respectively. With regard
o (Epr), _, =~ (P1ap11E+ P20P12E), (E0E), —x, =~ (P1nP21E + p2np22g) and
Equation (3 26) the coefficient p;jr (i,j=1,2) in Equations (2.25), (2.26) is de-
rived as

d

‘

7\,,’E71
) 21E — )
P ,Z‘l Eie (MN)
1 <x[N)7»315 1
iE \XE '
A3 je—=1 Aip—1
1 1 -xIN) 3—ie <XE > iE
VE=— 53— — — . (3.34)
P Ce ,-; Eir (XE XIN

3.3 Condition By #PBr = Pu

3.3.1 Matrix
With regard to Equations (2.30), (2.31), (3.6)—(3.13), (2.22), (2.23), we get

12
PuE—C—g

Diog = —
12E = C

I\JHMM m

7\41‘M71
X,
€M = —DP1nP2ME 2 <—n> , (3.35)
i=1 9iM XM
2 Xn Aim—1
oM = €M = — — | — , (3.36)
oM oM PlnpzMEZ,1 » <xM)
2 a X 7\,‘M71
EnoM = S44M OnoM = Z %ME] <_n> s (3.37)
i=1 (p CM)C M M
DinP2ME X \ Ml
€10M = S44M Onoy = —© ni (") ; (3.38)
n n lz’l a\/ CM'X iM— 1 XM
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2 Ain—1
1 X,
OuMt = —PinP2ME Y, i <—”) : (3.39)

i=19iM XM
2 Eori Aiv—1
2+iM [ Xn
OoM = OoM = —P1nP2ME <—) (3.40)
@ " i; CiM XM '
Wy = KlMx,%(}HMil) + Kzng(MMil) + +K3MX,Z\'1M+7\'2M_2, (341)

n/2m/2 Kim (XI%/IMM—H 7x£2?}\'lM+1) Koum (XI%/IMM+1 7x§?\-2M+1)

Wi — 4 / /
M 2hm+ 1 + 2ham + 1
0 0
K3u0 <XA7>11M+MM+1 _x£1M+7\2M+1>

+

dod 3.42
Ay +Aom+1 P v, (342)

where ©, xg, xp, Saapr, Mivas F,,-M (i=1,2; j=1,...,4) are given by Equations (1.21),
(1.22), (2.13), (3.4), (3.14), respectively,-and {;y, Kjm (i=1,2; j=1,2,3; see Equa-
tion (3.14)) have the forms

(XE)X,-M—I <XE)7»3—I'M—1
z;iM =\ 2\ ’
XM XM

2 2
1n P2ME 1 d 1n P2ME
Kivg = &2+3iM Pln P?V L + a_ Pln p}v =
Cimxyp™ Saam | 9@ \ Cipgxpp”

) 2
O~ | 9 [ punpauE
S44M ov Cl.ijz;Mfl )
-l Pou (Som +E7m) L 9 (Pwpame | 9 [ piupove
cuCapr o 90 gt ) 30\ o
N © 9 ( pwpame \ 9 [ Pwpame P12 (3.43)
Saam 0P Clxz‘jM_l o9 sz;)}M_l ’ ’

The normal stress pi, is given by Equation (2.27), where p;y and p1pyg in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively ,
with respect to minimum W, (see Equation (2.23)).
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3.3.2 Envelope

If B;v # Pe = Bum, then |uug| = f (x,) represents a decreasing function of x, €
(x1n,xE), and then Cj, = 0 and Cp, # 0 due to Aj, > 3 and Ay, < —2 (see Equa-
tions (3.4), (3.6)), respectively. With regard to Equations (2.33), (3.6)—(3.13), (2.22),
(2.23), we get

k 7\.25—1
EnE = — —pln 2E <x_”> ’ (344)
§2E XIN
Me—1
€pE = €33 = — Pin <)Cn) , (345)
& \ v
a pln Mor—1
CnpE = SUE Ongl = — 3 | —— 7 | %" 3.46
neE S44E OnoE a(p (gZEx;\;\zlgl Xy ( )
a —
eooi = s Onop = —0 50 | 5 | (3.47)
v §2Ex]]\27E
Xn Mop—1
OnE = —Pln (—> 5 (3.48)
XIN
7\,25—1
P1nG3E-[ X
we = Kspan 2, (3.50)
4 n/2m/2
20+l 2Mp+l
Ve = 1 / / wa (et do av, (3.51)
0 0

where ©, x;y, Xg, Sa4g, Mp and &, &g are given by Equations (1.21), (1.22),
(2.13), (3.4) and (3.14), respectively, and k3£ (see Equation (3.14)) has the form

2
Pin
K3g = &s e o1
§2Ex1N

2
+ L i % E % . (3.52)
S44E a(p §2E x]]\Z/E v §2E x[]\zlE

The normal stress py, is given by Equation (2.27), where pyy in Equation (2.27)
is given by Equation (6.89). With regard to (¢ ) . = —puPime. (8¢E) =

n=XIN

2

+0?
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—pinP2mE (see Equation (3.45)), the coefficients pyyg, pame in Equations (2.27),
(2.31) are derived as

Me—1
1 1 XE) 2B
=—, =—| — . 3.53
PIME Eor P2ME Ear (XIN (3.53)

3.4 Condition B,y = Br # By

If By = Be # Bu, then the thermal strains and stresses in the cell matrix are deter-
mined in Section 3.2.1. The normal stress p», in Section 3.2.1 is given by Equa-
tion (2.28). The coefficients p;y; pa; P2ive in Equation (2.28) are given by Equa-
tions (6.89); (3.24), (4.24), (4.34), (4.44), (4.54), (5.23), (5.33), (5.43), (5.53), (6.22),
(6.32), (6.42), (6.52), (7.23), (7.33), (7.43), (7.53), (7.63), (7.73); (3.63), respec-
tively, with respect to minimum W, (see Equation (2.23)).

3.4.1 Envelope

If B;v = Be # Bum, then |u,e| = f(x,) represents an increasing function of x, €
(x1n,xE), and then Ci1g # 0 and Cog = 0-due to A1, > 3 and Ayp < —2 (see Equa-
tions (3.4), (3.6)), respectively. With regard to Equations (2.34), (3.6)—(3.13), (2.22),
(2.23), we get

7L Me—1
g = — 22 E (x”) : (3.54)
Eie \xg
Me—1
X,
EpE = €33F = — é% (x—;) ; (3.55)
EnpE = S44E OngE = — i (pii" xﬁ‘ffl (3.56)
a(p &lEx 1e—1 ’ :
E
€40E = S44E Onor = —© i _ P xﬁlf’l, (3.57)
ov élExé_nEfl
Xn Me—1
OnE = —P2n (X_E) 5 (358)
Me—1
X,
OoF = O3k = — ng% (é) , (3.59)
we = Kkipxa EY, (3.60)

27



4 n/2m/2
2Me+1 2Me+1

Wi = 27»u;—+1/ /KlE (et et ) dg av, 3.61)
0 0

where ©, x;n, xE, s44p, Mg and &g, E3p are given by Equations (1.21), (1.22),
(2.13), (3.4) and (3.14), respectively, and K £ (see Equation (3.14)) has the form

2
b2
Kig = &g %
&lE xElb

2
1 8 aC;
+— P Rl . (3.62)
S44E Eipxgt™ ov Eipxg'*t
The normal stress py, is given by Equation (2.28), where pjs in Equation (2.28) is

given by Equations (3.24), (4.24), (4.34), (4.44), (4.54), (5.23), (5.33), (5.43), (5.53),
(6.22), (6.32), (6.42), (6.52), (7.23), (7.33), (7.43), (7.53),(7.63), (7.73) with respect

2
+6?

to minimum W, (see Equation (2.23)). With regard to (g¢x) o = ~P2PUNE
( (pE) = —pa,p2ive (see Equation (3.55)),-the coefficients pivge, p2ve in
Equatlons (2 28), (2.37) are derived as
Me=1
1 XIN % 1
— = 3.63
PLINE Eir <XE> s P2INE Er (3.63)
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Chapter 4

Mathematical Model 2

4.1 Mathematical Procedure

Let the mathematical procedure 9°Eq.(2.20) /dx2 be performed, and then we get
[2]-[23]
o*U, 0*U,
2 — =0 4.1
S +(2-c3) 3z (4.1

where ¢3 < 0 and U,, = U, (xp,, @, V) are given by Equations (2.18) and (2.21), respec-
tively. Let Uj, be assumed in the form U,, = x,z‘, and then we get

U, =Cixp+Cox/? +Cs, 4.2)

where Cy, Cy, C3 are integration constants, which are determined by the boundary
conditions in Section 2.4. Let Equation (2.35) be substituted to Equation (2.19), and
then we get

2 P Coy+ Cox a2 43
X, ax%+ xna—xnf u, = Cr1x, +Cox,;* +Czx;,. 4.3)

The mathematical solution of Equation (4.3), which is determined by Wron-
skian’s method [24], is derived as

1

u, =C1x, (5 — lnxn> +Cox +Cs. 4.4)

With regard to Equations (2.1)—(2.4), (2.14)—(2.17), (2.22), (4.4), we get

2 0371

e, =—C g—l—lnxn +Cre3x, 4.5)
1 . C

g =29 =C] <——lnx,,> FCxO 2 (4.6)

3 Xn

) W1y a1 %2, LG .7)

brs o9 | x, 09’
29

1
€np = 544Onp = (3 —Inx,



1 dCy _,0C; 109G
= —0|(=-1 gyl - T 4.8
€10 = 5440y [(3 Hxn> v +x, N Txov |’ (4.8)

2(c1+2c¢ 1 2Csc
c,=—C; [%—&-(Cl—cz)lnxn] +C2[(01+CQ)C3—202]X,CL3 1—%,
n
4.9)
c1+2c o Csc
G(p:Ge:C1|: ! 3 2—(cl—c2)lnxn} +C2(C1—C2C3)X,Ll3 1+ %7
n
(4.10)

w=Clr) +Ci10+Ci3+C1 Caky +C1 Ca x5+ Co C3 g

2 2 2 2
+£ E +@2 ZE +£ & _|_@2 E
S44 a(p ov S44 a(p ov
+‘944 <8(p) +0 ov + s44 \COO 00 © ov adv

L% <8C1 9G3 @28C18C3> X6 <8C28C3 @28C28C3) L (4.11)

s\ 20 90 T2 av v ) 55u e 90 T v v

where O, ¢; (i=1,2,3), s44 are given by Equations (1.21), (2.18), (2.13), respectively,
and x;,x; (j=1,...,6) are derived as

_ 2(cH — 7 2
=27 (e2 cl)lnxn+ CHg— 2
2
cz(c1+c2 2(c3—1 C1
Ky = |:3(#)+Cl (1—2C3):| xn<C3 >, K3 :;7
n
) 2
Ky = c3(c1 —e2) ! I, +2 |:6'1 - M Xl
2
K5 = C17 K6:07
n
2 1 2(e3-1 1
Xlzlnzxn—glnxn+§, Xzzxn(c3 )7 XSZX—%a
2 B 2 2Inx B
Xa= 3 S I, s = g T xe=at Y (412)

The integrals ®;, '¥; of the x; = x; (x,), xj = X; (xn) (i=1,...,6), respectively,
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have the forms

Xon X2n
2 2 .
Dy = / KigX, dxn, WVig= / XigXp dxn, i=1,...,6,
Xin Xin
q=E = xip=xN, X2n = XE,
g=M = X1, =2xEg, Xon = XM (4.13)

where x7y, Xg, xpr are given by Equations (1.22), respectively. Consequently, we get

eg—cig | 5 N 1 1\ 1
q)lq = T in 1nx2n - g + 6 —xln ln.Xln - 3 + 6
2(cog—c 1 1
+ —( 2q9 lq) |:x%n (lnx2n - §> _xil)’n <lnxln - 3):|

+ (701q + 262‘]) (x%n _x?n)
27 ’

2
€34 (Clq+c2c1) 2e30+1  2e30+1
2 +cl‘1(1 _2C3Q) <x2n ! ~Xin ! ) ’

o 1
M7 2ea+ 1

D3y =ciy (X210 = X1n) »

c3q (c1g=c2q) [ 32 1 c3g+2 1
(D = 1 l — — 9 1 —
i cgt2 [ P r2) 2

2 c3g (2eigterg) | /e .
+ C3q+2 Clg — 3 (x2n X )7

2 2
(DSq = Clq (xzn —xln) 5 ‘Dﬁq = O,

x 1\ 2] x 1\ 2
‘qu = % [(111)62,1 — 1) (1n)C2n — g) + §_ — % [(lnxln — l) (lnxln — 3) + §:| R

\P2q = 5. 1 lP3q = X2n — Xln,

5 .
_3g¥> Inxo, —xijf”
3 (C3q + 2)

C3q—|—5
57 A\ _ln-xln b
3 (C3q + 2)
5 5 xC3q+l *X63q+l
W5, :x%n <6 —lnxzn) —x%n (8 —lnxl,,) , Woq = %’
3q

q=E = Xx1,=xN, X2n = XE,
q=M = X1, =XE, Xonp =XM. 4.14)

In case of the ellipsoidal inclusion, we get (uun) 0 —— o, (ern) —

F oo, (O1N), g — Feedueto (Inx,), o — =+ eoand (x;’)

x,—0

x,—0 —— L oeofor
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c3 < 0 (see Equations (2.18), (4.4)—(4.10)). Accordingly, the mathematical solutions
(4.4)—(4.10) are suitable for the envelope and matrix.

Additionally, the function f = x,[(1/3) —Inx,] is increasing or decreasing for
X, £0.513 m or x,, > 0.513 m, respectively. With regard to dimensions of compo-
nents of a real three-component material, f = x,, [(1/3) — Inx,] represents an increas-
ing function of x,.

4.2 Condition B;y # Br # Bu
4.2.1 Matrix

The integration constants C1ys, Capr, C3pr for the matrix (see Equation (4.4)) are de-
termined by the boundary conditions (2.29), (2.30) or (2.29), (2.30), (2.32). The
boundary conditions result in the following combinations of Ciys, Copr, Capy, i€,
Cim# 0,Cop# 0,Cyy =0; Ciyy # 0,3 # 0, Copyy = 0; Coyg # 0, Capg # 0,
Ciy=0; Ciyp # 0, Copyr # 0, Capy # 0. Finally, such a combination is considered
to exhibit a minimum value of the elastic energy W¢ of ‘the cubic cell (see Equa-
tion (2.23)).

Conditions Cyy; # 0, Copy # 0, C3p = 0. With-regard to Equations (2.29), (2.30),
(4.4)—(4.11), (2.22), (2.23), we get

2 1 et
e = 2212 f i, 4eap = —Inoy ) (22 , (4.15)
¢ |3 3 XM
. P 1 1 Xn el
EoM = Eop = Cor l3 Inx, <3 lan) (XM) , (4.16)
EnoM = S44M OnoM = Inx —l i @
ne. ne. n 3 a([) C_,M
;0 , 1
+x;3M lgp [@?;Ml <3 1I1XM>‘| ) (417)
M
1 J p2n>
€poM = S4aM Onoyy = —O 9 | Inx, — = | = | 5—
nOM 44M OnoM {( n 3) v (CM
10 p2 1
c3 | A N o2 N R
+ xS Py [QMXX;MI (3 lan)] }, (4.18)
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+ (c1m —com) Inx,

_ pa [2(cim+2com)
OnMm = CM 3

1 Xp cam—l
+[(c1m +cam) cam — 2 com] <§ —IHXM> <E> ,  (4.19)

2
o [76 W ZEM (e g — o) Iny

O = Oppy =

1 X\ !
—(cim—camesm) (g - lan) (—) . (4.20)
XM

» 2
1—3Inx 3lnxy —1
WM:(@> Kim +Kom p _IM +K4M( c fll )
g 3x," 3x,"

e {12 ()] e [2 (2]
\

9
99
9

Gl

+
2 2
+Xz_M pzn(l —31nxf/1) +®2 i pzn(l —3lnici1/[)
S44Mm 38w xpt V| 3y XM

Xam (P2n> 3. pan (3Inxpy — 1)

+ T ar com—1
S44M Cum 30m x™

L xaw® 9 <P2n> 9 [M’M] @21)
saam OV \Cm/) ov 38 m xp"

+

2 /2
i DPon 1—31nxy Dy (3lnxy — 1)
Wy = 4/ / C_ N s T dg dv
/ / (@) o 5 ()] e
S44M 00 v \Cm
n/2 n/2
p2n 1_31an
2 dod
S44M// m ({8 [ 3§MxL%M 1 ‘|}) ¢ av

4 n/2 n/z 8 (1-31

Pzn —onxy
+ /‘P e? — do dv
544M oM ( v 3w xc“” 1 ]} ) ¢




2 /2
7 7/ J & i on (3lnxp — 1) Jodv
S44M Hat a(P 09 | 3¢y aim ! ¢

o 9 3 [pan (31 1)
P2n Pan O INXp —
+ //‘y o 2 ( )— PG =) | o gy, 422
S44M M Cm) ov | 3¢pyximt ¢ *-22)

where @, XM, S44M s CiM (i= 1,2,3) and Kjims XjMs q)jM, ‘PjM (] = 1,2,4) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and { ys, Cipr
(i=1,2) have the forms

Cm=Com—Cim (é—lnxzw) » G = [(c1m+cam) cam —2com] <XE)63M1,

XM
2(cipy+2c¢
Com = — [MHCW—QM) lan] : (4.23)

The normal stress py, is given by Equation (2.26), where pyy and p;je (i, j=1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum W, (see Equation (2.23)).
With regard to (Sq)M) xy—xy — PmPM and Equation (4.16), the coefficient pp; in
Equation (2.26) is derived as

11 1 xp\ !

Conditions Cyy; # 0, C3py # 0, Copy = 0. With regard to Equations (2.29), (2.30),
(4.4)—(4.11), (2.22), (2.23), we get

2
e = 22 (2 10y, ), (4.25)
Cmxm \3
pan | 1 1 1 /1
= = - — | — - —1 I Y _l 42
EoM = Egm Cu LCM <3 nxn) X <3 nxy )|, (4.26)
1 a P2n 1 a P2n (1 - 31an)
= —— (- il 2"~ 2 AM)
€noM = S44M OnoM (3 nxn> 9o <CMXM ern a(P 3Cm )
4.27)

€10M = S44M Onom =

_ l_ i P2n _li pzn(1—3lan)
9{(3 lnxn> 30 (CMXM> % 90 [—SCM }}, (4.28)
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1 (2 2 2 1
OnM = Igiﬂ: {_ {M + (Clec2M) 1nxn:| _com (g lan) },

3 n
(4.29)

GoM = Opm =

a1 2 1
P L emtem e | — S (2 i, ) b, 430)
Cu 3 n \3

(pZn)

Wy = | v
XlM P2n 2+®2 |:a< P2n >:|2
S44M CM XM ov \ Eum xm

< S el

2
1 31 —1
S0 (e 4 Ksm (Blnxy —1)
x 3 3xM

_|_XS_Mi( Don > [ 31an1}
saam 09 \ Cum xm 3Cm
XSM62 i( P2n > i |:p2n (3lan* 1):| (431)
saam OV \Cmxpr) 0 3Cm ’ .
n/2 w/2
WM:4/ /(@)2 q)%-i-(byy[ (l—lan>2+—®5M(3IHXM_1)] d(pdV
s Cm Xy 3 3xy

et ] Tl B (] e [ ()]

TL/ n/ 2
p2n 31an):|}

P —_ dod
S44M// M { [ 3§M o
TI:/2 n/2 )
+i//%M@z{j{pzn(l—ﬂnw)” do dv

Saam ) v 3Cm

4 d ( pwm ) 0 {Pzn(fﬂnwl)]
S44M0/0/ M foL0) <CMxM 0p 3Cm pav
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0 DPon 0 [pan(Blnxy —1)
29 9
0/ O/‘I’5M® = (CMxM> = [ i do dv.(4.32)

where ©, xp, Saapr, iy (i=1,2,3) and Kjug, X jm; Pjm, ¥im (j=1,3,5) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and { 5 have
the forms

1
CM_E

|:2(C1M+2C2M)

2C2M 1
3

- —lan> . (4.33)
XE

+(c1m —cam) lan] + 3

The normal stress py, is given by Equation (2.26), where pyy and p;je (i, j=1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum W, (see Equation (2.23)).
With regard to (S‘PM)xn:xE = —pauPm and Equation (4.26), the coefficient pys in
Equation (2.26) is derived as

1 1 /1 1 /1

Conditions Cyy; # 0, C3p1 # 0, C1pr = 0.  With regard to Equations (2.29), (2.30),
(4.4)-(4.11), (2.22), (2.23), we get

P (%) M
N X ’ 4.35)
&m xp \xm
D Xn C3m
EoM = Eom = =\ ’ 30
Car xn M
1 a Pan a P2n
[ _ 9 ()| 437
€noM = S44M OnoM X |:xn 0 <§M x;/;M 90 \Cm ( :
@ . a DPan a P2n
)  O[ e ? _ 9 (pn 438
€n0M = S44M OnoM X {x,, oV \Cuxy"/) ov\lm/]|’ (39
Gy — — L2 ] M (c1m +com) —2com (X">C3M_l + 2o ) (4.39)
Cm M 8 5
Pan |cim—cameam (% T cim
G(pM —ogy = — o | MM (T - ) (440)
Cm M * E
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2
Wap = Pan Kom i3 Kom
Jyp——
Q) gy X"

{2 ()] e (2] ]
2

3212:{{% <@)] ver [ (22))

G (1 G

(e e (c2)] ) awen
()] e[ (22)] ) a0
LT Tl ()

@2 J (C pz”cw) J (?H do dv, (4.42)
M X M

where O, xp, Saam, civ (i=1,2,3) and Kjpr, Y jm; Pjne, Wiy (j=2,3,6) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and £ 5; has
the form

_|_

1 X C3m
Cu= _{[C3M (cim+com) —2com] (—E) +262M}~ (4.43)
XE XM

The normal stress p, is given by Equation (2.26), where pyy and p;je (i, j=1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum W, (see Equation (2.23)).
With regard to (eq,M) = —p2,pm and Equation (4.36), the coefficient pys in

Xp=xp

Equation (2.26) is derived as
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Py = CL [(X—E) v 1} . (4.44)

Conditions Cyy # 0, Coy # 0, G317 # 0. With regard to Equations (2.29), (2.30),
(4.4)—(4.11), (2.22), (2.23), we get

SnM:_@ Cim 2_ann —ComeamxM™ 1, (4.45)
Cm 3
o R 2 1 cam—1 Z;3M
€oM = €0 = — 5 Cim | = —1Inx, JFCZMxn’ +—1, (4.46)
Cum 3 Xn
— _ 1 J PZnCIM c3—1 J PZnCZM
EnoM = S44M OnoM = (3 _lnxn> a(]) < CM + X, a(p CM
L2 (pmban) (4.47)
Xn E)(p CM
_ _ 1 d p2nC1M c3—1 J p2nC2M
€10M = S44M Onom = —© [<3lnxn) P ( T +x§ = @
19 p2n§ M
+ — X v < T , (4.48)
+2
OnMt = — Ig {C M [M+(C1MCQM)1nxn:|
2
— Com [(c1am +com) 3 — 2com] xS 4 021;4@3/14}7 (4.49)
n
+2
G(pM:GGM:@ CIM M*(CIM*CZM)IIU%
Em 3
+ Gom (cm — comeam) xS+ c”‘iﬂ} (4.50)
n

2
2
Wy = <%> <K1MC%M+K2MC%M+K3MC%M
+xcan Cim ot + %501 §ime §3m + Kenr Sonr Camr)
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Xim i( ) 2+®2 [0 (p2n§lM)-2
Saam | [ 0@ LoV Cm ]
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saam | | lov\ Cum /|
+ X3_M (pZn ) 2 @2 -3 (p2nC3M>- 2
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54400\ Cm ) 09
Xsm ©* 9 P2nC1 E Pan3M
S44M a\/ ov
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sam 09\ Ty ) 39
X6Mm @23 pZnCZM 0 p2n§3M
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n/2 m/2 ~ 2 -~ o
4 [/ J P2nC1M) >0 (panW
. N < i
n/2 /2 ~ 2 ~ 12
+ i/ /\PZM i (p2n€2M> +®2 i <p2n§2M> de dv
S4am 0 109 Cm J J Cm J
n/2 m/2 ~ 19 S
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)
n/2 n/
_// [i (PanlM) i<p2nC3M>
Saam Moo\ Tu oo\ CTu
20 (pumCim\ 9 (Panlam
o () s ()| dear
/2 m/2
+i/ /‘I‘ {i <Pan2M)i<p2nC3M>
Saam o o oM oo\ Lm oo\ Cm
29 (pumCom\ 9 (panlam
+®a—v< Cn )a—v( T )} dodv, (4.52)

where ©, xy7, Saaps, ciy (1=1,2,3) and K, i Pine, Wine (i=1,...,6) are given
by Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and ;s
(i=1,2,3), { 3y have the forms

cay—1 2
Civ = camxy™ ™, CZM:§+IHXM7

2 1
Cam = —xp" [§ +1Inxp +c3m <§ —1an):| )

2 +2c
Cm= CSM{ [M Y (e — CZM)IHXE}

3
2comxy (1 1
T (5 _me) }M
1 2 ) (2
—{[(61M+czM)csM—262M} gy czfo} <3 +1an> L (4.53)
E

The normal stress py, is given by Equation (2.26), where pyy and p;je (i, j=1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum W, (see Equation (2.23)).
With regard to (a(pM)x,,:xE = —pauPm and Equation (4.46), the coefficient pys in
Equation (2.26) is derived as

1 1 oy —
Py = — |:C1M <1an — —> — CQM)CIC;M - z;S—M . (4.54)
Cum 3

XE
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4.2.2 Envelope

The integration constants Ci g, Co, C3 for the envelope (see Equation (4.4)) are de-
termined by the boundary conditions (2.33), (2.34). The boundary conditions result
in the following combinations of Cig, Cag, C3g, i.e., Cig 75 0, Cop 75 0, C3g =0;
Cig# 0,C3g # 0,Cp =0; Cop # 0, C3g # 0, Cig = 0. Finally, such a combina-
tion is considered to exhibit a minimum value of the elastic energy W of the cubic
cell (see Equation (2.23)).

Conditions Cig # 0, Cop # 0, C3g = 0. With regard to Equations (2.33), (2.34),
(4.4)-(4.11), (2.22), (2.23), we get

2
g ="C1E <§ +1Hxn> —c3p GopxE ! (4.55)
1 C3E—l
eor = €9 = — |C1E 3 Inx, | +Copx, ; (4.56)
0 1 0 _

EnpE = S44E OnpE = — {S(IPE (3 Q 1ﬂxn> + g(iEx,?E 1] ; (4.57)

ik (1 ok
€0 = —O { vl e UL Bt H, (4.58)

2(cig+2c
Oug = — {ClE {M +(c1e — 2) 1nxn:|
+ Car [(c1E +caE) c3E — 2 2] xS ! }7 (4.59)
cig+2cE
GoE = O = — 4 C1E — 5 (c1E —c2) Inxy,

+ Cok (c1E — cap cap) xSF ! }, (4.60)

A ie\? 1e\2
WE:KlEC21E+K2EC22E+K4EC1EC2E+Xi l(ﬁ> +0? (%) ]

S44E 0
L X | (926 2+®2 ar L Xae (981 0Cor | 20G1E Car ’
S44E a(p ov S44E a(p a(p ov ov

4.61)
41



n/2 m/2
WE=4/ / (Cl)lECzlE+CD2EC22E+(D4EC1EC2E) dedv
0 0

n/2 /2

4 3C15>2 2(3C1E)2
+— i | (2L) 102 (L) | dgd

s4450/ 0/ £ K o1} av pav

g P Aap\2 ap\2

4 ¥ 2E > 2E>
+S44EO/ 0/ 2E [( 3(p> +0 ( v dodv

+i/ /‘1’4E ik a§25+®23§1E 9Ca dodv.  (4.62)
s o LOJNe[0) ov  ov

where O, xg, sa4g, cig (i=1,2,3) and KjE, XJE> (I)jE, \PjE (j=1,2,4) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and {;p
(k=1,2) has the form

Cie = p1nCite + p2nCie, i=1,2,
1 N
Ciie = o [(c1E + car) e3 —260E] x5,

1

Cioe=— o [(c1E +capyese —2cap]xif !,
1 [2(cig+2c
Cote = T [% + (c1E —CZE)lan:| )
1 |2(cig+2c
Cop=— o {% +(c1e— CzE)lnﬁmv} ;

Ce = [(c1E +c28) c36 — 2 C2E]
2 2 _ _
% [ (61543- C2E) (x;&g 1_x235 1)
+ (c1g —c2E) (x,c]ff_l Inxg —X?E_llnxm)] . (4.63)

The normal stresses pi,, p2, in Equation (4.23) are given by Equations (2.25),
(2.26), where pyy and pys in Equations (2.25), (2.26) are given by Equation (6.89)
and (4.24), (4.34), (4.44), (4.54), respectively. With regard to (g¢r), ey =

—(Pinp1iE+P2nP128), (E9), _, = — (P1uP21E + P2aP22£) and Equation (4.56),
the coefficient p;;g (i, j=1,2) in Equations (2.25), (2.26) is derived as
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3
i=1,2. (4.64)

1 _ 1 _
pLE = CLiE (5 - lanN) + Coipxf y p2ie = C1ie (— _]an) + Coipxg* !

Conditions C g # 0, C3g # 0, Cop =0. With regard to Equations (2.33), (2.34),
(4.4)—(4.11), (2.22), (2.23), we get

2
EE = CIE (3 —l—lnxn) , (4.65)
L CoE

€pE = €9 = — CIE — —Inx, | + T R (4.66)

) 1 19
EngE = S44E OnoE = — |:§—(:)E (g —lnxn> + x_g—;E} ) (4.67)

) 1 190
€40F = S44£ OpoE =~ O {% (5 - 1nxn> + —%} (4.68)
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Opg = — {ClE [M +(c1e — 2E) hlxn} - 25 Car } , (4.69)

clg+2c¢ c
OgE = Opg = — {ClE [wfw —(c1e —c2p) lnxn} + IEX—QZE} , (4.70)

X1E aClE z 2
WE—K1EC1E+K3EC3E+KSEC1EC3E+ +0

sqa |\ 0@ (ag%) 21

L X | (9C3e 2+®2 e\ L Xse (9S1E 0CsE | 20G1E OCse ’
S44E a(p ov S44E a(p a(p ov ov

.71

43



n/2 m/2
WE:4/ / (q>1E§21E+<1>3E§23E+<I>5EC15C3E) de dv
0 0

4 /2 rc/2 P 5 5 9
+—/ / Yie T +0° % de dv
S44E a(p ov
0 0
n/2 m/2 5 9
+i/ /‘1’35 ACse\", go (953E do dv
S44E a(p ov
0 0
n/2 n/2

n i/ / Ysp <a§15 ST CLISL: aCSE) dedv, (4.72)
0 0

S44F foLOJeL0) ov  ov
where O, xg, s4g, cip (i=1,2,3) and Kjg, X e; Pje, ¥je (j=1,3,5) are given by

Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and {;p
(k=1,3) has the form

Cie =pnCite+p2nCie, i=1,3,

200k 2¢E
Ciie=—+—, Cie= ;
CexE Cexiy
1 [2(cip+2c¢
C31 = +— 2(ewp+2e) + (ax —CzE)lan] ,
Ce | 3
1 |2(c1g+2c¢
Cae=— [M + (c1e— C2E)1anN] ,
Ce 3
2 2 1 1 | |
CE=2cp M (— — —) +(c1g —czE) ( LN ﬂ)] . (4.73)
i XE XN XE XIN

The normal stresses pi,, p2, in Equation (4.33) are given by Equations (2.25),
(2.26), where pyy and pys in Equations (2.25), (2.26) are given by Equation (6.89)
and (4.24), (4.34), (4.44), (4.54), respectively. With regard to (g¢r), I

—(Pinp11e+panpi2e), (EgE), _, = — (P1upP21£ + p2np22e) and Equation (4.66),
the coefficient p;jg (i, j=1,2) in Equations (2.25), (2.26) is derived as

1 ' 1 .
piie = Ciie | 5 —Inxgy +C3_1E, 0it = Crite [ % — Inx +C31E7

3 XIN 3 XE
i=12. (4.74)
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Conditions C¢ # 0, C3g # 0, Cig = 0. With regard to Equations (2.33), (2.34),
(4.4)—(4.11), (2.22), (2.23), we get

ene = —c3p Cop X, (4.75)
€oE = € = — <§2Ex,f35_1 + Cxi) , (4.76)
n
002E o, - 1 983
Engk = S44E Ongl = — | = X% 4.77
nQE = S44E OnoE ( 90 Xy x,, 8(p ( )
e 1 983k
€40E = S44E Onoe = —© (g_vxriw 1 X SV (4.78)
-1 20EC3E
one = — |CoE [(c1e +2p) c3 — 2 28] Xy, | (4.79)
n
. C
O¢E = Op = — [CzE (c1E — cape3g) x4 IEX—C3E} : (4.80)
n

x2e | (982e S
E—K2EC2E+K3EC35+K65C2EC3E+ +0

e () (52

+Xﬂ dCak 2+®2 d3E ? +X£ 3C2E3C35+®23C2E3C3E 7
S44E 00 v Sq4g \ 0Q 0@ av  ov

4.81)

/2 n(z
WE:4/ / (<I>25C22E+<D3EQ%E+¢6E§2E§3E) do dv

4 n/2 w/2 3 ) 3 5
+—/ /‘I’zE Kﬁ) +0? (£> ]d(pdv
S44E a(p ov
0 0
n/2 w/2 ) )
o [ | () e (B2 o
S44E a(p ov
0 0
/ / . <3§2E dC3E +@23C2E dC3E

n/2 w/2
ES
dp Jo ov  ov

S44F
0

) dodv, (4.82)
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where @, XE, S44E, CiE (i= 1,2,3) and KiE, XjE> cDjE, ‘PjE (j=2,3,6) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and (g
(k=1,2) has the form

Cie = pinCile + p2nCine, =23,

Coig=— Zci7 CoE = el ;
Cexp Cexiv
C31 = — [(c1£+c2p) 36 *2c‘215]xf(:;3r1 ,
Ce
Canp = [(c1E + c2g) c3g — 2cop] X 7
Ce
Ce=2cE|(c1E+c2E) 3 — 2 28] (W - T) : (4.83)

The normal stresses pi,, p2, in Equation (4.33) are given by Equations (2.25),
(2.26), where pyy and pys in Equations (2.25), (2.26) are given by Equation (6.89)
and (4.24), (4.34), (4.44), (4.54), respectively. ‘With regard to (g¢r), e =

—(Pinp11e+papi2e); (o), _, = — (P1upP2ir + p2np22e) and Equation (4.76),
the coefficient p;;g (i, j=1,2) in Equations (2.25), (2.26) is derived as

aE— 3iE S — 3iE .
pliEzgzl'ExIL]‘:/E 1“!‘31;’7 pZiE:CZiEx;;}E 1+C_z, i=1,2 (4.84)

XE

4.3 Condition B,y # Br = Py

4.3.1 Matrix

The integration constants Cyps, Cop, Capyy for the matrix (see Equation (4.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)—(2.32). The boundary
conditions result in the following combinations of Cyy, Cop, Capy, iee., Cipyp # 0,
Cu# 0,Gyu=0;Ciy# 0,CGu# 0,Coy=0; Coy # 0, Gy # 0, Crpy = 0;
Ciy # 0,Copr # 0, Cspp # 0. Finally, such a combination is considered to exhibit a
minimum value of the elastic energy W¢ of the cubic cell (see Equation (2.23)).

Conditions Cyy; # 0, Copy # 0, C3p = 0. With regard to Equations (2.30), (2.31),
(4.4)—(4.11), (2.22), (2.23), we get
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2
em = —Cium <3 +1nxn> +cam Gamx L, (4.85)

1 _

€oM = €om = C1m (5 — 1nxn> + Copxn !, (4.86)

| d 4,0
€noM = S44M OnoM = (§ - 1nxn> g(lpM +x;M ! g—z(pM, (4.87)

1 i eyy—19C0om
€,0M = S44M Opoy = © [<3 - lnxn> v +xpm! v 1 (4.88)
2(ciy+2c¢

o = — Cim {M + (c1m — c2m) lnxn:|

+ Comr[(crm + cam) cam — 2 cop] x5 L (4.89)
cim+2com

GoM = Oom = C1m — 3 (c1m — com) Inxy,

+ Comt (e — capgcapr) x5 1, (4.90)

i\, o ()’
WMfKlMC1M+K2MC2M+K4M§1MC2M+?CIM [( CW) +®2< 3\1/M> ]

99
L Xam lom 2+®2 o\ ? L Xam 9C1m 9Coum 928C1M8C2M
S4am 0 ov Sqap | 09 0@ av  ov
4.91)
n/2 /2

WM:4/ / (q>1M§21M+<1>2M§22M+<I>4MC1MC2M) dodv

() Jows
S44M/ /l}le (%)24—92

9Com\
<W) ] dgdv
n/2 n/2

[0C1m 00 290 1m OCom
o / / it | ot e FOIG Ty | dodv, (492)

n/2 m/2 - 5
4
+—/ /‘PlM (a€1M> +6?
S44M 50 i L)

n/2 m/2
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where ©, xg, Xy, Saam, cim and X, s Pje, Vie (i=1,2,3; j=1,2,4) are given
by Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and {15,
Com. Car have the forms

_ PiaPamEXEXY” _ pwPameXExXyM (1
Civm=———"—"", Coy=—"——| 7 — Inxy
Cm ’ Cm 3 ’
. 1 . 1
Cm :x;;MxE (g — lan) —xMxI?M (5 - lan> . (4.93)

The normal stress py, is given by Equation (2.27), where pyy and piyr in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum W, (see Equation (2.23)).

Conditions Ciy # 0, C3y # 0, Copy = 0. With regard to Equations (2.30), (2.31),
(4.4)—(4.11), (2.22), (2.23), we get

e =—Cim (% +lnxn) 2 (4.94)

Eom = oy = L1y <; - lnxn) + C;M , (4.95)

EnoM = S44M OnoM = (% > 1nxn) ag(lpM +xi,, agpr, (4.96)

E,60 = S4431 Onopt = © K% - lnxn> P - agﬂ L@

o =— Cim [w + (e — czM)lnxn} — C;M, (4.98)
.

Gom = Gou = L in [W — (c1n — cau) lnxn] + C””;ﬂ (4.99)
.

G\, o (%)’
wir = K Chag + Kan Gy + 65 G o + X124 [( ClM) +®2< gi'M) ]

S44M 9
L Xam | (9am 2+®2 AW\ o Xsm [9Cum Oam | 081w OCsum ’
S44aM acp ov S4a4M a(p acp ov ov
(4.100)
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n/2 w/2
WM:4/ / (¢1M§21M+®3MC%M+®5M€1MC3M> de dv
0 0

n/2 /2 -

4 PSS 2<3§1M)2
= Yoy | (M
+s44MO/ 0/ M ( 90 ) + 0 v dodv

4 /2 m/2 - 3 2 3 5
Jri/ /LP3M <C3M> +82< C’W) do dv
Saam S ) |\ 90 ov

4 (0810 9C3p | 2981 OC3m
* //\PSM_S(p o) +e ov v

] dodv, (4.101)

where ©, xg, Xy, Saan, cim and Kje, Xje; Py, Wie (1=12,3; j=1,3,5) are given
by Equations (1.21), (1.22), (2.13), (2.18) and (4:12); (4.14), respectively, and (.,
C3m. §ur have the forms

P1nP2MEXE PinPameXEXy (1
- —_ —_ —— == = 7| - =1
Cim TR Cam Cor (3 HXM> ,
1 1
CM = XE (5 — lan) — XM (§ — IHXM) . (4.102)

The normal stress py, is given by Equation (2.27), where pyy and pyg in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum W, (see Equation (2.23)).

Conditions Cyy; # 0, C3py # 0, C1py = 0. With regard to Equations (2.30), (2.31),
(4.4)-(4.11), (2.22), (2.23), we get

&t = cam Comr xS, (4.103)

oM = o = Gom x4 C;—M (4.104)
n

a1 aCZM_’_iaCSM

€M = S44M OnoM = X, %0 x99 (4.105)
n
d 10
€46M = 5441 Opopyr = © (x,?Ml % +— gf/M ) , (4.106)
n
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oum = Com [(c1am +com) eap — 2 cpm] x5~ — C3M, (4.107)

Xn
Som = gy = Gom (Ciyr — comeam) XM+ Cmiﬂ, (4.108)
) 2 P) 2
WM—K2MC2M+K%MC3M+K6MC2MC3M+ Xom K gpr> +6? (gi”’) ]

" i?;, [(%>2+®2 (M) 2] | Xem [3C2M dCam +®23C2M 8C3M:| ’

av Sqap | 09 0@ v ov
(4.109)
/2 /2
WM:4/ / (¢2MC22M+¢3MC23M+@6MC2MC3M> de dv
/2 m/2 5 i
aczM 2 8C2M
S44M/ /\PZM < o0} ) 10 ( v dedv
n/2 n/2 5 i
a§3M 2 8C3M
S44M/ /\PSM < 00 > +6 (W do dv
n/2 n/2 (0L OC dan
oM 963M | 2962 963y
S44M/ /\PGM 09 0 +0 ov v ]d(pdv, (4.110)

where O, xg, Xp, Saam, cim and X, X je; e, Ve (i=1,2,3; j=2,3,6) are given
by Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and {opy,
Cam» €y have the forms

3m
InP2ME XE 1nP2ME XE Xy
CZM:*%7 CSM:pan—MM, Cy=xg" —xp. (4.111)

The normal stress py, is given by Equation (2.27), where p;y and p1yr in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum W, (see Equation (2.23)).
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Conditions Cyy; # 0, Copy # 0, C3pr # 0. With regard to Equations (2.30), (2.31),
(2.32), (4.4)—(4.11), (2.22), (2.23), we get

2 v

et = — C1im <§ +1nxn> +cam Gamxgm 1, (4.112)

. 1 cm—1 , 53M
€oM = €om = C1m g—lﬂxn +Com x,, +x—’ (4.113)

n

1 d . d 10
€noM = 544M OnoM = (5 - lnxn) g(lpM + xgm—1 —g(sz + . gpr7 (4.114)

n
1 1y 108 1 903y
€10M = S44M Onpp = © |:(§ _lnxn> v +X,€3M ! v +)C_n v |’ (4.115)
2(ciy+2c
onm = — Cim [M + (1= cpm) lnxn]
1 2cmGs

+ Com [(c1m + com) capp =2 com] g1 — #, (4.116)

n

cimM+2com
CoM = Oy = CIM f — (CIM - C2M) Inx,
cpum—1 ClMCSM

+ Conr (c1m — com c3m) X, A 4.117)

n

wir = K1 Gz + %omr §pr + 13 Gang + anr S una Sonr + Ksaa Sine Gana + enr Som Cam

L x| (9 2+@2 Wi\ L Xam | (9Sam 2+@2 Caw'\?
S44M L) ov S44Mm L) v

LM [ (9Cam 2+@2 an'\’ o Xav [981m 0Cam 029G 1mr 9Gom
S4am o1} ov Sqapm | 09 0@ av  ov

xsm [0C1m 0C3m | 2081a 9Canr | | xem [08om OC3m | p980ar OC3m

ot L 00 90 "0 v v | Tsem | 00 0 O av av |

(4.118)

+

n/2 /2
WM:4/ / (‘I)IMC%M+(I)2MC22M+¢3MC23M> dodv
00
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n/2 m/2

+4¢//(‘D4MC1MC2M+<D5MC1MC3M+‘1>6M§2MC3M)d(PdV
0 0

2 27
+ 4 / /‘l’lM (8C1M> +0? (8C1M> do dv
S44M . a([) ov
0 0 L .
n/2 ©/2 r 5 27
] e[ v (5
S44M - a(p ov
0 0 L .
n/.2 /2 r 5 7
S | (552) e (52) | oy
S44M a(p ov
0 0 L i
s P oo 3C 111 9o
_/ /‘1’4M Civ 9Cam | 2981m 9Coum do dv
S44M ) | dp Jdo av  dv |
s P oo 3¢ 11 3]
+_/ /‘PSM Cim 9C3m o> Cim983m do dv
S44M s | 00 Jo oV v |
4 P ety 0 Donr 3Cam]
+_/ /\Pw Com 9C3m - 52982m 9C3m dodv. 4.119)
Saam ) | dp  Jdo av  odv |
where ©, xg, Xy, S44m, civ and Kjg, ¥ je; e, Ve (i=1,2,3; j=1,...,6) are given

by Equations (1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and ;s

(i=1,2,3), { 3y have the forms

PlnP2MEXE C3M Xy

C3M71

Cim=— T

C3m

__ D1P2MEXE Xy
Ca=—"—""-

Cu

— C3m—
Cm = camxy”

+ ( xg3m

1
[C3m <§ —Inxpy
1 1
! [xE <§ —lan) —Xym (§ —lner)}
—xp") (z +Inx )

) CZM:*C—M

)+ G

P1nP2ME Xe (2
3

—+lInxy

)

(4.120)

The normal stress py, is given by Equation (2.27), where p;y and p1yr in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum W, (see Equation (2.23)).
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4.3.2 Envelope

If By # Be = Bum, then |u,p| = f(x,) represents a decreasing function of x, €
(xin,xg), and then Cig = C3g = 0, Cop # 0 (see Equation (4.4)), respectively. With
regard to Equations (2.33), (4.4)—(4.11), (2.22), (2.23), we get

pincse (% !

gy = — DSE (0 : (4.121)
e \xw
C3E—l
_ Pin [ Xn
e — g — Hn , 4.122)
e [ <XIN>
c3g—1 a Pln

€npE = S44E OngE = — X, ot — (4.123)

x

C;pfl a pln
€40E = S44E Onpr = — O, Gt (4.124)
X
xn C35—l
Out = — Pln <—> ) (4.125)
XIN
1
Pin(cie —cEC3p) [ Xn o

G(PE = GOE = — CE i1 s (4126)

XIN

2
Pin

wg =10 | ————

2<<:N>

2 2

aCZ Pln +®2 E Pln (4 127)

C xc‘;p v cap—1 ov C xc@gfl ’ :

IN EAIN

/2 n/2 2
WE:4/ / O (L) agav
Cexpy

0 0
/2 /2 2
/ / Pln

S44E a(P Cexpe™ oyl

where O, xg, saag, cie (i=1,2,3) and ¥, Y2£; P2, Yor are given by Equations
(1.21), (1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and g has the form

X2E
S44E

+6?

2
a Pin
v (z;Nﬂ dod

(4.128)

S = (c1e+c2E) c3E — 22k (4.129)
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The normal stress py, is given by Equation (2.27), where pyy in Equation (2.27)
is given by Equation (6.89). With regard to (.‘3(‘,1;)A oy = ~P1nPIMES (S(PE)XH_X =
—p1nP2me (see Equation (4.132)), the coefficients p1mE, P2mE in Equations (2.27),
(2.31) are derived as

1 1 XE S
[ — = — e . 4.1
PIME T P2ME & <XIN> (4.130)

4.4 Condition B;y = Br # Bu

If B;y = Be # Bu, then the thermal strains and stresses in the cell matrix are de-
termined in Section 4.2.1. The radial stress p», in Section 4.2.1 is given by Equa-
tions (2.28). The coefficients pys and posvg in Equations (2.26) are given by Equa-
tions (3.24), (4.24), (4.34), (4.44), (4.54), (5.23), (5.33), (5.43), (5.53), (6.22), (6.32),
(6.42), (6.52), (7.23), (7.33), (7.43), (7.53), (7.63), (7.73) and (3.63), (4.140), (5.129),
(5.139), (6.143), respectively, with respect to minimum W, (see Equation (2.23)).

4.4.1 Envelope

If B;v = Be # Pum, then |u,g| = f(x,) represents an increasing function of x, €
(x1n,xE), and then C1g # 0, Cop = C3g = O(see Equation (4.4)), respectively. With
regard to Equations (2.34), (4.4)—(4.11), (2.22), (2.23), we get

Ep = % (2 Jrlnxn) : (4.131)

€ = EoF = — % (% - lnxn> : (4.132)

10k = 5145 Gngls = — <; lnxn) ;p (Z) , (4.133)
€40F = S44£ Opor = —O (% - lnxn) a% (%) , (4.134)

Pon {2 (c1e+2c2E)

Ong = —— + (ClE — C2E) Inx, |, (4.135)
Ck 3

Gop = Gop = — 221 [615-1—2625
? Ce 3
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(P2n> X1E {3 (l?zn)r > [ d <p2n>r
WE = Kip + XE e C(4137)
Ce S44E Ce Ce
n/2 m/2
WE_4/ /(I)lE (‘Z_) do dv
/2 T

il PR R ()] o

where O, xg, saag, cip (i=1,2,3) and K1, X1E; P1E, Y1 are given by Equations (1.21)
(1.22), (2.13), (2.18) and (4.12); (4.14), respectively, and { ¢ has the form

- 2(61E+262E)
Ce=—"73—"

The normal stress py, is given by Equation (2.28), where pys in Equation (2.28) is
given by Equations (3.24), (4.24), (4.34),(4.44), (4.54), (5.23), (5.33), (5.43), (5.53),
(6.22), (6.32), (6.42), (6.52), (7.23), (7.33), (7.43), (7.53), (7.63), (7.73) with respect
to minimum W, (see Equation (2.23)). With regard to ( )x —xy = —P2mPLUNE;

+(c1g —c2p) Inxg. (4.139)

(s(pE)x = —paP2ane (see Equation (4.86)), the coefficients pijvg, Panve in
Equatlons (2 28), (2.37) are derived as
1 /1 1 /1
PLUNE = TACH Inx;y |, pave = TACH Inxg | . (4.140)
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Chapter 5

Mathematical Model 3

5.1 Mathematical Procedure

Let the mathematical procedure 9°Eq.(2.19)/dx2 be performed, and then we get
[21-[23]

du, 5 0%u, Xn U,
4 — =0 5.1
d ox; A ox2 +S44 (c1+c2) Ixy ’ G-

where s44, ¢; (i=1,2,3) and U, = U, (r,,V) are given by Equations (2.13), (2.18)
and (2.21), respectively. With regard to Equations (2.20), (4.2), we get

U,
ox,
where C;, C, C3 are integration constants, which are determined by the boundary

conditions in Section 2.4. Let Equation (5.2) be substituted to Equation (5.1), and
then we get

Xp=— =3 (Cr1x, £ C2x,2 +C3), (5.2)

:; a Uy 4 2 a
Xn dx 3 Xn ox 2
The mathematical solution of Equation (5.3), which is determined by Wron-
skian’s method [24], is derived as

=C1x0+CoxS +Cs. (5.3)

4 1
u, =Cix, (3 — 1nx,,> +Cox? 4+ Gy <2 Jrlnxn> . 5.4)
With regard to Equations (2.1)—(2.4), (2.14)—(2.17), (2.22), (5.4), we get
1 ) C
e, =C (g—lnxn> +C2C3X,L1371+—3, (5.5)
n
4 . Cy (1
€o=¢9g=C | 7 —Inx, —i—ng,‘,rl +—3 —+Inx, |, (5.6)
3 X, \ 2

4 ac, 9G] 9C;
ne — ne — \ 5 -1 n e — |5+l n ) =, .
€np = 544 Ong (3 nx ) aq) +x, a(P w2 +Inx 0 5.7

57



4 JaC _,0C 1 /1 aC
€10 = 544 0,9 = O [(§ —lnxn) a_vl +x.° 18_\/2 — <——|—lnxn> —3} , (5.8

X, \2 ov
-7
o0, =C [Cl 3 @ _ (Cl — Cz)lnxn:| +Cy [(Cl +Cz) c3 7262])6,23_1
C
+ 3 (c1 —2c21nx,), (5.9
Xn
4ot —
Gy =0 =Ci [ a-a_ (c1— cz)lnxn] +Cy(c1— 0203)x,i371
C -2
+——3<Cl 62+wthm>, (5.10)
Xy 2

W:CIZKl +C22K2+C32K3+C1C2K4+C1C3K5+C2C3K6

2 2 2 2
+ ﬁ E + @2 a& + B E + @2 E
S44 a(p ov S$44 a(p ov
L[ (3G g2 (G|, 1 (3C13C | 23C1 3G
+ S44 (acp) +e ov + Sq4 \ 0@ 0O +e v ov

15 (360G | (p3CIACY | 16 (3C2C: | (23C 30
+S44<8(p fol0) © ov ov s44 \ 00 0@ ov ov » 61D

where © is given by Equation (1.21), and x;, y; (i=1,...,6) are derived as

c)—c¢ cp—c 17¢1+c¢
K1 :%lnzxn—ﬁ— ! 2 lnx,l—l—%,
2
cz(c1+c N
Ky = [3< 12 ) +C1(1—203)] Pait 1),
- cl lnzxn cilnx, c¢2—2c¢;
3T x2 x2 4x2

-7
K4 = c3(c1—c2) x n, + [2c1+7c3 (C23 Cl)] X
Inx, 4c —
Ks = (301 —C2) 11 Xn _ M

)

Xn 3x,
Ko =2c1 (1—c3) x5 2 Iy + (ca ez — ) x5 2
2(e3—1)

Xl:ln2xn—§lnxn—|—E X2 = Xn
3 9’

)

9
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In’x, Inx, 1 8 oy _
B="g Tg Tag WS T
4 5] 21In?
K5 = 5+ et e =25 Y (5.12)
n n n

With regard to Equations (4.14), (5.12), we get

2 i 2
Cog—C 1 1 1 1
(I)lq — % {x%n [(111)(2,1 — 5) + § —X?n <lnx1n — g) + § }

Clg — C2 3 1 3 1\] 17¢c1g+c2 3 3
+ % {xz,l (lnxzn — 3) — X, (lnxln — 3)_ + # (x2n fxln) ,

2
1 ¢34 (c19+c29) rer il 2entl
P2 = ey 11 y o rag(l-2a) | (o ),
@3, = c1g [xzn (1n2x2n —2lnxy, +2) — X1 (mlen 721nx1n+2)}

Cog—2c

— Clq [x2n (lann - 1) —Xln (lnxln - 1)] + d (x2n _xln) s

C3q (Clq —2) 3442 1 3442 1
¢ = 1 _ | — 1 1 —
44 c3q+2 Y2 O c3g+2 in X1 c3g+2

1 C3q (C2q - 7C1q) c3q+2 C34+2
1l 100 (o)
* C3g+2 [ €1q 3 on in

36‘1 — (2 1 1
(I)Sq = % |:x%n (lann - 5) _X%n (lnxln - E):|

deig—caq (o 2
- 6 X0 = X1n ) »

2cig(1=c3g) [ est1 1 3+l 1
(D = — >4 1 J — >4 1 n———
6q c3q+1 on X2 c3+1 n X c3q+1

C2¢C3q —Clq [ c3gtl 3t
Xon ~Xin ’
C3q+1
3

X 1 17
"qu = % [(lnxzn — 3) <lnx2n — 3> + 9:|

x 1 1
_ % {(lnxln -3) (lnxl,, - g) + E:| )
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5 _
‘P3q = X2, 1Inx2;, (lnx2n — 1) — X1 Inxy, (lnxln — 1) -+ M

4 )
2 42 | de3g+11 42 | dezg+11

‘P4q = —2 x;iq il - Inxy, —xlcfl] —— Inxy, R
c3q+ 3(c39+2) 3(c3g+2)

2(x3,—x3) 5 1 1
\Psq = % + 8 |:x%n (lnx2n - 5) _x%n (lnxln - E):|

1 1
— X3 <1ﬂ2x2n —lInx, + 2> +x1, <ln2x1n —Inxy, + 2> ,

2 c3g+1 1 c3g+1 1
Yo, = —— [ (g — ——— ) =27 (Inxy,, — ———
6g 03q+1 |:x2n (ann C3q—‘r 1) xln nx, C3q+1

1 (XC3(]+1 _xL‘3q+l)
C3q+1 2n 1n ’

q=FE = x1,=xN, Xon = XE,

q=M = x1,=xg, Xon =Xu, (5.13)

where xjy, Xg, x) are given by Equations (1.22), respectively. In case of the ellip-
soidal inclusion, we get (”nIN)x,ﬁO — 4 oo, (eIN)x,,—>0 — F oo, (ON),g —
Feodue to (Inx,), o — =+ ecand (x;’), o — = eoforc3 <0 (see Equa-
tions (2.18), (5.4)—(5.10)). Accordingly, the mathematical solutions (5.4)—(5.10) are
suitable for the envelope and matrix.

Additionally, the function f = x, [(4/3) —Inx,] is increasing or decreasing for
X, <0.513 m or x, > 1.396 m, respectively. With regard to dimensions of com-
ponents of a real three-component material, f = x,,[(4/3) — Inx;,| represents an in-
creasing function of x,. Finally, f = (1/2) + Inx, represents an increasing function
of x;,.

5.2 Condition By # Br # Bu

5.2.1 Matrix

The integration constants Cyps, Cop, Capyy for the matrix (see Equation (4.4)) are
determined by the boundary conditions (2.29), (2.30) or 2.29), (2.30) (2.32). The
boundary conditions result in the following combinations of Cjs, Copr, C3p. Finally,
such a combination is considered to exhibit a minimum value of the elastic energy
We of the cubic cell (see Equation (2.23)).
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Conditions Cyy; # 0, Copy # 0, C3p = 0. With regard to Equations (2.29), (2.30),
(5.4)—(5.11), (2.22), (2.23), we get

1 4 el
g = — é’jﬂ l —Inx, —cauy (g—lan) (j—M> 1 , (5.14)
4 4 X\ !
Eom = Eop = — % L “Inx, — <3 1an> <x;1) ] , (5.15)
_ _ 4 d P2n
EnoM = S44M Onom = | Inx, — = 30 \ Ty
+ xﬁ'sM [ s i3 —lan>1 , (5.16)

2
€10M = S44M OnoM = 9{ (lnxn ) (p ")

“”Ml&p[%(%_mw)”’ (5.17)
M X

Tcoy — ¢
GnM:@ MJF(CIM,CZM)IHM
Cm 3

4 X\ M !
+[(cim+cam) cap —2com] (§ —lan> <—> , (5.18)
XM

coy —4c
Pon [ZMIM +(e1m— cam) I,

CoM = Oom = C7M 3
4 Xp, cam—1
+(cim—camesm) (§ IHXM) (—> , (5.19)
Xy
: 4 3lnxy ) (3lnxy —4)
n — X, XM —
Wy = (&) K1y +Kom c _IM +K4M C fll
Cm 3x," 3x,"
X [ [ 9 (2] Jd (p ?
e (B el (E)]
S44M Cm Cm
2 2
L Xom 9 | p2n(4—3Inxy) Lo 0 | p2a(4—3Inxy)
saam \ | 0@ | 3 xm ! OV | 3Ly aim!
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_|_X4_M i(@) J [mn(?)lan 4)]

saam 09 \Car) 09 | 3L 4y xim !
Xam©* 9 [ pan 0 | p2n(3lnxy —4)
+ av< ) 5 [ T | (5.20)

n/2 m/2

, 2
" 4—-3] () 31 —4
WM=4/ / (li) d>1M+<I>2M< Cwnle> L Pa( c?fﬁ ) do dv
0 0 S 33 3
n/2 /2 2 2
L4 //%M {i(@)] +®2[8 (pzn)] do dv
saam ) ) 00 \Cm Cm
n/2 m/2 o (4—31 ) 2
o nxy
sean | oM ({B(p[ 3 1 ]}) ¢
: n/21‘c/2 3 4-31 2
+7/ /\PZMGZ 3 | pan(t=3lnxy) do dv
Saam ) V| 3L xp

0

n/2 m/2
4 " d P2n J P2n (3 Inxy — 4)
+ — Yo == 5— 1
Saam ) 99 \Cur /) 09 38w xp
/2 m/2
4 ' n
—|——//‘I‘4M®Za<pz>i
Saam ) Cm) ov

where ©, xy1, Saapr, i (i=1,2,3) and Kjpg, X s @iy, ¥im (j=1,2,4) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.13); (4.15), respectively, and C 7, Cip
(i=1,2) have the forms

] dodv

pan (31lnxy —4)

3 CW i ]d(pdv, (5.21)

CM:§2M_C1M<E—IHJCM>7 Cim = [(c1m + cam) cam — 2 cam] <XE>C3M1,

3 XM

ciy—Tc
Com = M — (c1m—cam) Inxg, (5.22)

The normal stress py, is given by Equation (2.26), where pyy and p;je (i, j=1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum W, (see Equation (2.23)).
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With regard to (g(PM)x = —ponpm and Equation (5.15), the coefficient pys in

Equation (2.26) is deri\;lgéCEas
1|4 4 el
o= o | = —Inxg — (= —Inxy | (2 . (5.23)
Cm |3 3 XM

Conditions Cyy; # 0, Capy # 0, Copy = 0. With regard to Equations (2.29), (2.30),
(5.4)—(5.11), (2.21), (2.22), (2.23), we get

1 1 xy (4
ey = — é’LM" [(5 +1an> <§ —lnx,,> - f <§ —1an>} : (5.24)
1 4 X 4 1
EoM = Eop = — % [(5 + lan> (§ — lnxn> — f (§ — lan> (E + lnx,,ﬂ ,

(5.25)

4\ o 1
EnoM = S44M OnoM = (hlxn - §> gp [@ (5 +1an):|

M
1 /1 9 [ panxm 4
+ o (E—i—lnxn> % [ Cu <lan — 5)] ; (5.26)

4\ o w1
EnvM = S44M OnoM = 9{ (hlxn - §> % [2—; (5 + lan)]
+

1 1 0 P2nXm 4

1 -7
OnM = zi/: { (E +lan> I:M — (C M — C2M) lnx,,]

3
4
+ il <— —]an) (ClM—zchlnxn)} , (5.28)
X, \3
1 dey—c
Gom = Opm = IC’_ZMH { <§ +lan> {leZM — (ClM — CZM) lnxn]
4 _
T iy ) (M g ), (5:29)
X, \ 3 2

P2n : 1 2 4 g
wy =% |« |5 +Inxy | +x3pyxy | 5 —Inxy
Cum 2 3
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(L) (4 )
e ([ G e {2 (Gonar ]} )
331;1( (2 pz";;M (om)]f e {3 22 (5-m)] )
o 30 6 (37100) 3 [ 75" (3 0ow)
o B (3w 5[ e (s-mw)] o

n/2 /2

Wiy = 4//("2”)

1 4 z
Dy (5 Jrlan) +¢3Mx,2v1 (g — lan)

1 4
+ Dsprxpm <§ —|—1an> <§ < IHXM>:| dodv

e T ([ Gom)
+®2{ J [’g; (1+1an>}}2> de dv
“/272( ofag 22 (3 mne) |}
o {3 [ (3-mew) |}
o] [l (om)| 3 P ) o

4 a p2n a pZnXM <4 >:|
_r ) @2 Inx — ——1 dod
* S44M/ / M &M( " ﬂ v { Cm \3 HXM P
(5.31)

where @, XM, S44M s CiM (i= 1,2,5) and Kjims XM q)jM, \PjM (]= 1,3,5) are given by
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Equations (1.21), (1.22), (2.13), (2.18) and (4.13); (4.15), respectively, and { 37, Cipr
(i=1,2) have the forms

1 4 X,
CM=C2—M —+1Inxy | —Cim | 5 —Inxy |, ClM:_M<ClM_202M]an)7
xy \2 3 XE

cim—Tcom

3 —(c1m —cam) 1an:| : (5.32)

CZM:)CM[

The normal stress p, is given by Equation (2.26), where pyy and p;je (i, j=1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum W, (see Equation (2.23)).
With regard to (E“’M)xFXE = —p2,pm and Equation (5.25), the coefficient pys in
Equation (2.26) is derived as

1 1 4 4 1
Py = CM [( +lan) (g—lnxg) —);—Z (5 —lan) <§ —O—Ianﬂ . (5.33)

Conditions Cyy; # 0, C3py # 0, Cipy = 0. With regard to Equations (2.29), (2.30),
(5.4)—(5.11), (2.21), (2.22), (2.23), we get

1 C3m
et = — 22 ey [ 2ok Inyy | xcow—t Z2M | (5.34)
CM 2 Xn

P2n 1 C 1 x;‘;M 1
EoM = Egp = — g 2 +Inxy m= X, 5 + Inx;, s

(5.35)
1 /1 ) XM
EnoM = S44M OnoM = x_ (5 +lnx11> % <p2§1;/1 )
0 ) %) 1
cay—1 n
e |:CM ( Yl xM)] (5.36)

1 /1 d oy XM
€avM = S4aM Oyt = O — | = +1nx, | =— Pan Ty
X, \ 2 av Cm
2n

— xCm—l 9 [Z— <1+1an>” (5.37)

1 X
X {[C3M (cim~+com) —2com] (E‘FIHXM) —x—M(ClM—ZczM lnxn)},
n
(5.38)

C3m— 1
P2nXn
OnM = —
ln
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CoM = Oom =

_pwx™ ! 1 Xy (cim—2com
(cim—comeam) §+1an -\ +cimlnx, )|,

lw Xn
(5.39)

Cm

2 2
s e )
2
+ Xom 9 |:p2n ( +1n xM):| +®2 J |:p2n ( +1n xM):|
S4aMm a(P Cm Cm

X3m | 9Cm (PznxﬁM)z egaCzM <P2an >2
Sqam | 0@ Cwm ov Cm
_X6M®{ J [P2n< T inx )} i(pznx;fM)
saap 100 [Cm 00\ Cm
d [pa (1 d p2nx1f/[3M
o o ()| 5 (5 | 40
n/2 m/2

2
1
Doy (5 —|—1an> +<1)3Mx1%,;3"”

1
+ q)6MxC3M (2 -|-1an)] do dv

2
DPan za P2n
s44M/ / {a(p [C,M( —|-1an>} + 06 e {CM( —anM)} } do dv
n/2 n/2 camn 2 cam 2
+i/ /%M 2Cm (pzan ) @29 <p2an ) dg dv
Sa4m L) Em Cum

TE/ n/

“] [ o lelen s +mw>} s (")

49 0 [pan +l i PZnXIf/;M do dv (5.41)
ov [y ov\ Cwm ’ '
where ©, X1, Saapm, cim (i=1,2,3) and Kjuy, X jm; P v, ¥im (j=2,3,6) are given by

Equations (1.21), (1.22), (2.13), (2.18) and (4.13); (4.15), respectively, and { »7, Cipr
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(i=1,2) have the forms

X
Cm= B ( +lan) Comxi? ", G = "2 (e —2cam Inxg),
xy \2 XE

Comr = Xt [cam (¢ 1a + cam) — 2com] g1 (5.42)

The normal stress py, is given by Equation (2.26), where pyy and p;jg (i, j=1,2)

in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),

(7.93), (7.103), respectively, with respect to minimum W, (see Equation (2.23)).

With regard to (ggum) _,, = —P2nPum and Equation (5.35), the coefficient py in
Equation (2.26) is derived as

1 1 1 xgM 1
M= CM [( +lan) E*M i”E <2+lan>} (5.43)

Conditions Cyy; # 0, Copy # 0, Capr # 0. With regard to Equations (2.29)—(2.32),
(5.4)—(5.11), (2.21), (2.22), (2.23), we get

1
e = — 22 G (= —Ini) + Conrcapgxsm ™! Lol (544
Cum 3 Xn

Xn

B B P) e 0 (panCom
EnoM = S44M OnoM = — K__lnx”> 00 ( Cum ) el ( Cum >

( +1Inx, aa( Z”C*Mﬂ (5.46)

4 0 onC1m Cay— 9 (panCom
SnvM:S44M(5n(pM:—®[(g—lnxn) %< >+x 3 18\/( T

Cm
( +lnxn>ai( QW)} (5.47)

ciy—7Tc
Onyt = — % {ClM {u - (CIM_CZM)lnxn:|

EoM = Eop = — (;_ [Cw <— —lnxn) + Gopgxsm—l 4 221 Cam (2 +1nxn>} , (5.45)

3

ca—1 4 Cam (c1m —2com Inxy,)
Xn

+ Com [(c1m + com) c3m — 2 com] x5,

} ,(5.48)
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D2 deym —com
GoM = Oy = — 75— {ClM [7 —(c1m —cam) lnxn:|

Cm 3
_ cim—2c¢o
+ Com (cim — comesm) e+ G (MZM +cim lnxn> } , (5.49)

2
P2
wy = <C_AZ> <K1M G+ %om Gy + 13 Gy

+K4MC1M§2M+K5MC1MC3M+K6MC2M§3M)
[0 (PnCim _2+®2 ENCSTE
a(P Cu /| v\ Cm /]
4 Xam <P2nC2M 2+®2 [ o <p2n€2M)_ :
Saam | LOQ LoV Cm i
[ Pan3 2+®2 ERCISTANE
a(p | OV Cv /|
L Xam i(P2n€1M> i(Panw)
S44m OQ Cum d Cum
Jr)C4M@2 <P2n§1 )i(mﬂm)
S44M ov ad CM

L, Xsm i(PanM) V(Panw)

Xim
S44Mm

+

x3m
+ P
Sa4Mm

saam 09\ Em ) 0
. xAsu©? 9 (p2nC1 ) <p2nC3M>
Sa4aMm aV ov CM
Xem O <P2nC2M) (Pan3M>
+ P
saam 00\ Cm

Saap OV

00
+X6M®2 (PzngzM) i(panm)
d

(5.50)

/2 m/2
2
Wy = 4//<pn> ¢1MC21M+®2MC22M+CD3MC23M

+ D@apg C1ar Comr + Psnr S §ans + Pepr Com CsM) dodv
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+6?

ai <P2n ClM do dv

/2 /2 -~ 1 i o
+ : //‘PZM i( CM) +©? de dv
Saam ) 00\ Cm /| I ]

55 o[ () e

3
X
N
N———
(3]
Q)
o
N
<
[
g S
gd\f
<
N———
[\)

QO
¥l
N
S
[
Y| S
< LT
<
~_

|09

P2n z;2M>

2
4 f J P2n§1M)
P \IJ .
' S44m 0/ 0/ 4M [B(P < Cm

@28 (panM ai(l’z;;@m)} do dv

.

) |
] Trela ) )

|

.

@23 <P2nC1M aj(panwﬂ dodv

P C3M>

+ﬁd!*k&%%>
@2851/ <PZZ§/[2M) S (PzZCMSMﬂ dodv,  (550)

where ©, xu, Saam, cim (i=1,2,3) and Kjus, Xjms Pjm, ¥jm (j=1,...,6) are given
by Equations (1.21), (1.22), (2.13), (2.18) and (4.13); (4.15), respectively, and { yr,
Cim (i=1,2,3) have the forms

1
Cim *xMW 1 |:53M <2 +1I1)CM> — 1] ,
4 1 1
Com = 3 —Inxy — (5 -HHXM) (§ —1an) ,
4
3

o).

—(c1m —com) lan:|

1
C3M = XX;M l:g —Inxy —cay

CM xcxM 1 clM_7C2M
M 3
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1 1 _
—+ [(C]M JrczM) C3M — 2C2M] (5 Jrlan) (5 — lan) XEBM !

4 63Mx,f,,3M
+ (C1M—2C2M1an) ——Inxy | ——
3 XE
cim—Tcom 1 cay—1
— < C3pm f_(clM_CZM)lan §+IHXM xM3M

4 g —
+ [(c1m +com) can —2com] <§ - lan) x !

) 1 C3mM 1
Jr(c1M com Inxg) x,f <_1an>}' (5.52)

XE 3

The normal stress py, is given by Equation (2.26), where pyy and p;je (i, j=1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum W, (see Equation (2.23)).
With regard to (S(PM)xn:xE = —pa,pm and Equation (5.45), the coefficient py; in
Equation (2.26) is derived as

_ 1
Pm T

G (3 -t0ne ) + a5 (Lo )| )

3 XE

5.2.2 Envelope

The integration constants Cyg, Cog s Csg for the envelope (see Equation (5.4)) are de-
termined by the boundary conditions (2.33), (2.34). The boundary conditions result
in the following combinations of Cyg, Cog, C3g, i.e., Cig # 0, Cop # 0, C3g = 0;
Cig # 0,C3g # 0, Cop =0; Cop # 0, C3p # 0, C1g = 0. Finally, such a combina-
tion is considered to exhibit a minimum value of the elastic energy W of the cubic
cell (see Equation (2.23)).

Conditions C g # 0, Cop # 0, C3g = 0. With regard to Equations (2.33), (2.34),
(5.4)—(5.11), (2.22), (2.23), we get

1
EnE = — [Cw <§ lnxn) —C3E C2EX§3E_1} ) (5.54)
4 c3p—1
EpE = €gF = — CIE 5 —Inx, | + CzEX,,3E (5.55)
4 i | cyp—1982E
EngE = S44E OnoE = — |:<§ — lnxn) W +Xn3E IW s (5.56)
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€0 = 544 G0 = — © Kg - lnxn> agm et ang] : (5.57)
OnE = — {ClE [@ —(c1E —c2E) lnxn}
+ Cor [(c1e + c28) 3 — 2 C2E) X 1}, (5.58)
GoE = Opp = — {ClE [46“5% —(c1e —c2E) lnxn}
+ Cok (c1p — c2pc3p) xE ! }, (5.59)

d
WE—K15C15+K2E§2E+K45C15C2E+ X1 [( ClE) +0?

e )2

o < v ) ]

+Siﬁé [(ag%) L (%ﬁ) ]+£<8C1E 3C2E+®23C1E dCok
n/2 m/

ov Sqap \ 09 0@ ov  ov
Wg =4 // ¢1EC1E+¢2E§25+‘1’4C1EC2E> dodv

0 0
/ o[ (%) 0 () ]
n/2 Tc/2

4 e \? (3C2E)2
—_— v — 0| =— dod
+S44E0/'0/ 2E[< acp> + v ¢ av

) .(5.60)

P T ¢ 91 AL

1E 2F 2 1E 2F
s dod 561
+S44E0/ .()/W“E( 00 99 O ov av) Py, (>61)

where O, xg, saag, cip (i=1,2,3) and KjE, XJjES (Dan ‘Pje (j=1,3,4) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.13); (4.15), respectively, and (g, (e
(i=1,2) have the forms

Cie = p1nCite +p2nCie, i=1,2,
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1 _
Ciie= o [(c1E + car) e3 — 2cap] xg 1,

1
Cioe=— o [(c1E +car) e3e — 2 cap] Xt !,
1 |cig—Tc¢
Cog=— o {“53215 —(c1E —czE)lan] ,
1 |cig—T7c¢
Cooe = T [% —(c1g— C2E)1HXIN] )

Ce =[(c1g+c2E) 38 — 2 c2E]
-7
% {615 . C2F (X?Eq_xlc;/ﬁl)

— (er—ca) (xg oy — a3 g ) | (5.62)

The normal stresses pi,, p2, in Equation (5.62) are given by Equations (2.25),
(2.26), where pyy and pys in Equations (2.25), (2.26) are given by Equation (6.89)
and (5.23), (5.33), (5.43), (5.53), respectively With  regard to

( goE)x . — (Pt P11E + P2nP12E), (e(pE)x = —(P1npP21E + P2nP22E)
and Equatlon (5.55), the coefficient p;jg (i, j=1, 2) in Equatlons (2.25), (2.26) is
derived as

p1iE = Clie (— —lnX1N> +C2iEX1LRzE717 p2ie = Clie (— —lan> +Coipxg"t ™ !
i=1,2. (5.63)

Conditions Cig # 0, C3g # 0, Cop = 0. With regard to Equations (2.33), (2.34),
(5.4)—(5.11), (2.22), (2.23), we get

en = — [cw (— —lnxn> + Cﬂ] (5.64)
€pE = €9 = — {CIE < lnxn> C;E (2 +lnxn)] , (5.65)
4 1 1
€noE = S44E OngE = — {ag% (5 —lnxn) —|—x— ag% <§ +1nx,,>} , (5.66)

4 1 1
€10E = S44E OnpE = — PQJ (— - lnxn> + . %3k (5 —&-lnxn>] , (5.67)



2(cig+2c¢ 2¢
Ong = — {CIE [M + (ClE - CZE) lnxnjl - 2EC3E } s (5.68)

3 Xp
ClE+2c¢ c
G(PEZGSE:_{QIE [¥_(QE—QE)1M”}+ IEXC”}. (5.69)
n

d
WE—K15§1E+K3EC3E+K5EC15§2E+XIE l( QIE) +6?

%ir)’
saag |\ 09 < v > ]
p 2o l(a%)zwz <aci>2] +x£<acm sz | o9ic aggE)

ov sue \ 09 00 v v
(5.70)
n/2 /2
WE_4/ / ¢1EC1E+‘D3EC3E+‘D5C1EC3E) do dv
i ik
S44E/ / 1£ < ) (W) ] dedv
n/2 n/2 .
4 aC3E b 8€;3E>
- \}I 908
+S44E.0/ O/ 3k [( o0} ) +6 ( v do dv
4 /2 n(z ac ac ac ac
- 1E 3E 2 1E 3E
+S44E0/ O/ %E( 9o dp O v ov ) dedv, (7D

where @, XE, S44E, CiE (i= 1,2,3) and KjE, XjE> (I)jE, \I"jE (]= 1,3,5) are given by
Equations (1.21), (1.22), (2.13), (2.18) and (4.13); (4.15), respectively, and ;g
(i=1,3) has the forms

Cie = pinCite + panCie, i=1,3,
CIE_ZCZElan CIE—2C2E1I1)C[N
Cne=———"7—", Cpp=——%—"—"—
Cexe Cexiv
I {cig—TcE
Csie=— 7 |——5—— —(c1e —c2p) Inxg | ,
Ce 3
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1 |{c1ig—Tc
Ca2e = 57— {u —(c1E CzE)IHXIN] )

CE 3
C _ ClE— Tcrp (c1g—2cpInxg _ c1g —2cpInxy

E- 3 XE XIN
ClE_202E1an lanN C1E—26‘2E11‘1)C1N lan
— (c1e—c2E) [( ) _( ) . (5.72)
XE XIN

The normal stresses pi,, p2, in Equation (5.62) are given by Equations (2.25),
(2.26), where pyy and pys in Equations (2.25), (2.26) are given by Equation (6.89)
and (5.23), (5.33), (5.43), (5.53), respectively With regard to (& @E)x I

—(P1nP1IE + P2nP12E) (San) = — (P1nP21E + P20 P22£) and Equation (5.65),
the coefficient p;je (i, j=1,2) i in Equatlons (2.25), (2.26) is derived as

4 3
p1ie = Clie <3 1nx1N> + cxlf <2 +lnx1N)

4
p2ie = C1ie (5 —lan> + Ssit (2 +1an> i=1,2. (5.73)

Xg2

Conditions Cor # 0, C3g # 0, Cig = 0. With regard to Equations (2.33), (2.34),
(5.4)—(5.11), (2.22), (2.23), we get

EnE = — [C3E Cop X8 Ly Cﬁ} , (5.74)
Xn
€oF =€ = — {CZEXCM T4 C3E < +1In ﬂ (5.75)
X, \2
8C2E o 1 aC3E 1
EnpE = S44E OnoE = — |:WX,§3E ! +E W 3 +Inr ||, (5.76)
002E 1, 1 0C3e (1
€n0E = S44EOnpE = — [Wx,?b ! + x—n v (2 +Inr )|, (5.77)
cilg —2celnr
OuE = — [CzE [(c1E + c2E) 3 — 2cag] xS~ 4 Car (c1e 2E )} . (5.78)
n
. Cclg —2c¢
OpE = OgF = — |:C2E (c1 — cap cap) xS Cxi (% +ciE lnrﬂ .
n
(5.79)
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e\ | o2 (32’
we =105 G + %32 G + Ko Cor Gap + 225 l( C2E> +®2( g\Z’E) ]

S44E a(p
4 X3E [<8C3E)2+®2 <3C3E>2] X6E <3C2E 93p  gp9%2e 3§3E)
S44E 9
n/2 /2

ov s \ 09 09 v oV
WE—4/ / (QIEC2E+¢3EC3E+®5CZEC3E) dedv
n/2 n/ 2
0ok 2 (9826
S44 / / < ) o ( v doav
n/2
4 s\ | oo (e’

n/2
4 002r0C3E 2982k dC3E
+—/ /‘1'55( o e O o) doav, 8D

(5.80)

where O, xg, sqag, cip (i=1,2,3) and g, Xje; Pje, Ve (j=2,3,6) are given by
Equations (1.21), (1.22),(2.13), (2.18) and (4.13); (4.15), respectively, and ;g
(i=2,3) has the forms

Cie = pinCite + p2nCioe, 1=12,3,

ClE—zczE lan C]E—ZCzElH_X[N

Ca1 = Coxe CoE=— Cpim
Coip = — [(c1£ +cap) c3g — 2 cop]xg™ ™ 17
) CE
T (G Ve T3
Ce
Ce = [(c1E + c28) 36 — 2 2E]
XICKIE ! (C]E - 2C2E lan) _ xgE_l (ClE — 2c2€ lanN) (5.82)
XE XIN

The normal stresses py,, p2, in Equation (5.62) are given by Equations (2.25),
(2.26), where pyy and pys in Equations (2.25), (2.26) are given by Equation (6.89)
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and (5.23), (5.33), (5.43), (5.53), respectively. With regard to (8<PE)x -

—(Pinp11e+Dp2np126), (Eg), _,. = — (P1uP21£ + P2np22£) and Equation (5.75),
the coefficient p;;g (i, j=1,2) in Equations (2.25), (2.26) is derived as

2
i=1,2. (5.83)

_ 3ig (1 _ 3ie (1
pie = Cop Xy 1 G <+lnxuv), paie = Goip X" 1 Saie (+lnXE),
XIN XE 2

5.3 Condition B;y # Br = Bu

If By # Be = Bum, then |u,p| = f(x,) represents a decreasing function of x, €
(x1n,xE), and then Cig = C3g = 0, Cog # 0 (see Equation (5.4)), respectively. With
regard to Equations (4.4), (5.4), the thermal strains and stresses in the ellipsoidal
envelope are determined in Section 4.3.2. The normal stress pj, in Section 4.3.2
is given by Equation (2.27), where p;y and piyr in Equation (2.27) are given by
Equations (6.89) and (4.130), respectively.

5.3.1 Matrix

The integration constants Cips, Cop, Capyy for the matrix (see Equation (5.4)) are
determined by the boundary conditions (2:30), (2.31) or (2.30)—(2.32). The boundary
conditions result in the following combinations of Cyyy, Copr, Capyg, 1., Crpyp # O,
Cm# 0,CGu=0;Cyy # 0, # 0, Copyy =0; Coyy # 0, Gy # 0, Crpyp = 05
Ciy # 0,Copr # 0, C3pr # 0. Finally, such a combination is considered to exhibit a
minimum value of the elastic energy W¢ of the cubic cell (see Equation (2.23)).

Conditions Cyy; # 0, Copy # 0, C3p = 0. With regard to Equations (2.30), (2.31),
(5.4)—(5.11), (2.22), (2.23), we get

1
€m =Cim (5 - 1nxn> +esm Gomx L, (5.84)
4 c3u—1
€oM = €om = C1m 3 Inx, | + Qo x™ 7, (5.85)
4 d 40
EnoM = S44M OnoM = (g — lnxn) g(lpM +x,f3M ! g—z(pM’ (5.86)

4 d 40
€10M = S44M Opoy = © K— - lnxn> gi}M 4 xSam—1 %,} ;

3 (5.87)
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ciy—Tc
Soum = — Cim {W32M —(c1m — CzM)lnxn}
+ Com [(c1m + cam) cam — 2cap] xS (5.88)
-~ _ deip —com
GoM = Oom = G1m — 3 (c1m — com) Inx,
+ Com (cim — camesn) xS 1, (5.89)

p) 2 p) 2
WM=K1MC21M+K2M§22M+K4MC1MC2M+XIM [( ClM) +62 (ﬂ> ]

Saapm a(p ov
2 2
+X2_M dCom 1 @2 dCom +X4M aClMaC2M+®28C1MaC2M )
S4am o1} ov Sqgapm | 09 0@ av  adv
(5.90)
n/2 /2
WM=4/ / ((1>1MC21M+<1>2MC22M+‘I’4MC1MC2M) do dv
0 0
n/2 m/2 r

2 2
+ 4 //‘Puvz (8C1M> +®2<—8C1M) do dv
Saam J ) I o0Q ov

4 /2 /2 - 3 2 3 5
+ / /‘PzM ( CZM) +6? <—C2M) ]d(pdv
S44M - a([) ov
0 0 L
/2 /2

4 / /‘P4M 1M 3C2M+®23C1M Com
SaaMm

90 00 v ov ]d(pdv, 591

0 0
where O, xg, Xy, Saam, cim and Kjg, xje; Pie, Wig (i=1,2,3; j=1,2,4) are given
by Equations (1.21), (1.22), (2.13), (2.18) and (5.12); (5.13), respectively, and s,
Com» €y have the forms

Loy = — P pPamE XE X" Copy = PInP2MEXE XM 4y
B Cm ’ B Cm 3 ’
C _ C3m 4 1 C3m 4
M= X" XE 3~ nxXg | —xXyXxg 3~ Inxy ). (5.92)
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The normal stress py, is given by Equation (2.27), where p;y and poyr in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum W, (see Equation (2.23)).

Conditions Cy; # 0, C3pr # 0, Copy = 0. With regard to Equations (2.30), (2.31),
(5.4)—(5.11), (2.22), (2.23), we get

1
et = Cim (5 - lnxn> + Cj"ﬂ (5.93)
n
4 1
Eom = Eop = CIM (g — 1nxn> + CjM (E —ann) s (5.94)
n
4 0 1 /1 d
EnoM = S44M OnoM = (g - lnxn) S—l(pM + x— <§ + lnxn> g—s(pM, (5.95)
n

€46M = S44)1 Onoy = © Ki - lnxn> ag\l,M + 1 (l + lnxn> acﬂ} , o (5.96)

3 X, \2 ov
-7 -2 Inx,
Ont = C1m [7011” 3 o (CIM_CZM)lnxn] + o (cum < =l nx1)7 (5.97)
n
deipp—=co
Com = Oom = G1m [*% — (c1m — cam) lnxn]
-2
4 S (CWCZMH]M lnxn> , (5.98)
Xn 2

) 2 p) 2
wM:1<1MC21M+K3MC%,M‘FKSMCWCsM+3Cﬂ K §1M> +0? (%) 1

44M 9
n A3m dC3um 2+®2 3 2 n xsm [9C1m 3C3M+®23§1M 3 7
S44Mm fo10} ov Sy | 09 0 ov  dv

(5.99)

/2
0
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n/2 /2 r

2 2
. //‘PW (acw) +®2<—3C1M> do dv
S44MO 5 a([) ov

n/2 m/2 r

2 2
e (acw) +®2(acw> ] dodv
S44M.O 8(p ov

4 [0C1m 9Cam | 298 1m IC3m
+ // it | o et o oy 404V, (3100

where ©, xg, xpm, saam, i and Kjg, Xje; Pje, Yie (1=1,2,3; j=1,3,5) are given
by Equations (1.21), (1.22), (2.13), (2.18) and (5.12); (5.13), respectively, and {p,
Csm, € m have the forms

1 4
Capr = — PinP2MEXE Sl ), Caw= PlnP2MEXEXM (4 Inxy ) |
Cu 2 Cm 3

4 1 4 1
Cm=xg (g — lan> <§+lan) — XM (g — lan> (E +lan) . (5.101)

The normal stress pi, is given by Equation (2.27), where p;y and payg in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum W, (see Equation (2.23)).

Conditions Cyy; # 0, Cpy # 0, C1py = 0. With regard to Equations (2.30), (2.31),
(5.4)—(5.11), (2.22), (2.23), we get

eam = c3p Com x4 —%M, (5.102)

n

— — C;Mfl C}3M 1
8(PM —EeM = C,ZMXn‘ +x— E—I—lnxn 5 (5103)

n
0 1 /1 )
gn(PM = S44M GH(PM = x53M71 g—fp]v[ + x— <§ + lnxn> gpr7 (5104)
n

€,0M = S44M Opoy = © [x,‘f’” ! —gv + o (5 —&-lnxn) _gv ) (5.105)

oumt = Con [(c1a + canr) €3p — 2 cpam) x5 1+ Cj—M (cim —2com Inxy), (5.106)
n
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Gom = Sy = Gomr (c1m — comrcang) x5+

Cam (cim—2com
Xn 2

+cim 1nx,,> ,
(5.107)

) 2 p) 2
WM=KzMC%M+K3MC%M+K6MC2MC3M+fﬂ K CZM) +®2( CZM) 1

aam |\ 09 ov
+X3_M 9C3um 2_|_®2 3 2 +X6M 5C2M3C3M+®23C2M3C3M 7
S44Mm fo10} ov sy | 09 0@ ov  adv
(5.108)
n/2 m/2

WM:4/ / (‘DzMCZzM+¢3M§23M+¢6M§2MC3M) d@ dv
0 0
n/2 m/2 -

4 o\ (3C2M> 2
—_— v dod
+ Sa4aMm 0/ b/ M ( a(p > +& ov Pav

4 n/2 m/2 - 3 5 5 5
+—/ /‘I’3M (—CW) +6? (—Cw) do dv
S44M0 5 i a(p ov

[0C2m 0C3m 5 98om O3y
//‘PéM_E)(p o1} e ov  ov

] dodv, (5.109)

where ©, xg, xp, saam, i and Kjg, X je; Pje, Yie (1=1,2,3; j=2,3,6) are given
by Equations (1.21), (1.22), (2.13), (2.18) and (5.12); (5.13), respectively, and (o,
Csm» C u have the forms

ot = — planZMExE (;+IHXM) L= plnP2IVCIExEx;;M’
M M
1 1
Cm = xpM <2 +lan> —x (2 +lan> . (5.110)

The normal stress py, is given by Equation (2.27), where p;y and payr in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum W, (see Equation (2.23)).
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Conditions Cyy; # 0, Copy # 0, C3pr # 0. With regard to Equations (2.30), (2.31),
(2.32), (5.4)—(5.11), (2.22), (2.23), we get

, Sam
b

1
e = C1m (3 lnxn) + 3 Gomxg ! (5.111)

n

§3M( —|—1nx,,>, (5.112)
X, \2

4 0 0 1 /1 0
€noM = S44M OnoM = <§ —1I1xn> g(lpM + xCom—1 K +— <§ +1nxn> gpr,

00 X,
(5.113)

4
oM = EoM = CIM (g — lnxn> + CZMXCW 1 +

€n0M = S44M OnoM =

4 Oim | epy—19C%m 1 (1 dCam
®{<§—lnxn> T—Fxn W"’; §+lnxn W a(5114)

cim—Tcom

3 - (clMcMm)lnxn}

OnMm = C_,lM |:

] cau—1 C3M(

n

+ Conr [(c1mr + com) cam — 2€am cim —2cam Inx,), (5.115)

deiy — com
CoM = Oopm = Cim [i

3 — (c1m —cam) 1nxn:|

cmn—1 | Csm (ClMZCzM

+ Com (c1m — com c3m) x;, p 2 +cm lnxn) , (5.116)
n

wir = K1 Clag + Kom Gy + Kam C23M + Kans Ciar Cont + %501 §1ar Can + o Comr Cam

+X1_M- ol im 2+®2 i\ | Xom o 2+®2 Com\?
Saap |\ 0Q ov saam |\ 0@ v

Lo | acsM)z o (% )| waw [ OCaw | 2981 Oan
S4aMm o1} ov Sgap | 09 0@ ov  adv
xsm [981m 0C3m 2981 OC3m

+S44M | dp  Jdo +0 ov  adv

L XM dloum 3C3M+®25C2M aC3M:| (5.117)
Saapq | 09 0@ ov  dv
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n/2 m/2
Wy = 4/ / <¢1M§21M+(D2M C22M+CD3M C23M> dedv
0 0

n/2 m/2
+4¢//(CD4MC1MC2M+‘D5MC1MC3M+¢6MC2MC3M)d(PdV
00

n/2 /2 r

2 27
] 5  (5) e
S44M a(p ov
0 0 L i
n/2 /2 r 5 7
] [ () 0 (5 e
S4aM 90 v
0 0 L i
n/2 ©/2 r 5 77
+ 4 / / Wiy <—8C3M> +6? (_az;w) do dv
Sa4M B(p av
0 0 L i
s PP et 3L 131 9o |
M 2M 205 1M 2M
S44M / / Fam | dp Jdo O ov  dv | dodv
n/2 /2 _ac ac ac ac _
N M M 2 M 3M
+ S44pm / / M | dp_ 0¢ o av  dv | dedv
4 n/2 m/2 _ac aC ac ac _
4 N 2m 963 | 29G2m 9G3m 11
+ 544M/ / oM | dp 0@ O ov  dv | dgdv, (5.118)
where 9, XEs XM> S44M > CiM and KjE, XJE> (DjE, \PjE (i= 1,2,3; j= 1, e 6) are given

by Equations (1.21), (1.22), (2.13), (2.18) and (5.12); (5.13), respectively, and ;s
(i=1,2,3), { 3y have the forms

xpximl 1
Quag = — PUPMETESM 1y ey (S inyg ) |
Cm 2

4 1 1
CZM = % [5 —lan — (§ —1an) (5 -‘1-1an>:| s
M

C3m
1P2 XEX 4 1
C?’M = — p—P MCEM M |:C3M <§ —lan) — <§ —lan)] s
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. 1 1
C_,M = C3Mx;;M71 |:XE <§ — lan> — XM <§ — lan>:|

2
+ (M —xM) (§ —|—1an> ,

4 1
Cm :xlf/;M_le (g —lan> |:l —C3m (E +IHXM):|
4 1 1
—xg [§ — Inxy — <§ —lan) <§+lan>}
4 xoom l_|_1nx c &—h’l — l—ln (5.119)
3 5 E IM 3 XM 3 XM . .

The normal stress py, is given by Equation (2.27), where pyy and poyg in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum W, (see Equation (2.23)).

5.4 Condition B;y = B # Bu

If B;y = Be # B, then the thermal strains and stresses in the cell matrix are de-
termined in Section 5.2.1. The radial stress p», in Section 5.2.1 is given by Equa-
tions (2.28). The coefficients pys and pozve in Equations (2.26) are given by Equa-
tions (5.24), (5.34), (5.44), (5.54)and (5.129), (5.139), respectively.

5.4.1 Envelope

If By = Be # Bum, then |uug| = f(x,) represents an increasing function of x, €
(xIN,xE>, and then ClE 75 0, C2E = C3E = O; or C3E 75 0, C]E = C3E =0 (see Equa—
tion (5.4)).

Conditions C g # 0, Cog = C3g =0. With regard to Equations (2.34), (5.4)—(5.11),
(2.22), (2.23), we get

1
Eur = — % (3 —lnxn) , (5.120)
4
EoE = Eop = — % (5 - lnxn> : (5.121)
4 d P2n
— =_ (21 — (== 5.122
€noE = S44E OngE (3 nxn) 30 ( ) ( )
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_ _ 4 d P2n
€.0F = S44E Opge = —O (3 - 1nxn> 3y <CE ) (5.123)

A {w —(c1E —CQE)lnxn} , (5.124)
CE 3
OpE = Opg = — % {w% —(c1E — CZE)lnxn] ; (5.125)
2 2 2

P2n xie | [ 9 (Pznﬂ 2 { J (pznﬂ
—wp (222) $HEL S () 2| 2 (P2 506
e <CE> SA4E { [a(P Ce v\ e (120

n/2 /2

2
WE:4/ /qalE <m> do dv
J Ce

n/2 ©/2 5
4 n
+—//‘P1E [a(pz)]Jr
S44E ) 99 \ Lk

0

2
©? {% (‘gz”)] } do dv, (5.127)
E

where O, xg, saag, cig (i=1,2,3) and x1g, Y1£; @1, Wi are given by Equations
(1.21), (1.22), (2.13), (2.18) and (5.12);.(5.13), respectively, and { g has the form
Cp= cig =Tcg

= #—(QE—CQE)IHXE. (5.128)

The normal stress py, is given by Equation (2.28), where pjs in Equation (2.28) is
given by Equations (3.24), (4.24), (4.34), (4.44), (4.54), (5.23), (5.33), (5.43), (5.53),
(6.22), (6.32), (6.42), (6.52), (7.23), (7.33), (7.43), (7.53), (7.63), (7.73) with respect
to minimum W, (see Equation (2.23)). With regard to (g(pE)Xn:xlN = — P2 P1INE>

(eo), _., = —P2aP2nE (see Equation (5.121), the coefficients pivg, pavg in
Equations (2.28), (2.37) are derived as
1 /4 1 /4
PLNE = T (5 - IHXIN) s P2INE = T (5 —1HXE) . (5.129)

Conditions C3r # 0,C1p = C3p =0. With regard to Equations (2.34), (5.4)—(5.11),
(2.22), (2.23), we get

(5.130)



. (1
€ = gop = — L2 ( +1nx,,>, (5.131)

CE Xn
1 /1 3 [ pon
EngE = S44E OnoE = — )C_ (5 + lnxn) % (%) s (5.132)
0 /1 3 [ pan
€n0E = S44E OnoE = — - (5 —ann) v (%) , (5.133)
O = C_,E (C]E 2¢E lnxn) (5.134)
GoE = Gor = — CIZ; <C“5 T2C8 L lnx,,> 7 (5.135)
P2n XSE d P2n 2 d P2n 2
= R el 1
" KSE(CE) S44E{[3<P<C ﬂ e [3V<C ﬂ B0
n/2 m/2
Wi _4/ / Dy (‘Z) do dv
n/2 m/2

R R e

where O, xg, saag, cip (i=1,2,3) and K3, y3E; ©3g, W3 are given by Equations
(1.21), (1.22), (2.13), (2.18) and (5.12); (5.13), respectively, and { g has the form
Cp = w (5.138)
XE
The normal stress py, is given by Equation (2.28), where pys in Equation (2.28) is
given by Equations (3.24), (4.24), (4.34), (4.44), (4.54), (5.23), (5.33), (5.43), (5.53),
(6.22), (6.32), (6.42), (6.52), (7.23), (7.33), (7.43), (7.53), (7.63), (7.73) with respect
to minimum W, (see Equation (2.23)). With regard to (gq )X = ~D2nPIINE
(e E)x —panpane (see Equation (5.121)), the coefficients pyyg, paye in
Equatlons (2 28), (2.37) are derived as

1 1 1 1
PLUNE = 7—— (— —I—lnxlzv) , P2INE= 77— (— —anE) . (5.139)
Cexv \2 Cexep \2
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Chapter 6

Mathematical Model 4

6.1 Mathematical Procedure
The differential equation (2.19) is transformed to the form

’u ou

Uy = —s44(c1+c2) <x§W%" +2xna—x: —Zun), (6.1)
where s44, ¢; (i=1,2) and U, = U, (x,,,®,V) are given by Equations (2.13), (2.18) and
(2.21), respectively. Let x, [0Eq.(6.1) /0x,] be performed, and then we get

aUn 3 aSLln ) a2un
Xn Froe —s44 (c1+¢2) (xn 87,31 +4x; oz ) (6.2)

Let Equations (6.1), (6.2 be substituted to Equation (2.20, and then we get

3 8314;1

ou
n ax;l

% 4 2¢3u, =0. (6.3)

82
+(4—c3) xﬁ L 2esxy, >,

127

X 5
2
ox;

Let u,, be assumed in.the form u,, = x,z‘, then we get [2]-[23]

. C
ty = C1oxty + Cox3 + 3, (6.4)
'xl’l
where ¢3 < 0 is given by Equation (2.18), and Cy, Cy, C3 are integration constants,
which are determined by the boundary conditions in Section 2.4. With regard to
Equations (2.1)~(2.4), (2.14)-(2.17), (2.22), (6.6), we get

2C
&n=C+Cresx - 22, (6.5)
xn
c
o =g =C1+Cox '+ _x33, (6.6)
n
AC1 190 | 13Cs
€np = S440np = =— L o 6.7
ne = 544 Ong 30 Xn 3 +.X3 S (6.7)
aCy _10C2 1 9C3
€10 = =0 | +xo 45 2 6.8
n® = 544 0@ v T oy B ov |’ (6.8)
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2C3(c1+2¢)

o, =Ci(c1—c2)+Cal(c1+e)es—2c)xp ! — 3 ; (6.9)
n
i Gy (c1+2c
6o =0 =Ci(c1—c2) +Ca(c1 —cac3) X% I+M» (6.10)
W:K1+K2x3("3*”+ 2 T ‘+x Frex4, 6.11)
where O is given by Equation (1.21), and x; (i=1,...,6) is derived as
o oSz 10 (30
2 544 a(p ov
K = LJFQ)C%JW 2eres| C2 +i I9C2 2+®2 9Cy)*
2 = ) 1—<«€2C3 2 a(P v ’
1 dC3 dC3
K3—3(C1+26‘2)C3+ <a(p> +®2 <W)
aCy 0C, 28C1 0C,
=(c1 — 2
K4 (C] 62)( +Cz)C1C2 <a(p a(P + O aV aV
dCy dC3 ,0Cq aC3
Ol ]
S44(8(p a(p + ov. ov
2 (dC, dC3 »dC; 9C3
=[2c(l—c3)—c1]CC ———@——. 6.12
Ke=[2c2(1 —c3) —c1] 2 C3 + (aq) 20 v Dy (6.12)

6.2 Condition By # Br # By
6.2.1 Matrix

The integration constants Cips, Cop, Capy for the matrix (see Equation (6.4)) are
determined by the boundary conditions (2.29), (2.30) or (2.29)—(2.32). The boundary
conditions result in the following combinations of Cyys, Caps, C3py. Finally, such a
combination is considered to exhibit a minimum value of the elastic energy W¢ of
the cubic cell (see Equation (2.23)).

Conditions Cyy; # 0, Copy # 0, C3p = 0. With regard to Equations (2.29), (2.30),
(6.4)—(6.11), (2.21), (2.22), (2.23), we get
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P2 X\ !
e =— 5 |l—cay [ =5 ; (6.13)
Cm Xy

P2n Xn el
Sq)M =& = — C_M 1— <E> s (614)

J P2n> ca—1 9 Pan
— =) —x¥ = — ], 6.15
a(p (CM Xn a(p QMXX;Mil ( )

i & _ C3Mfli L
8\/ (CM) Xn av CM)C;;M_l 5 (616)

EnoM = S44M OnoM = —

€,0M = S44M Onop = — O

P2 6\ !
Oumt = — 7 c1m — Com — [e3m (¢ 1v + o) — 221 <n> o (6.17)
Cm XM
P2n Xn cam—1
OoM = Oom = — m— |C1m — Cam — (C 1 — c2mC3m) <—> ,  (6.13)
Em XM
1 o
war =5 (i D ) (6.19)
n/2m/2
Kim (3 3 Kom 2eam+1 _ 2cau+l
Wy = 4/ / [T (XM— E) +m (fozM _xEc3M )
00
Ram (fwﬁfx“w“) dodv (6.20)
cam+2\M E ’

where O, xg, xp and s44p7, cipg (i=1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and s, Kps (i=1,2,4; see Equation (6.12)) have the
forms

cay—1
Cm=cim—cam—[cam(cim+cam) —2com] <x—> ,
XM
3(cim — cam) (P2n>2 1 [8 (1??2;1)}2 5 [8 <P2n>]2
MM (P G2 () @2 | 2 (P2 R
K 2 Cm saap | 100 \Cm ov \Cm

2
2
cim+cam)c 2
Koy = [( ) 3M+61114262MC31\4] (p 5 )

2 ng;I}M71
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2

+6?

1 n
SRS § A LA
S44M a(p CMXCW

(cam —c1m) (2+cam) [ pan
x =l CM

2
i P2n
oV \ Ly x5! ’
M

_ i i (p2”> J Pan +@2£ (p2n)a P2n
Saam |99 \Cm Caxin™ CapxCom—1 v \Cm/ov \ gyt )|

(6.21)

Kap =

The normal stress py, is given by Equation (2.26), where pyy and p;je (i, j=1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum W, (see Equation (2.23)).
With regard to (E(pM) =y~ P2nPM and Equation (6.14), the coefficient pys in
Equation (2.26) is derived as

1 C3M71
P =7 - [1 - (j—;) ] . (6.22)

Conditions Cyy; # 0, C3py # 0, Copy = 0. With regard to Equations (2.29), (2.30),
(6.5)—(6.11), (2.21), (2.22), (2.23), we get

3
et = =22 |1 —c3y (’C—M> : (6.23)
QM Xn
P2n X, 3
om = ton = — 71— (X—) , (6.24)
_ _ [0 (2 _1 3 (puxy
EnoM = S44M OnoM = [acp (CM) 2 90 ( Cn , (6.25)
d ; 1 0 n X
€40M = S4431 Onont = —O [5 (%) -5 (p ESM)] , (626
P2n XM 3
O = — 5— |cim — cam + 2 (c1m + 2c2m) <> ) (6.27)
CM Xn
P2n XM 3
GoM = Oy = — C—M cim —cam — (cim +2c¢am) <x> , (6.28)
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K3y | K5y

WM =Ky +—e +—3, (6.29)
'xﬂ x}’l
n/2w/2 1 1
T
- 3 3 \xp xy, XE
(6.30)

where O, xg, xp and sa4p, cipr (i=1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and 57, K;ps (i=3,5; see Equation (6.12)) have the forms

3
XM
Cv=cim—com+2(cim+2cm) (g) )

P2,1X3 g 1 d pan3 ?
K3y = 3(C1M+2C2M) ( C,MM) +S44M [% (—C,MM)]

Ecl)

Saap | OV Cwm ’
oy 2 [i (&) K (mn%) L2l (PL) 9 (W"%)] (631)

saam 09 \Cm ) 00 \_ L m ov\Em/) v\ Cm

The coefficient K1y, is given by Equation (6.21), where £ j; in Equation (6.21) is
given by Equation (6.31). The normal stress py, is given by Equation (2.26), where
piv and p;je (i, j=1,2) in Equation (2.26) are given by Equations (6.89) and (6.62),
(6.72), (6.82), (7.83), (7.93), (7.103), respectively, with respect to minimum W, (see

Equation (2.23)). With regard to (gqn) _,, = —P2.pu and Equation (6.24), the
coefficient pys in Equation (2.26) is derived as

1 -3
py=7_ [1 - <);—Z) ] . (6.32)

Conditions Cyy; # 0, C3p1 # 0, C1py = 0. With regard to Equations (2.29), (2.30),
(6.5)—(6.11), (2.21), (2.22), (2.23), we get

p2 X C3M71 xM 3
I -7 Xn (M 6.33
€M Con |f'3M (XM> (Xn) ] ) (6.33)

p2 X CgM—l .XM 3
EoM = Eop = — C—M" KXA”I) — <x"> ] , (6.34)
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d DPon -1 L0 x
EnoM = S44M OnoM = — [% <W> X, ! —,3 % ( CMM)] , (6.35)

€46M = S44M Opoy = —©

QJ
/\
J‘?

E
g:
~
S8
N
:Xul’_‘
QO
gl
I/~
|3
=
ng
~__
| I
~~
(@)
3%
@)}
N—

L‘3M—1 3
2 X, XM
Oum = — pCT:I {[C3M (c1m +cam) — 2¢am] < n> —2(c1m +2com) <x> },
n

Xy
6.37)

cay—1 3
D2 X XM
GoM = Oom = — — [(CIM —ComC3m) (Mtz) + (c1m+2cam) <x> ] )

CM n
(6.38)
wag = Kyt L Mg xem—4 (6.39)
xn
n/27m/2 | |
Kom 2cay+1 2cap+l1 K3m
W=4//—( s+l 3M) Rl
M [203M—|—1 M E * 3 x% x?w
0 0
4 KoM (fo;Mlxgwl)] dodv, (6.40)
cay— 1

where O, xg, x) and s4ap, cipyr (i=1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and C ys, Keps (see Equation (6.12)) have the forms

xg a2 X 3
Cm = 4 [eam (cim + cam) — 2 coum] ( ) +2(cim+2cam) (-) ,
XM XE

Xy [2cam (1= c3m) = cim] (l’2n>2

K, —_
oM M ! Cm
2 9  pu i(mm,%)
5441 00 \ Cpy xi2"~ L] oo\ Cwm
20% 0 P2n d <p2nx13;/1>
— — — | == . 6.41
Saam OV (QMx‘W 1) ov\ Cm ©41)
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The coefficients Koy, K3p are given by Equations (6.21), (6.31), respectively,
where {37 in Equations (6.21), (6.31) is given by Equation (6.41). The normal stress
P2n is given by Equation (2.26), where pyy and p;jg (i,j=1,2) in Equation (2.26)
are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83), (7.93), (7.103),
respectively, with respect to minimum W, (see Equation (2.23)). With regard to
(e(PM)xn:xE = —p2, py and Equation (6.34), the coefficient py in Equation (2.26) is

derived as
C3M—1 3
oy = — (xE > _ (X—M) . (6.42)
Cm | \am XE

Conditions Cyy # 0, Copy # 0, Capy # 0. With regard to Equations (2.29)—(2.32),
(6.5)—(6.11), (2.21), (2.22), (2.23), we get

D L 15 AN 2( 1) (™ 3 (6.43)
e Cm s +2 csm Xy c3u Xn o

P2n 1 Xn ool XM 3
s(PMZSGM:_C—M 1— 3( ) +(C3M_1)(x_) )

c3m+2

(6.44)
P2n
€noM = SaaM OnoM =
oM 44M OnoM = { (P< )
1 i e 1+03M*1i PanXiy
cm+2 8 ‘3M Cop xCm—t x% a(P CM ’

(6.45)

9 "
€M = S44M Onom = {a— (pi)
3 e 1+C3M_1 9 PanXyy
a CBM T xem—1 X v Cm ’

1

c3p + 2

(6.46)
1
pzn 3 xn C3m
Oy = — o —com — 2
M Cm {CIM S —— [eam (cim + camr) — 2c2m] (w)
2 2 3
 2(cim +2com) (’“M) 7 (6.47)
c3pm+2 Xn
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3 (cim — comeam) <xn > el

Pon
OoM = Opm = — 75— § C1M — C2M — —
Cum XM

cam+2

’;

) ;
_ Cwmt2cm (Xn 7 (6.48)

cy+2 X
1) K K -
war = K+ Kangn Y 4 jg/l + iy xsgv[ +reux MY, (6.49)
n n

n/2m/2

Kim [ 3 3 Kom 2c3y+1 2c3p+1
Wy — 4 _(x _x> 7()6 wtl _ 2esu )
M //[ 3 M—TE +2C3M+1 M E
0 0
K 1 1
+ﬂ = — = + Kam (x;/;M+27x%3M+2)
3 Xy Xy c3py+2

+ ks In ()‘—M)+ Kom (x,CV;M‘l—ng‘l)] dodv,  (6.50)

XE c3y—1

where ©, xg, xpr and s44p7, cip (i=1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and { p7, Kipp(7=2...,6; see Equation (6.12)) have the
forms

3
1 X
Cu=cim—com+ (—M) {2(C3M— 1) (cim ~+ 2¢pm)

camy+2 \ xg

XE cay+2
—3[c3m (cim+ com) — 2 com] (JE) ,

2
3 2 cim+cam) 2
Kom ——< ) {( ) M 4 eiy—2emesy | | —22—

cam+2 2 CMxﬁm—l

2
1 d P2n d DPan
" Saam % W v cap—1 ’
M Xpp CM Xy
2

Cm
(e o ) )

2




Kap =

3 (com —cim) (@)2
xm! Cm
6

)

8 8<p2n)8 _ pm +@2a<1’2n>a __Pm
99 \Cur /) 09 \ g pyxiim! v \Cm) v\ Lyt )]

et (288 03 ()3 (2]
3(cam—1) [2C2.M (} —c3m) —Cim] { Pan r
X Cm(c3m+2)

6(cay—1) 9 P2n d ( Py
+ 2 90 cu—1 | 9o ¢
saap (c3m +2)° 99 \ Qs xyg ? M
60° (CSM - 1) J P2n J p2nx13\/1
+ 5 = o T | 3y . (6.51)
saant (e +2)° OV \ Cp x5 VA Lm
The coefficient K1y, is given by Equation (6.21), where £ 7 in Equation (6.21) is
given by Equation (6.51). The normal stress py;, is given by Equation (2.26), where
piv and p;je (i, j=1,2) in Equation(2.26) are given by Equations (6.89) and (6.62),
(6.72), (6.82), (7.83), (7.93), (7.103), respectively, with respect to minimum W, (see

Equation (2.23)). With regard to (S(PM)X —yy = —P2mPM and Equation (6.44), the
coefficient pys in Equation(2:26) is derived as

c3y—1 3
3 (x—E> +(esm—1) <)‘—M> 1 } . (6.52)
XM XE

The integration constants Cig, Cog, C3g for the envelope (see Equation (6.4)) are de-
termined by the boundary conditions (2.33), (2.34). The boundary conditions result
in the following combinations of Cg, Cag, Cag, i.e., Cig # 0, Cop # 0, C3g =0;
Cig # 0,C3g # 0,Cop =0; Cop # 0, C3g # 0, Cip = 0. Finally, such a combina-
tion is considered to exhibit a minimum value of the elastic energy W of the cubic
cell (see Equation (2.23)).

1 1
= — 1—
P QM{ cay+2

6.2.2 Envelope

Conditions Cig # 0, Cop # 0, C3p =0. With regard to Equations (2.33), (2.34),
(6.4)—(6.11), (2.22), (2.23), we get
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En = {p‘” Pon | €36 (Pin — P2n) “E‘l], (6.53)

Gz Gk GE i
_ _ Pin P2n | Pln—P2n 0351]
Egk = €05 = — | — o+ x| (6.54)
oF ok [ClE Gk Ge "
) .10 —
EnpE = S44E OngE = — [% (é’l—lE - é’;) FxCoE 1% (’“CTPZH . (6.55)
0 ) p) _
€n0E = S44E OnoE = — { (% - gj;) 4 xg3e~1 e (PilnC%Epznﬂ . (6.56)
Ong = — { (pln pZn) 1 — C2E
" Ge G
(pln p2n)

ClE+CzE)C3E 2C2E} 6351} (6.57)

G

Gok = Gox = (1 — 26) (& B Pzn) (1t~ 2£.3E) (P1n = P2n) 31

Gz Gk GE o
(6.58)
WE =Kig + KZExg(qu) +xap el (6.59)
n/2 m/2
KiE ( 3 3 K2k 2c3p+1 _ 2c3c+1
Wi =4 / / [T (XE _x’N> T oep (XEC% v )
0 0
K3E ( C30+2 C3E+2) dod 6.60
Crot2 Xe — XN ¢av, (6.60)

where O, x7y, xg and saag, cip (i=1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and ;g (i=1,2,3), Kje (j=1,2,4; see Equation (6.12))
have the forms

Coe = (c1e — 2E) K;};) cap—1 B 1] |
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Gae = [C3E (C1E +coE) —2C2E] (xICi]E—l _xgE—l) ’
e, e =) <& B @)2
2 Cie Gk
+L [a (plnp2n>:|2+@2 [a <plnp2n):|2
saae | L0 \Cie  Co ov\Cig G ’

2 2
C +c C —
Ko |:( 1E 2E) 3E ClE _2C2Ec3E:| (pln p2n>
2 GE

+ L |:i (pln_pZH):|2+®2 l:i (Pln_PZn)}z
S44E a(P §3E ov gSE ’

Kag = (c1g — c2p) (2 + c3E) (ﬂ _ @) (Pln —P2n>

Gie G Cae
n ii (Pln _@) i (pln_p2n>
saag 00 \ C1E CZE 0Q GE
2@2 8 Pln pZn) a (pln_p2n>
L2200 (P _Pan) O (PP 6.61
SA4E ov (C,]E C,2E ov C_;3E ( )

The normal stresses pi,, p2, are given by Equations (2.25), (2.26), where pyy
and pys in Equations (2.25), (2.26) are given by Equation (6.89) and (6.22), (6.32),
(6.42), (6.52), respectively. Withaegard to (€gr), _. = —(P1aP11£ + P2nP12E),
(e(pE) = — (p1nP21E + P2nP22£) and Equation (6.54), the coefficient p;je (i, j =

Xy=Xp |

1,2) in Equations (2.25), (2.26) is derived as

1 xG! 1yt
p1ie = (81— 82:) <— +- ) s Paie = (81:— ) (C,_E+ £ ) )

Ce G GE
=12, (6.62)

where ;; represents Kronecker’s delta [24],i.e., §;; =0 or ;; = 1 for i # jori = j,
respectively.

Conditions Cig # 0, C3g # 0, Cop =0. With regard to Equations (2.33), (2.34),
(6.4)—(6.11), (2.22), (2.23), we get

Pin P2n 2(p1n_p2n))
gp=— 2 TR ) (6.63)
" <C15 Coe Gex;
Pin P2n  Pln—DP2n
Cop =€gp = — | 2 — 2 4 2 Fan) (6.64)
or T oE (CIE Gr GEex) )
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J (p1 P2
EnQE = S44E OnoE = [ ( L G

19 Pln—PZn)]
— | —— 6.65
00 \Gie G 3 ( 7 (069

d Pln p2n> 10 <p1n _p2n>:|
€05 = S44E Onpp = — O | — Lo 2 (PP 666
OE = S44E OnoE { > <C1E Cor 3 (6.66)

Pln P 2(c1e +2c2E) (P1n — P2n)
nkE = — - o - 5 6.67
one {(CIE 2£) (ClE CzE> Cse x; (6.67)

2 _
OgE = Opg = [(015 —E) (211; - %) + (cre+ Céfggln pzn)} ,  (6.68)
p n

K K
WE =KIE + 2+~ (6.69)
x6 X

n

n/2 /2 | |
WE:4/ / [KIE(X%_X;N)JF‘QE(S_ )+K5Eln<x )]d(pdv (6.70)
s 3 3 \xy 13 XIN

where O, x;y, xg and sasg, cig (i=1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and g, g (i=3,5; see Equation (6.12)) have the forms

Cie = (c1e — c2k) ll ~ <%) 3] ;
Cor = (c1E — C28) l(i]gf - 1] .

1 1
G =2 (c1E +2c28) (g - 3> ;
XN XE

2
1In — P2
K3g =3 (c1p+2¢2k) (pncwp 1)

i L |:a <pln p2n>:| +®2 |:a <pln p2n>:|2
sqqg | [ 00 Gae ov Cae 7
KSE:ii(pln_@> d <pln pZn)
S44p OQ CIE CZE 09 GE

2
L2070 (Pln pZn) J (Pln P2n>_ 6.71)

SAAE aV CIE CZE ov C3E
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The coefficient kg is given by Equation (6.61), where { s in Equation (6.61) is
given by Equation (6.71). The normal stresses p1,, p2, are given by Equations (2.25),
(2.26), where pyy and pys in Equations (2.25), (2.26) are given by Equation (6.89)
and (6.22), (6.32), (6.42), (6.52), respectively With regard to (Sq,E) M

—(P1nP11E + P2nP12E), (%E)x v, = — (P1nP21E£ + P20 P22£) and Equation (6.64),
the coefficient p;jr (i,j=1,2) in Equatlons (2.25), (2.26) is derived as

iE = 8 i 8 i e 2 | iE — 5 l 6 ! Card |
p1ie = (81— 82:) (C GExd IN> pai = (81 2)(C1E C3Ex13€>
=12, (6.72)

where ;; represents Kronecker’s delta [24],i.e., §;; =0 or §;j = 1 for i # jori = j,
respectively.

Conditions Cig # 0, Csg # 0, Cog = 0. With regard to Equations (2.33), (2.34),
(6.4)—(6.11), (2.22), (2.23), we get

e = Cocypis ! - 253, (6.73)

Xin
gp =€ = xSl ¢ %3 (6.74)

7
Eng= S44E Ongp = X8 ! 8;(;)2 xl% 88_?;7 (6.75)
€10 = S445 Opg = © |x ! % x% aa% ; (6.76)
6 = Ca[(c1E + c2p) c38 — 2cE) x5 — M, (6.77)

7
6o =0 = Ca(cie —c2pc3p) X, E Ty M, (6.78)
we = kg Y 4 ]; + Kep XE Y, (6.79)
.
s K K 1 1
wes [ ] i (i) 5 (5 3)

C3E6f 1 (s -5 1)} dodv, (6.80)
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where O, x7y, xg and saag, cip (i=1,2,3) are given by Equations (1.21), (1.22) and

(2.13), (2.18), respectively, and ;g (i=1,...,4), Kjm (j=2,3,6; see Equation (6.12))
have the forms

XE c3p+2
1-(= :
XIN
c3g+2
XI_N 3E L
XE ’
c3g+2
(XIN> 3E
o -1,
XE
X,

Cie = x(3 esk (c1e + cap) — 2026
)

ap1
Cor = x5 [c3e (c1E +C28) — 2028

|
|
C_,3E _ 2 (C]E ;rZCQE)

XIN ]
2(c1e +2c2E) R S
Ge=—"75—""1|1-(— )
Xz XIN
Clg+c¢ 2 2
Kop = {7( 1E + %) Cap +cieE—2c2k 035} (& - &>
2 Gie Gk

| R B ) S

2
! P
K3g =3 (c1g +2¢2k) (él—z - %)

el (& B o R e}

Ker = [2¢2g (1= c38) — c1E] (pln - @) (& —@>

Ce CGr/)\Ge G
L2090 (Pln _@) J (P_l_&)
5448 09 \C1 Cop Ge G
2@2 d Pln p2n> 0 (pln pZn)
G+ = rn_ I —— = ). 6.81
S44E OV (ClE Gk Ge G (051

The normal stresses pi1,, p2n are given by Equations (2.25), (2.26), where pjy
and pys in Equations (2.25), (2.26) are given by Equation (6.89) and (6.22), (6.32),
(6.42), (6.52), respectively. With regard to (€g), _. = —(P1aP11£ +P2aP12E),

(8<PE)x, —, = — (PtnP21E + p2n P22£) and Equation (6.74), the coefficient p;je (i, j =
1,2) in Equations (2.25), (2.26) is derived as
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Ge  Gexly Ge  Gaexi
=12, (6.82)

c3p—1 c3p—1
R 1 ; 1
p1iE = (81— 82:) (x,N + —> . P2ie = (01, — 02) (xE + ) ,

where §;; represents Kronecker’s delta [24],1.e., 6;; =0 or ;; = 1 fori # jori = j,
respectively.

6.2.3 Inclusion

In case of the ellipsoidal inclusion, we get Co;y = C3;y = 0, otherwise we get
(unIN)an() — & oo, (81N)x,,*>0 —— & oo, (GIN)}“HO — *oo due to c3 < 0 (see
Equations (2.18), (6.4)—(6.10)). With regard to Equations (2.35), (2.36), (6.4)—
(6.11), (2.21), (2.22), (2.23), we get [2]-[23]

EnIN = E9IN = EBIN = = P1uPIN; (6.83)

EngIN = SUIN CigIN = —PIN ag’(;”, (6.84)

€n0IN = Sa4IN OnoIN = —O PIN ag\i”, (6.85)

OnIN = OgIN = OgIN = —Plns (6.86)
e (B CR)) om

n/2 ™/2 ) )
_ 4ply 5 | 3pi, 2 IP1n opin

where O, s447y are given by Equations (1.21), (2.13), respectively. The normal stress
p1n is given by Equation (2.25). With regard to (ggiv) _yy = —Pnpiv and Equa-

tion (6.83), the coefficient pyy in Equation (2.26) is derived as

12N

= 6.89
PIN En (6.89)
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6.3 Condition BIN 7& BE == BM

If Brv # Be = Pu, then the thermal strains and stresses in the ellipsoidal inclusion are
determined in Section 6.2.3. The normal stress py, in Section 6.2.3 is given by Equa-
tion (2.27), where pyy and p1yg in Equation (2.27) are given by Equations (6.89) and
(6.135), respectively.

6.3.1 Matrix

The integration constants Cips, Cop, Capyy for the matrix (see Equation (5.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)—(2.32). The boundary
conditions result in the following combinations of Cyy, Cop, Capy, iee., Cipyp # 0,
Cu# 0,Gyu=0;Ciy# 0,Cy# 0,Copy =0; Coy # 0, Gy # 0, Crpy = 0;
Ciy # 0,Copr # 0, C3pp # 0. Finally, such a combination is considered to exhibit a
minimum value of the elastic energy W¢ of the cubic cell (see Equation (2.23)).

Conditions Cyy; # 0, Copy # 0, C3p = 0. With regard to Equations (2.30), (2.31),
(6.4)—(6.11), (2.22), (2.23), we get

C3M71
€M = — anp;ME ll —Cay (j-;) 1 ; (6.90)
n Xn cam—l
EoM = Egp = — Pin P2ME Cp;ME [1 — (E) ] ; (6.91)
Enoh = 544 Gnht = — a(mpm) o1 O PwPamE | o
no. no. a(p CM n a(p C_’Mx;;Mil y .

€.0M = S44M Opopr = —©

9 (PuPame ) ew—1 9 [ PrPME || 6 o
ov Cm NV A\ L xp !

~1
_ PmnP2ME X\ M
O =— ——— 1 cim—Cam— [cap (Cim+com) —2com) | — ,
Cum Xy

(6.94)

L’3M—1
1 2ME X
GoMm = Opp = — PinP2ue cim —com — (c1m — camesm) (") , (6.95)
Cum XM
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1 _ X
Wy =5 (KIM + gy +K4MXZ3M71> ; (6.96)
n/2m/2
Kim [ 3 3 Kom 2c3y+1 2c3y+1
WM = 4 / / |:T (XM_.XE> +_2C—3M_|_1 (xMC%M _xEC%M )
0 0
Kapm +2 +2
e (x;;M — x5 )] dodv, (6.97)

where O, xg, xpr and s44p7, cipg (i=1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and {y, Ky (i=1,2,4; see Equation (6.12)) have the
forms

C3M71
XE
= 1 — _
Cm (xM) :

3(cim — cam) (pln PzME>2

= 2 Cm
4 L [i (plnPZME>]2+®2 [i (pmpzmz)]z
Saam | 0@ Qs ov Cm ’
2
+com) €3 !
Kong — {@w—w)cﬂﬂm_zcww} PinpaE
2 Cm xpp

+ 62

2
1 o ( pinp2mE
Sl Bl Evel e
S44M oL} CMXA/;M

_ (com—c1m) 2+ c3m) (plnp2ME)2
Kap =

2
i PinP2ME
ov CMXX‘;M*I ’
x;[stl CM
2 9 <p1np2ME)i DP1nP2ME
Sa4p 0P Cm 20 \ ¢y xlf,;M_l

207 9 (Plnp2ME>a ( PinP2ME > (6.98)

S44M OV Cum AN x;j’”fl

The normal stress pi, is given by Equation (2.27), where p;y and payg in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum W, (see Equation (2.23)).
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Conditions Cyy; # 0, C3pr # 0, Copy = 0. With regard to Equations (2.30), (2.31),
(6.4)—(6.11), (2.22), (2.23), we get

3
ey PmPME | (LM) , 6.99)
gM Xn
Pinp )
EoM = Eop = — 1@75‘” l1 _ (X—M> ] , (6.100)
n

9 (P L 0 (pupamexy
€noM = S44M OnopM = — {8({) (Pl Cp;ME) 3 % (Pl PgZEXM>} ,  (6.101)

. | 3
€10M = S44M Onom = —© i <7p1" pZME> -3 i (—pI"mMExMH ,  (6.102)
Cm x5

| oV av Cm
PinP2ME [ XM 3
Onmt = — —o—— | c1m — com +2(c1m + 2com) (—> ) (6.103)
CM i Xn
PinP2ME Xy 3
CpM = Opm = — Znems [ClM_CZM_(ClM+202M) <—) ] s (6.104)
CM Xn
K K
Wit =Ky + —p + (6.105)
Xy X;)
n/2m/2 | |
K K
Wit :4/ / {W (xmxg) + <3 - 3> +sy In (XM)] dodv,
s 3 3\ xy XE

(6.106)

where O, xg, xp and sqap, cipyr (i=1,2,3) are given by Equations (1.21), (1.22) and
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(2.13), (2.18), respectively, and { 57, Kips (i =3,5; see Equation (6.12)) have the forms

CM1<);_A;)3,

3\ 2
K3y =3 (cim+2cam) <w)

Cm
L {i <P1nP2MEX13V1>r+®2 {i (PlnPZMEx?uﬂz
saapm | 0@ Cm ov Cm ’

2 <p1np2ME) 0 (plnp2MEx13V[>
Ksmy = YN

 Saam 09 Cum oo} Cm
207 0 plnPZME) d (pln PzMEX?V,>
- — — . 6.107
Saam OV ( Cm ) ov Em ( )

The coefficient K1y, is given by Equation (6.98), where { j7 in Equation (6.98) is
given by Equation (6.107). The normal stress py;;is given by Equation (2.27), where
prv and poye in Equation (2.27) are given by Equations (6.89) and (3.53), (4.130),
(6.135), respectively, with respect to minimum W, (see Equation (2.23)).

Conditions Cyy; # 0, C3py # 0, Crpy = 0. With regard to Equations (2.30), (2.31),
(6.4)—(6.11), (2.22), (2.23), we get

_ “PmnP2ME Xn el XM 3
ey = — —2ME e (22 (M), (6.108)
QM XM Xn
L‘3M71 3
equ = eony = — LPME (x—) - (X—M) , (6.109)
CM XM Xn
B B o [ pinpame cw—1 10 (Ppiapamexy
(67110)
_ _ O [ PuPME \ eyt L 9 (PiaPamexy
€10M = 5440 Onopt = —© g (W Xy — )7’31 g T ,
6.111)
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_ PuP2ME Xn el
Oum = — “Twm [eam (e1m +com) — 2¢om]

XM
o\ 3
—2(c1m +2com) (—M> }, (6.112)
Xn
X cay—1 X 3
CoMm = Opp = — PinP2ME (cim —comesm) | = + (c1m +2c2m) 2 ;
CM .xM xn
(6.113)
it = Kopg g ) L M w4 (6.114)
ﬂ
n/2w/2 1 1
K3m
W 4 ( 2e3u+l 263M+1) Ky b
M= / / [ZC';MJrl * E + 3 x% xl?{/l
+ 63];[61‘11 (XX/IBM 1 XE3M 1>:| dedv, (6.115)

where O, xg, xp and sqap, cipyr (i=1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and C ys, Kgps (see Equation (6.12)) have the forms

.xE C3M—1 .XM 3
CM i -\ )
XM XE
xa[2com (1= cam) — cim] (pln p2ME> 2

M ! Cm

2 0 [ pupmEe | 9 <p1np2MEx13\/1)
saam 99 \ Ly x5 1) 90 Cu

20% 9 pmpz/ws1 J (PlnpzMExid), (6.116)
T Saam OV Cur x”M ov Cwm

The coefficients Kops, K3y are given by Equations (6.21), (6.31), respectively,
where { s in Equations (6.21), (6.31) is given by Equation (6.116). The normal
stress pi1, is given by Equation (2.27), where p;y and payg in Equation (2.27) are
given by Equations (6.89) and (3.53), (4.130), (6.135), respectively, with respect to
minimum W, (see Equation (2.23)).

Kom = —
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Conditions Cyy; # 0, Copy # 0, C3pr # 0. With regard to Equations (2.30), (2.31),

(6.4)—(6.11), (2.22), (2.23), we get
—1 3
PinP2ME 1 < Xn ) o <XM>
et = — - 3eay [ (e —1 :
i Cum { c3m+2 M xm (csw =1) Xn

6.117)
e en . _ PinPomE ) 1 Xn °3M71+(C (2 ’
oM oM Cm cay+2 Xm M Xn '
(6.118)
EneM = S44M OnoM = { 90 plncp;ME)
i PlnPZME G 1+C3M_1 i plnp2MEx/3\/]
C%M+2 99 Capaim ! Xy 09 Cm ’
(6.119)
0
€10M = S44M OnoM = @{ > (p“%p%)
o1 3i P1nP2ME Ao 1+C3M_1 0 (PnPaMEXy
cam+2 Corxp ! X oV Cm ’
(6.120)
planME 3 Xn cam 1
— oy — 9 An
OnMt = Ty {CIM cam C3M+2[03M(61M+02M) com] <xM>
3
2 2
| Hew +2cm) (3L 6.121)
c3m+2 Xn
o — g PwPamE ] 3(ciw —comcsu) (i !
oM = Ooym Cor M —Com P o
~cm+2cm (xu ’ (6.122)
aM+2 \ X ’ '
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2(cam— 1)_|_K3M + Kgpg XM 1+K5M
3
.x

Wy = K1y + Kopm Xn + K6Mx,‘l'3M*4, (6.123)

n n
n/2m/2
Kom 2ea+1 20 +1
1% 4// _M 3) ( am 3 )
M= [ 3 ey 1 UM
K3m 1 1 Kam c3m+2 c3y+2
4+ 2 =)+ <x3M — xCam )
3 (x% xi,,) cay+2\M E
+K5M1n<x—M>+ Keut <x,f;M‘x,§3M1)] dodv, (6.124)
XE cay— 1

where O, xg, x) and sqap7, cipr (i=1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and s, Kipg (i=2...,6; see Equation (6.12)) have the
forms

1 X 3
Cv=cm—com+ <ﬁ> {2(C3M_1)(C1M+2CMm)

c3p+2
XE c3y+2
—3cam (cim+com) —2com] | — ,
XM
3 2 [(cim+ecam) 3 PlnP2ME ’
Kom = ( > { i +C1M2C2MC3M} P
3y +2 2 Cum xM3M

2

+ 62

2
+ L 8 PinP2ME 8 PinP2ME
Sa4am CM x“%M 1 CM szM 1 ’
2 3\ 2
cm—1 PinP2ME Xy
o <C3M+2> ( (cu +2eam) < Cm )
I 1 I: d (plnPZMEX?W)]Z_’_Gz |:i (planMEx?w)]z
saam | LO@ Cm 0 Cm ’

~ 3(com —c1m) [ P1nP2ME :
Kapm = ca—1 Tu

M
9 (pln pZME) 9 [ Pinpame
a(p CM a(P CM XX;M_I

Lt l 0 (plnp2ME>a PinP2ME
w\ Cw S gyt ]
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S 2(1—c3m) [i (PlnpzME)i(PszMExfw)
M Saam (3 +2) |09 Cm 09 Cm

+®22<plnp2ME>i<plnp2MEx;/1>}

ov Cm ov Cm
Kenp — 3(eam—1) [2con (1 — c3m) — c1m] { P1n P2ME } ?
" X Cm(csm+2)

6(cay—1) 0 [ pwpame | 9 <P1nP2MEx]3W>
saam (e3pr +2)7 09 \ Ly a1 ) 09 Cm
+ 60% (cay — 1) a(mezzms) J (plnp2MEx2/1>

saant (e3p+2)2 OV \ Ly x5! Cm

= (6.125)

The coefficient K1y, is given by Equation (6.21), where £ 7 in Equation (6.21) is
given by Equation (6.125). The normal stress py, is given by Equation (2.27), where
prnv and poye in Equation (2.27) are given by Equations (6.89) and (3.53), (4.130),
(6.135), respectively, with respect to minimum W, (see Equation (2.23)).

6.3.2 Envelope

If Biv # Be = Bum, then |uug| = f(x,) represents a decreasing function of x, €
(x1n,xE), and then the mathematical solutions, which are related to the integration
constants Cog, C3g (see Equation (6.4)), are considered, i.e., C1g = 0. With regard to
one boundary condition (see Equation (2.33)), the thermal stresses in the ellipsoidal
envelope are determined on the conditions Cog # 0, C3g = 0; Csg # 0, Cop = 0. If
Cop # 0, C3g = 0, then the thermal strains and stresses in the ellipsoidal envelope
are determined in Section 4.3.2 (see Equations (4.4), (6.4)). The normal stress p1,
in Section 4.3.2 is given by Equation (2.27), where pyy and pyg in Equation (2.27)
are given by Equations (6.89) and (6.135), respectively.

Condition C3g # 0, Cop = 0.  With regard to Equations (2.33), (6.4)—(6.11), (2.22),
(2.23), we get

201 (v’
= — oIV 6.126
gnE CE ( Xn ) ; ( )
€0k = €0 = % ();’_N) 7 (6.127)
n
1 9
Eagt = S48 Onp = 75 5 (plnﬁN) 7 (6.128)
n
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E€n0E = S44E Opp =

ai (Prociv) (6.129)

EX,
xav)’
OnE = —Pln <) (6.130)
n
Pln [ XIN :
G(pE - GQE - 7 x— B (6131)
n
wg = SE (6.132)
xn
4 n/2m/2 | |
W = 3 / / K3g <3 — 3> dodv, (6.133)
5 b ‘e M

where O, xg, xyr and sy, cig (i=1,2,3) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and { g, K3z (see Equation (6.12)) have the forms

Ce=2(cig+2c2kE),
1 3\ 2
— (3 (c1e+2c2E) (plnxuv)

C
E
+ — X +0° | — )CE 6.134
S a (pln IN) J (pln 1N> . ( . )

The normal stress py, is given by Equation (2.27), where pyy in Equation (2.27)
is given by Equation (6.89). With regard to (8(,,5) x—xy — PInPIME; (E‘PE)xfx =
—p1nP2mE (see Equation (6.127)), the coefficients P1ME> P2mE in Equations (2.27),
(2.31) are derived as

K3g =

1 1 X1N)3
S - (Y 6.135
PIME & PoME & <XE ( )

6.4 Condition B;y = B # Bu

If B;y = Be # Bum, then the thermal strains and stresses in the cell matrix are de-
termined in Section 6.2.1. The radial stress p», in Section 6.2.1 is given by Equa-
tions (2.28). The coefficients pys and posyvg in Equations (2.26) are given by Equa-
tions (6.22), (6.32), (6.42), (6.52) and (6.143), respectively.
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6.4.1 Envelope

If By = Be # Bm, then |uyg| = f(x,) represents an increasing function of x, €
(xin,xg), and then Cig # 0, Cop = C3g = 0 (see Equation (6.4)). With regard to
Equations (2.34), (6.4)—(6.11), (2.22), (2.23), we get

P2n

€uE = €oE = € = — [ (6.136)

10
€npE = S44E OngE = — C_E g;n, (6.137)

(O]
€10 = $44E OugE = ~ 7 gj’“, (6.138)
Onte = OgE = OgE = —P2n; (6.139)
1 (3(cie—c2k)p3, n 1 <ap2,,)2+®2 <ap2,,>2 (6.140)

Wwp=— | —— =/ —en , )
E C% 2 S44E a(p ov
4 n/2m/2
Wi = / / Wi (x%/, —x?;) dodv, (6.141)
0 0

where ©, xg, xp and sa4g, cip (i=1,2) are given by Equations (1.21), (1.22) and
(2.13), (2.18), respectively, and {p has the form

Ce=cig— k. (6.142)

The normal stress py, is given by Equation (2.28), where pys in Equation (2.28) is
given by Equations (3.24), (4.24), (4.34), (4.44), (4.54), (5.23), (5.33), (5.43), (5.53),
(6.22), (6.32), (6.42), (6.52), (7.23), (7.33), (7.43), (7.53), (7.63), (7.73) with respect
to minimum W, (see Equation (2.23)). With regard to (s‘PE)x —xy = —PmPUNE;

(S(pE)x —yy = —P2mP2ANE (see Equation (5.121)), the coefficients pi;yg, P2ive In
Equations (2.28), (2.37) are derived as

1
P1INE = P2INE = - (6.143)
Ce
6.4.2 Inclusion

In case of the ellipsoidal inclusion, we get Cojy = Cajy = 0, otherwise we get
(unin) o — £ oo, (&V),, o — T o, (OIv),_o — Foo due to ¢c3 <0 (see
Equations (2.18), (6.4)—(6.10)). With regard to Equations (2.35), (2.37), (6.4)-
(6.11), (2.21), (2.22), (2.23), we get [2]-[23]
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EnIN = E@IN = €0IN = —P2nP1INE (6.144)

0
€nQIN = S44IN On@IN = — (phai:”\lE), (6.145)
0
€,0IN = S44IN Onpin = —© w, (6.146)
Gun = Ggry = Ggry = — L2PUNE (6.147)
pPIN

WIN = +

3(pampuve) | 2 [(3(P2;1011NE))2+® (a(p2npllNE)>2]

pIN S44IN op ov
(6.148)
4 n/.2 /2
Wi = / / Wiy dgdv, (6.149)
00

where O, xyy, Sa41n, PIN, P1INE are given by Equations (1.21), (1.22), (2.13), (6.89),
(6.143). The normal stress pa, is given by Equation (2.28). The coefficients pys and
p2:vE in Equation (2.28) are given by Equations (3.24), (4.24), (4.34), (4.44), (4.54),
(5.23), (5.33), (5.43), (5.53), (6.22), (6.32), (6.42), (6.52), (7.23), (7.33), (7.43),
(7.53), (7.63), (7.73) and (3.63), (4:140), (5.129), (5.139) (6.143), respectively, with
respect to minimum W, (see Equation (2.23)).
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Chapter 7

Mathematical Model 5

7.1 Mathematical Procedure

Let the mathematical procedures dEq. (2.20) /dr, Eq. (6.2) /r be performed, and then
we get

0%U, U,
an_x’%—'_(l_C:z)) axn —O, (71)
aUn 2 a3un aZu”
axn = —844 (Cl + C2) (.Xn a—x;l +4.Xn a—x%) s (72)

where s44 and ¢y, ¢2, ¢3 < 0 are given by Equations (2.13) and (2.18), respectively.
Let the mathematical procedure dEq. (7.2)/dr be performed, and then we get

*U, 84 8314,1 0?uy,
=— 6x, 4 7.3
a2 S44(6’1+62)( "o "+ + ax,%) (7.3)
Let Equations (6.2), (6.3) be substituted to (7.1), and then we get
*u Au u
2 n n n
Xn ax4 (7—03))(”?"'4(2—6’3)8—)%—0. (74)
Let u,, be assumed in the form u, = x , then we get
o, 8
un:Clxn+C2xn3+x—2+C4, (7.5)

n
where Cj...,Cy4 are integration constants, which are determined by the boundary
conditions in Section 2.4. With regard to Equations (2.1)—(2.4), (2.14)-(2.17), (2.22),
(7.6), we get

Yo
&y =C1+Cocxf ™ =22, (1.6)
xn

G C
go=tg=Ci+Cpx 1+ = +x—4 (7.7)

n n

9, .. ,9C, 13C; 10dC

Eap = 4400 = 5+ G - N (7.8)

30 X3 99 | x dp’
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% 03_1@ 10C; 1 9dCy

v N Ty T v (7.9)

€19 = 5440, = O

2C3 (C1 —|—2€2) B 2¢2Cy

3
X5 n

6,=Ci(c1—c2)+C [(61 +e)e3 —26‘2] ;=1 _

,(7.10)

Ci(c1+2¢) La Cy

3 )
X; Xn

()'(p—Ge—Cl(61—02)+C2(C1—C26‘3) X337 1+ (7.11)

K
2D L 5B (s ) e g +—14°,

= K] +Koxp, 6
Xn xn xn Xn
(7 12)

where 0O, s44 are given by Equations (1.21), (2.13), respectively, and «; (i=4,5,6) is

derived as
8C4 + 02 % ¢
3(p ov
Ks = (c1—2) 24+e3) Q1 Ot <3C1 0y p9C1 ac2>

00 0¢p ov ov
2 (aq 9C3 | o2 9Ci a&)

" 543 \ 90 09 v ov
dC; dC3 5 0C; 9C3
[2C2(1—C3)—61]C2C3+—(% a(p ® a_va_v>

_ 1 [/9Cy 9Cy ,dC| dCy
KS—(Cl_CZ)C1C4+—<a(p a(p (C] WW

S44
K9—(Cl—6263)C2C4+—(a(p a(p ® o

S44
1 [0C5 dCy ) 0C3 dCy
K]o—(cl+262)C3C4+ (a(p a(p (C] avav)

1
—CIC4+

(7.13)

The coefficient k; (i=1,2,3) is given by Equation (6.13). In case of the ellipsoidal
inclusion, we get Co;y = C3y = Cayv = 0, otherwise we get (14,111\/))%_)0
(&v)y,—0 — £, (O1n),_g — Foodue to c3 <0 (see Equations (2.18), (6.4)—
(6.10)). In case of Cy;y # 0 (see Equations (6.4), (7.5)), the mathematical solutions
for the ellipsoidal inclusion is presented in Section 6.3.

—— & oo,
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7.2 Condition By # Be # Bu

7.2.1 Matrix

The integration constants Cyyz, Copr, Capg, Capg for the matrix (see Equation (7.5)) are
determined by the boundary conditions (2.29), (2.30) or (2.29)—(2.32). The bound-
ary conditions result in the following combinations of Ciys, Copr, Capr, Capg, Where
the combinations of Cyys, Copy, C3py are presented in Section 6.2.1. Finally, such a
combination is considered to exhibit a minimum value of the elastic energy W¢ of
the cubic cell (see Equation (2.23)).

Conditions Cyy; # 0, Capy # 0, Copy = C3py = 0. With regard to Equations (2.29),
(2.30), (7.5)—(7.12), (2.21), (2.22), (2.23), we get

P2n

&M =— 7, (7.14)
Cm
P2n 1
EoM = EoM = — 7 1), (7.15)
¢ M CM ( Xn
1 J P2n
EapM = Saam Onpyt =+ | 1 —— | = [ 5= 7.16
neM = S44M OnoM < x,,) % (C,M , ( )
1\ o 5
€noM = S44M Onom = —© (1 - ) P <p") , (7.17)
Xn v M
2
Gt = — 221 <01M —com+ CM’") 7 (7.18)
CM Xn
Oom = Oom = — b2n (ClM_C2M_ CIM) s (7.19)
CM n
K
Wt = K+l KSM (7.20)
X, Xn
n/2m/2
K K
Wy = 4/ / [% (xi,,—x%) + Kapr (Xpr — xg) + % (x%,,—x%)} dodv,
0 0

(7.21)

where ©, xg, xp and saaps, ciyy (i=1,2) are given by Equations (1.21)—(1.17) and
(2.13), (2.18), respectively, and 7, Kju (j =4.8; see Equation (7.13)) have the forms
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2C2MXM
Cv=cim—com+——,

won () BT REN)
wemtow-a (B) - {3 G BB o

The coefficient Ky, is given by Equation (6.21), where { ) in Equation (6.21)
is given by Equation (7.22). The normal stress pj, is given by Equation (2.26),
where pyy and p;jg (i, j=1,2) in Equation (2.26) are given by Equations (6.89) and
(6.62), (6.72), (6.82), (7.83), (7.93), (7.103), respectively, with respect to minimum
W, (see Equation (2.23)). With regard to Equation (7.15), the coefficient pys in
Equation ((2.26)) is derived as

1 1
pv=y_ <1 x—E) (7.23)

Conditions Cyy; # 0, Capr # 0, Cipr = C3p = 0., With regard to Equations (2.29),
(2.30), (7.5)—(7.12), (2.21), (2.22), (2.23), we get

P2 C3M ca
e = — —= ( ) ; (7.24)
Ly \owm
p C3M71 1
onr = oy = — 222 | (= ——, 7.25
oM = €op = Cn ( ) (7.25)
a P2n a p2n
EnoM = S44M OnoM = [_(p ( o —1 % , (7.26)
€40M = S44M ot = —© P} 9 (P (7.27)
8\/ KX 1 ov\Cm/ |’
x, \ M 2
OnM = — % {[C3M (c1m + com) — 2¢2m]) (x—n) + sz} ; (7.28)
n
P2 x \M ey
Gom = Oy = — 5 [(cm — comC3m) () - ] : (7.29)
Cm X X
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war = Kapgn M 4 K;;W +Kop X1 (7.30)

n

n/27/2
Kom 2cay+1 2cay+1
Wy =4 4( svtl _ 2esm ) _
M O/O/LCSM‘H Xy xg +xamr (xp — XE)

Kom ( cay+2 C3M+2) dod
- v, 7.31
e+ 2 M XE ¢ ( )

where O, xg, x)7 and s44p7, cipg (i=1,2,3) are given by Equations (1.21)—(1.17) and
(2.13), (2.18), respectively, and s, ¥op (see Equation (6.13)), Ko (see Equa-
tion (7.13)) have the forms

£\ 2com XM
Cm = [cam (cim + com) — 2com] | — +—,
xXpm XE

2
2
c CiM + Com 2
Kom = {—W( 5 )+CIM_2C2MC3M:| (E pc'fM_1>
M Xpp

2 2
LI § JAY (i TR | 3 iy G N | I
S44am a(P QM x/CV?M ov CM x;f,M

Koy = I €M Ca <l72n>2_ 1 0 ([ puw 3<pzn>
X! Cm)  saam 09 \ Ly~ ) 00 \
2
B (C] i P2n - i (@) . (1.32)
Saam OV \ L prx” ov \Cm

The coefficient K4y, is given by Equations (6.21), where { s in Equations (6.21)
is given by Equation (7.32). The normal stress pj, is given by Equation (2.26),
where p;y and p;jg (i, j=1,2) in Equation (2.26) are given by Equations (6.89) and
(6.62), (6.72), (6.82), (7.83), (7.93), (7.103), respectively, with respect to minimum
W, (see Equation (2.23)). With regard to Equation (7.25), the coefficient pys in
Equation ((2.26)) is derived as

L (a1
Cm <XM> XE
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Conditions C3y; # 0, Cqps # 0, C1pr = Copy = 0. With regard to Equations (2.29),
(2.30), (7.5)—(7.12), (2.21), (2.22), (2.23), we get

_ 2pon (XE 3
€ = =), (7.34)
CM Xn
_ __ DPm XE . 1
EoM=CMmM=—%—(|— | ——|> (7.35)
CM Xn Xn
3
X 1] 0
EnoM = S44M OnoM = — [(f) — )Z] % (2_2Mn> , (7.36)
3
X 1 0
€40M = 5440 Cno = — (E> ——| = <p2") , (1.37)
Xn Xn A% CM
2p e\ ¢
Ot = 222 | (crp + 2¢am) <—E> M (7.38)
CM Xn Xn
P2 XE . CiM
Oom = Oy = — C—ﬁ: [(ClM —2cm) (-) - ] ; (7.39)
n n
wy = ot Ky Tiom (7.40)
xn xn n
n/2m/2
K 1 1 1 1
Wu :4/ / [% (—3 — T) +K4M(JCM—XE)+K10M <—— —)] dodv,
0 0 Xg Xy XE XM
(7.41)

where ©, xg, xp and saap, ciy (i=1,2) are given by Equations (1.21)—(1.17) and
(2.13), (2.18), respectively, and £y, K3 (see Equation (6.13)), Koy (see Equa-
tion (7.13)) have the forms

Cm=— [2 (c1m +2¢cam) +2com ())CC—E) 2] ;

M

3\ 2
2n X
K3m =3 (cim +2com) (anME)

(BN o D]
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Kiowt = (e -+ 2cam) (&)2_ 1 P <p2nx§;~) k) (”iﬂ
M R TERMIN M) saam 99\ Cu ) 99 \Cu
2 3
SO [ () 2 ()] .
S44M ov CM ov CM

The coefficient K4y is given by Equations (6.21), where { p; in Equations (6.21)

is given by Equation (7.42). The normal stress pj, is given by Equation (2.26),
where p;y and p;jg (i, j=1,2) in Equation (2.26) are given by Equations (6.89) and
(6.62), (6.72), (6.82), (7.83), (7.93), (7.103), respectively, with respect to minimum

W, (see Equation (2.23)). With regard to Equation (7.35), the coefficient ps in
Equation ((2.26)) is derived as

(7.43)

Conditions Cy; # 0, Copy # 0, Capr # 0, C3p = 0. With regard to Equations (2.29)—
(2.32), (7.5)—(7.12), (2.21), (2.22), (2.23), we get

Pan Xn cm1
&M = — C_M 1- a , (7.44)

1 cam—1 —1
EoM = Eop = — P )y (M +M 7 (7.45)
Cm A | \xm Xn

€noM = S44M OnoM =

J (Pzn) 1| 10 P2n cam—10 (Pzan)
Noo\ty ) o I 30 1) T 30 ;
a([) CM 3m 8(p CM )CA;M Xn a(P Z;M

(7.46)

€n0M = S44M Onom =

J (pzn) L | 10 P2n cau—10d (PanM)
- ol e oy o 1) T v ’
v \Cm C3m IV \ Ly x v Xn OV \ Cm

(7.47)
P2n 1 Xn Cane~
O = — T Cm = Cam = o [cam (c1m + camr) — 2¢oum] (%)
262M (C3M — 1)XM
L/ 7.48
+ o ) (7.48)
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M

C3M—1
P2n 1 Xn
CoM = Ooy = — 7— 4 C1m — Ccoam — —— | (C1m — c2mCam)
CM 3m X,

—1
N ClM(ClM—W} } (7.49)
Xn
- K
war = K+ Kangn M 4 K;“f o+ (ksyg - oop) xS (7.50)
n n
n/2m/2
K K ‘
Wy = 4/ / [% (x%/l—x%) + 263MM+ 1 (XZZWCSMJH 7x%C3M+1) -+ wanr (oar — x8)

K5y + Koy ( cam+2 cw+2) Ksm ( )
— (x +— 7.51
) X=X 7\~ dedv, (7.51)

where ©, xg, xp and sqap, ciy (i=1,2,3) are given by Equations (1.21)—(1.17)
and (2.13), (2.18), respectively, and {u, xim (i=1,2; see Equation (6.13)), Kjm
(j=4.5,8,9; see Equation (7.13)) have the forms

Cm=(citm—cam) —

(e o) 2] (32" 2ol 1)
C3m XM C3MXE
Pzan(Cw—l)r+ 1 {i [Pzan(Cw—l)]}z

Cm c3m Sqam | 09 Cum cam
©? { 0 [Pzan(QM—l)] }2
+ e, 9
Saap | OV Cm c3m
oy — (e =) 2+ csu) (p_>_ 29 (p_> o (_ pw
cam M ! Cm $44m 00 \Cp ) 09 Cm cam X !

2@2 8 (P2n>2 P2n
S44MaV CM MC3MXA,31M 1

Kapm = C1m {

_ Pzn panxy (cam —1)
Ky = — (c1m — cam) B
e (@) [Pzan C3m — 1)}
S4,4M B(p C.:M C3Mm

d

9

e 9 (@) 9 [Pzan c3m — 1)}

Saay OV ov Cm c3m '
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_ (aam—cameay) (cap— 1) < Pan )2
Koy =

cay—2
Xy (;M 3m

(C’sM_ 1) 9 P d (Pzan)
+ c L] D
S44M ¢ Cpux ) 0o\ Cum

L e —1) j( P2n >%<P2MM). (7.52)

2 -1
S44M C3py ov CMXIL\,‘;M CM

The coefficient K;y; (i=1,2) is given by Equations (6.21), where { s in Equa-
tions (6.21) is given by Equation (7.52). The normal stress py, is given by Equa-
tion (2.26), where pyy and p;je (i,j=1,2) in Equation (2.26) are given by Equa-
tions (6.89) and (6.62), (6.72), (6.82), (7.83), (7.93), (7.103), respectively, with re-
spect to minimum W, (see Equation (2.23)). With regard to Equation (7.45), the
coefficient pys in Equation ((2.26)) is derived as

C3M71 _
pM:L{l_LKx_E> +MH 753
Cm c3M | \ XM XE

Conditions Cyy; # 0, C3p # 0, Capr # 0,Copr = 0. With regard to Equations (2.29)—
(2.32), (7.5)—(7.12), (2.21), (2.22), (2.23), we get

3
o Py _3 (M
=~ [1 . (xn) ] (7.54)
3
. 77P2n 1 xﬂ 73)CM
EoM = Eom = Cwm [IJFZ (xn) 2xn] ’ (7:33)
- - i P 1 i p2nx13{/[ 3 a P2nXm
(7.56)
_ _ [ (P, L@ (paxiy) 3 O (paxu
€10M = 544M OnoM = — {g (CM>+ X3 v < Cu 2xp0v \ Cm 7
(1.57)

3
2 Xm 3comxm
Onmt = — % [ClM —com — (c1m +2cam) () +—

n n

] , (7.58)
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2 3
oM = Opm = — Dan lcm —cyt+ Cuy - 2eom (xM) - CIMXM] » (1.59)
Cm 2 Xn 2 X,
K K K K
g = K+ Jam | Ko | Kew | Kiow (7.60)
xn X Xn Xn n
n/2w/2 ! ]
K K
WM=4/ / [% (xi,,—x%) +% (_3__) + Kanm (Xp1 — xE)
. xp xM
X K 1 1
~+ Kepm In (—M> + - (szu —X%) + Kiom (— — —):| dodv,
XE 2 XE XM
(7.61)

where ©, xg, xp and saapr, cip (i=1,2) are given by Equations (1.21)—(1.17) and
(2.13), (2.18), respectively, and £ yy, k357 (see Equation (6.13)), Ky (i=4,6,8,10; see
Equation (7.13)) have the forms

3
XM 3comxm
Cm = (cim —cam) — (61M+262M)( ) +—,
XE XE

3 2
nX
K3m =3 (cim+2cam) <p221‘7)

el RG]
e (522 {3 Cr) o [ C)

N {i <@ 9 p2ﬂxM> X <P2n)i<l72nx13u>}
M s4s 109 \Cu) 99 \ 28y ov\ 2Ly /|’
3 2
2 M
_i[i <PL> 9 pz,,xM>+®2 9 <pi) 9 <pzan>}
2544 |09 \Cn /) 00 \ Oy ov\Cly/ov\ Cu /|’
_ 3x (et 2com) ((pan\’
KIOM**f Q_M

3 [9 (Pzan> J PanM>+®2 J (PanM>E(P2an):|
4S44 a([) CM gM CM J C_:M .
(7.62)
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The coefficient K, is given by Equations (6.21), where { p; in Equations (6.21)
is given by Equation (7.62). The normal stress pj, is given by Equation (2.26),
where pyy and p;jg (i, j=1,2) in Equation (2.26) are given by Equations (6.89) and
(6.62), (6.72), (6.82), (7.83), (7.93), (7.103), respectively, with respect to minimum
W, (see Equation (2.23)). With regard to Equation (7.55), the coefficient ps in
Equation ((2.26)) is derived as

I POV A 7.63)
pM_CM 2 \xg 2 | ’

Conditions Cyy; # 0, C3pr # 0, Capr # 0, C1pr = 0. With regard to Equations (2.29)—
(2.32), (7.5)—(7.12), (2.21), (2.22), (2.23), we get

C3M— 1 3
P2n Xn XM
Em=—— |CGBm| — —apm\
C M XM Xn

C3M71 3
2
cow = o = - 22 l() Lo (M) e+ )xM] )

, (7.64)

JE 2 Xn 2.xn
) j2 c3y 0 p2nx3
_ _|em1 9 P ), CGm O M
EnoM = S44M OnoM |ﬁn a(P <CM xﬁf]M1> * 2)6,:? a(P gM
(eap+2) 0 [ ponxm
9 7.
S 2x, 0@ Cm , 70

0 P2 cu 9 (P

1 - M

€40M = S44M CpoM = — [xﬁ‘w 3 (QMTZMI + 2x3 0V CnM
M

(cam+2) 0 (paxm
— 7.67
T v\ /) (7.67
X C3M—1
Oy = — 222 [eam (c1m +copr) —2com] | ==
Em XM
3
— (e3meim +2¢am) (x—M> + CZM(“M—H)XM} , (7.68)
Xn Xy,

Xn

C3M71 3
)2 X ey (cim +2com) (XM
CoM = Opm = C_Mn [(ClM — CoMC3Mm) (i) + % < )

~cm(cam+ Z)XM] (7.69)

2xy
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_ K K
war = Kopgn Y M B e g 4 SO (7.70)
'xn xn xn
n/2m/2
Kom Do+l 2em+1) , Km [ 1 1
W 4 ( 3M _ 3M ) o o
M= / / [263M+1 * E * 3 (x% x?VI)
K
+ Kam (XM—XE)+C 71\11 (XIC\;M ' —xg"” 1)

Kom ( cau+2 C3M+2) 1 1
K ——— || dodv, (71.71
cor+2 Xy —Xg + Kiom [P odv, ( )

where O, xg, xp and sq4p7, cipg (i=1,2) are given by Equations (1.21)—(1.17) and
(2.13), (2.18), respectively, and { 7, Kias (i = 2,3; see Equation (6.13)), Kim (j=4,7,9,10;
see Equation (7.13)) have the forms

C3m 1
XE
CM = ij[M 1 {[C3M (C1M+C2M) 2C2M] <XM>

3
X, com (s +2)x
— cap (cim +2¢am) (;Z) _;_W(*N}’

2
(61M+62M)02 P2
Kom = [%+C1M*2C2MC3M #
Cm Xy

2 2
1 oC " aC n
e (e e (e )
saam | | 90 \ Qa5 v\ L x5

3\ 2
P2n C3MXM)
2Cm

+ 1 |: d <p2nC3Mx1?{4)]2+62 [8 <p2nC3Mxi,[)]2
2544m | [ 09 Cm ov Cm '

PanXm (C3M+2)]
2Cm

L oamt2 {i <p2an>:|2+®2 [i <P2an)]2 ,
Sa4pm 00 \ 28m ov \ 20m

3
2 P2nCIMX
K7m = [202M(163M)01M}< Pan__ ) < L M>

CMXZ;M ! ZCM
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3y 0 P2 ) (Pznx?u)

+ Y cm—1 | A

Saam 0@ Cm xp)” 90\ Cm

+ @2C3M P2n i 14

Saam OV Cmxy™ L) ov

xy (cim — cameam) (c3m +2 Pzn)

2x5m ! Cum

. cay+2 i P2n i (panM>
2saam 0@ \ Lt ) 00\ L

_ GZ(CSM"‘Z) a P2n i(panM)
2 S44m Camxy"™ Lov\ Cum

2\ 2
nX
Kiom = — ¢y (cim+2com) (cam +2) ( M)

2n XM

Koy = —

18
_am(eam+2) _( 2an> (pzan>
dsaam - 0@ Cm
Oy (cam+2) 9 <p2an> Jd (PanM)' 772)
4s44m v\ Cu Cm

The normal stress py, is given.by Equation (2.26), where pyy and p;je (i, j=1,2)
in Equation (2.26) are given by Equations (6.89) and (6.62), (6.72), (6.82), (7.83),
(7.93), (7.103), respectively, with respect to minimum W, (see Equation (2.23)).
With regard to Equation(7.65), the coefficient py, in Equation ((2.26)) is derived as

. 1 XE el ey [ Xpm 3 (capr +2)xm
PM@K@) ) T

7.2.2 Envelope

The integration constants Cg, Cor, C3g for the envelope (see Equation (6.4)) are de-
termined by the boundary conditions (2.33), (2.34). The boundary conditions result
in the following combinations of Cyg, Cog, C3g, i.e., C1g # 0, Cop # 0, C3p = 0;
ClE 75 0, C3E 75 0, C2E = 0; C2E 75 0, C3E 75 O, ClE =0. Finally, such a combina-
tion is considered to exhibit a minimum value of the elastic energy W of the cubic
cell (see Equation (2.23)).

Conditions C g # 0, C4g # 0, Cop = C3g = 0. With regard to Equations (2.33),
(2.34), (7.5)—(7.12), (2.22), (2.23), we get
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€ = — <pln . pZn) ’ (7.74)

CIE C2E
Pin P2n Pln — P2n
EoE = Eop = — - Bl Pon (7.75)
or—or (ClE G C3pxn )

_ _ i Pin  Pon ii Pln— P2n
EnQE = S44E OnpE = [a(p (ClE C2E> +x” 3 (7C3E , (7.76)

0 n n 1 0 n— D
€405 = 544 O = —O [5 (pl - >+ (u)} (1.77)

Ce Coe) xpov Cse

Pln P2n 2¢cE (pln _p211):|
Oug = — |(C1E—C — -, 7.78
" [( 1 2E)(C15 CzE) C3E xn (7.78)

Pln P2 ClE(pln_pZn):|
Gor = Oor = — | (c1p — cop) [ 222 — CLE\PIn— Pan) | 779
o = 0or [< 1 ”)(cm cm) G @79

K.

WE—K1E+K42E+ & (7.80)

xn

n/27/2
Wi = 4/ / [K;l (x% *X?N) + K4 (¥p — x1v) + K;E (x%; xIN)} dedv, (7.81)

where O, x;y, xp and squg, cip are given by Equations (1.21), (1.22) and (2.13),
(2.18), respectively, and {;g (i=1,2,3), Kje (i=4,8; see Equation (7.13)) have the
forms

Cie = (c1 — c2£) (1 - %) s Gor = (c1E —c2E) (xI—N - 1) ;

XE
aCiz\* Lo ACir\*
09 ov
1 (3Cg aC aC) AC
K8E:(C1E—62E)C1EC4E+—( B(LE a:)E +e? aiE af)' (7.82)

S44E
The coefficient kg is given by Equation (6.61), where {;z (i=1,2,3) in Equa-
tion (6.61) is given by Equation (7.82). The normal stresses py,, p2, are given by

2¢2E (XN — XE)
C3 =—-—
XINXE

1
K4 = CIE C4E +—
S44E

)
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Equations (2.25), (2.26), where p;y and py in Equations (2.25), (2.26) are given
by Equation (6 89) and (7.23), (7.33), (7.43), (7.53) respectively. With regard

to (€pe), _ =~ (P1nP1IE+ P20 P12E): (EgE), e —(P1nP21E + p2nP22£) and
Equation (7 75) the coefficient p;jg (i,j=1,2) in Equatlons (2.25), (2.26) is de-
rived as

1 1 1 1
ie =81 =8i) ( 7—+ 77—, p2ir=(81i—%) |7+ )
piie = (81 2)<CiE Z;3Exm> paiz = (31 2)<CiE §3ExE)
=12,

(7.83)

where ;; represents Kronecker’s delta [24], i.e., §;; =0 or §;j = 1 for i # jori = j,
respectively.

Conditions Cor # 0, C4g # 0, C1g = C3g = 0. With regard to Equations (2.33),
(2.34), (7.5)—(7.12), (2.22), (2.23), we get

wooe(ls B om
o o Pin~ P2n cip—1 , Pln p2n:|
Eor — o — — | [ P P2 peyp—1 | PlnT Pon| (7.85)
¢ KClE CzE) ! C3E X0

1 9 Plin p2n> 1 d (Pln_p2n>:|
En0F = S44E Onoll = — | X5F 1—( _ Py 29 (PP 766
o = S44E Ongl { a0 \Cr Gr) T \ G (7.86)

19 (P P2 1 d (pin—p2
€n0E = S44F Onge = —O |xCe—1 = (2L _ 2 cn e 7.87
noE S44E OnoE |:xn av (ClE CZE +xn av §3E ) ( )

2 —
Ong = — {[(015 +c2p) c3g —2¢2E] <p1" - @) gt _ 2¢28 (P1n ~ p) pzn)}

CIE CZE C3E Xn '
(7.88)
c _
Cpk = O = — |:(CIE —C2EC3E) (gllz - g;’;) xgoety TIEREIn 2] (531;x pzn)} , (7.89)
n
wi = kop e ) L B e (7.90)

n
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n/2m/2
K :
W = 4/ / [ 2 2‘”“ ?&3”1) + Kag (xg —X1N)

2c¢3g + 1
Kok ( c3p+2 L‘3E+2) dod
— Y 7.91
cp 2 Xg XN ¢av, ( )

where O, x;y, xp and saug, cjp are given by Equations (1.21), (1.22) and (2.13),
(2.18), respectively, and {;g (i=1,2,3), Kog (see Equation (7.13)) have the forms

1 1
CZE = . [C3E (CIE +C2E) 202E] (xllilb xg31; ) 7
1 -1 ~1
Cor = —lesr (e ear) = 2eae] (it~ —p ).
R i

XIN XE
0Cor dC4E Ve dCor 0C4E

op 00 av  ov

The coefficients kg, Ko are given by Equations (7.82), (6.61), respectively,
where {;p (i=1,2,3) in Equations (7.82), (6.61) is given by Equation (7.92). The
normal stresses pi,, p2, are given by Equations (2.25), (2.26), where p;y and py
in Equations (2.25), (2.26) are given by Equation (6.89) and (7.23), (7.33), (7.43),
(7.53), respectively. With regard to (E‘PE)xrxw —(P1PLIE + P2 P12E)s

(e‘PE)x T — (p1nP21E + P20 P22£) and Equation (7.85), the coefficient p;;r (i, j =
1,2) in Equatlons (2.25), (2.26) is derived as

) . (1.92)

1
Kor = (c1g — c2E ¢3E) Cor Cag o (

X! 1 xgpr! 1
£ = (81— & + » P2ig = (81— 8 + ;
Prie = O =) | “e G ) P2 = GO T
i=1,2, (7.93)
where §;; represents Kronecker’s delta [24], i.e., §;; =0 or §;j = 1 for i # jori = j,

respectively.

Conditions C3g # 0, C4g # 0, C1g = Cop = 0. With regard to Equations (2.33),
(2.34), (7.5)—(7.12), (2.22), (2.23), we get

Pin P2n 1
) (Cm - CzE) . (7.94)
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Pin Pum Pin P\ 1
ey | (P _ P\ L (P pon) L 7.95
Eol = Sor K@ CzE) - (§3E C4E> xn} ’ 79

1 0 l
€4pE = S44E OngE = — {3 30 1" pzn) J (Pm _ Do ﬂ . (7.96)
n

C2E Xn a(p C3E C4E
1 0 p2n> 1 d (pln p2n)j|
- o0p— 0| L2 9 _ . (1.97
OE = S44E OnoE [%8 Cor) x0v\C3g Cae 7o

1 1
Ong = —2 [(ClE +2c2E) (pln - &> atex (pln - p2") —} . (7.98)
n

Cie Cor Cse  Car
1 1
Ogr = Ogg = — [(015 +2c2E) (511; %) =c1 (% - %) + x_n] , (7.99)
n
K3g K4  KIOE
WE = R (7.100)
x® xS
n/2m/2 1 1 1
K K
WE—4/ / S + K4k (XE —XIN) + L ——— dodv,
E 2 \xn  xE
(7.101)

where O, x;y, xg and squg, cip (i=1,2,3) are given by Equations (1.21), (1.22)
and (2.13), (2.18), respectively, and (i (i=1,...,4), Kjg (j=1,4,10; see Equa-
tions (6.12), (7.13)) have the forms

CIEZZ(C1E+26215) l(’ﬂ)z_l] QE:M [1_ (x_5>2]
Xy XE ’ X3 xiv/) |’
xg \2 200 | (xv)”
<> - 1] , G = [() - 1] .
XIN XE XE

2
1 2
K3g =3 (c1p +2¢2kE) (é?TZ - é;)

e A

Kae = (c1e — 2£) (24 3E) (gll;; gj;) (5315 gj;)
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+ii(&@>i<m@>
544 09 \C1e Cor ) 09 \C3r  Car
+2_®2i<&_@>i(pln P2n>
saa OV \Cig G/ ov\Csg Cur)’

Kl0E = (C1E+2C2E (pln pZn) (pln N p2n>

Cie Cor/) \C3e Cur
_"_L a (pln p2n) (pln_p2n)
5448 00 \Ci1z Cog Cse  Cae
92 J Pin p2n> a (pln p2n)
L& 2 - : 7.102
Sa4E OV (QlE Cor G Cae ( )

The normal stresses py,, pa, are given by Equations (2.25), (2.26), where p;y
and pys in Equations (2.25), (2.26) are given by Equation (6.89) and (7.23), (7.33),
(7.43), (7.53), respectively. With regard to (g¢x) v = — (PUP1E + P20 P12E),

(eoE), v —xy = — (P1aP21E + P22 P22k ) and Equation (7.95), the coefficient p;je (i, j =
1,2) in Equat1ons (2.25), (2.26) is derived as

iE=01i—0) | —=+t7—5 |, P2je=(81;—d '
Puie = (31— 82) (CiER?+C3ER1> P2 = (B1i =B (giER%+C3ER2)
1 (7.103)

where §;; represents Kronecker’s delta [24],i.e., 6;; =0 or §;; = 1 fori # jori = j,
respectively.

7.3 Condition B;y # Br = Bu

If By # Be = PBum, then |u,p| = f(x,) represents a decreasing function of x, €
(xin,xg), and then Cig = Cap = 0, Cop # 0, C3g # 0 (see Equation (7.5)), re-
spectively. With regard to one boundary condition (see Equation (2.33)), the ther-
mal stresses in the ellipsoidal inclusion are determined on the conditions Cpr # 0,
C3g = 0; Co3 # 0, Cop = 0. With regard to Equations (6.4), (7.5), the thermal strains
and stresses in the ellipsoidal envelope are determined in Sections 4.3.2 and 6.3.2
for Cop # 0, C3g = 0 and Cy3 # 0, Cop = 0, respectively. The normal stress py, in
Section 4.3.2 is given by Equation (2.27), where p;y and pyr in Equation (2.27)
are given by Equations (6.89) and (4.130), respectively.
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7.3.1 Matrix

The integration constants Cy s, Caopr, C3pr, Capy for the matrix (see Equation (7.5)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)—(2.32). The bound-
ary conditions result in the following combinations of Cyys, Caps, C3pr, Capg, Where
the combinations of Cyys, Capy, Capy are presented in Section 6.3.1. Finally, such a
combination is considered to exhibit a minimum value of the elastic energy W¢ of
the cubic cell (see Equation (2.23)).

Conditions Cyy; # 0, Capy # 0, Copy = C3py = 0. With regard to Equations (2.30),
(2.31), (7.5)—(7.12), (2.21), (2.22), (2.23), we get

€Mt = — p"’g’%, (7.104)
Eon = ey = — LPHE (1—X—M>, (7.105)
CM Xn
0 1 0 X
€npM = S44M OnoM = — [% <P1nCP;ME) 33 (planz—ZE Mﬂ . (7.106)
_ _ 0 ([ PinPImE 1 0 (pinpamexyu
€40M = S44M Oppp = —© v\t ) mw\ e ) (7.107)
n
2
OnM = — PinP2ME cim — Com + CoM XM ’ (7.108)
CM Xn
G = Co = — m”g"%(cw—cm—c”‘;x’”), (7.109)
n
Wit = K+ K8 (7.110)
X} Xn
n/27m/2 § B
Wy = 4/ / [% (x;v, fx?g) + K (xp —xg) + % (x,zwfx,z;)] dodv,
0 0
(7.111)

where O, xg, xy and s44p7, ciyy (i=1,2) are given by Equations (1.21)—(1.17) and
(2.13), (2.18), respectively, and  y7, Kjar (j =4.8; see Equation (7.13)) have the forms

CMZI__v
XE
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Pln PZMEXM) 2
Cm

L P(WVI)]:@Z [3<p1r>2mw)r |
saam | 09 Cm ov Cm

2
1n P2ME
Kem = Xm (Cam — C1m) <%>

1 i(plnp2ME>i<pln92MExM)
S44p1 OQ Cm 00 %

_ e 9 <P1npzME)j<p1npzMExM)
saam OV \ Cm Cum '

Kapm = C1m (

Y (7.112)

The coefficient Ky, is given by Equation (6.98), where { 5 in Equation (6.98) is
given by Equation (7.112). The normal stress py, is given by Equation (2.27), where
prnv and paye in Equation (2.27) are given by Equations (6.89) and (3.53), (4.130),
(6.135), respectively, with respect to minimum W, (see Equation (2.23)).

Conditions Cyys # 0, Capg # 0, Cipy = Cay = 0. With regard to Equations (2.30),
(2.31), (7.5)—(7.12), (2.21), (2.22), (2.23), we get

&amt = —pinP2up §rm cam X! (7.113)
- 2
EoM = €oM = —PInP2ME (C M CXM> , (7.114)
n
€noM = S44M OnoM = — {xcwl 9 (PinpameCim) + Lo (p1 pZMEczM)}
nem— noM — n n ,
¢ . n a(p X, a(p
(7.115)
C3M—l a 1 a
Enont = saant Onorr = —O |, = (1o § 1) + - 50 (PraP2me Gam) |
(7.116)
— em—1_ 28omcom
Oum = —P1nP2ME 3 G 1v [c3m (c1m + com) — 2cam] X, = [ (7.117)
n
_ C
OoM = OoMm = —P1nP2ME {Q 1 (c1v — comesm) %, Ly 76; M 1M} , (7.118)
n

132



wM:KWx,f("W”HK“M + Koprxcm (7.119)
n
n/2m/2
Kom zc +1 2¢ +1)
W, 4 v+l _ 3M _
M= / / |:2C3M+1 E K (¥ = )
Kom ( cay+2 L3M+2) dod
% 7.120
C3M+2 xM xE (p ) ( )

where O, xg, xpr and s44p, cipy (i=1,2,3) are given by Equations (1.21)—(1.17) and
(2.13), (2.18), respectively, and { jar (j = 1,2), Kipr (k =2,4; see Equation (6.13)), Kop
(see Equation (7.13)) have the forms

M

XE XE Xpp

g S
cim+com) el
KoM = [(IM;M)3M+61MZCQMC3M] (plnPZMECIM)z
1 d S 2
L o |2
+S44M{|:a(p(plnp2ME€lM):| + L)V (plnPZMECIM)} ,

Kam = iy (prapave §om)?

+1{{aa(p(pmp2ME§2M)]2+®2 [ai(plnp2MEC2M):|2}v

S44M
Koy = C 1MC2M (clM — C2MC3M) (pln p2ME)2
1 0 9
+ m% (plnPZMEC:IM) &p (PlnPZMEgzM)
e’ o

0
+ Saay OV (Pinp2meCim) 5= 3 (Pinp2meCom) - (7.121)

The normal stress py, is given by Equation (2.27), where pyy and payg in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum W, (see Equation (2.23)).

Conditions Csy; # 0, Capy # 0, C1pr = Copy = 0. With regard to Equations (2.30),
(2.31), (7.5)—(7.12), (2.21), (2.22), (2.23), we get
2
ey = Din Pzng ¢ 1M7 (7.122)
xn

133



CIM CZM)’

€oM = €M = —P1nP2ME <—3 + (7.123)
Xn Xn

0 1 0
€noM = S44M OnoM = — 3 % (P1np2meC1m) + x_n % (P1npameCom) |,
(7.124)

1 0 1 90
€40M = S44M Onom = —O [; 3v (PnpomeC1m) + v (P1npP2mEC 2M)} ,

n n

(7.125)
+2
Gt = 2p1n P21 F e (e ¥ 2cau) | CWZM} , (7.126)
X;, Xn
2
GoM = OpM = —P1nP2ME [C M (ClM3+ cap) + CzMClM] ) (7.127)
Xy, Xn
- K324 K434 KIZM’ (7.128)
xn xn xn
n/2m/2 1 1 1 |
K
Wy =4 / / [% (_3_7) + Kam (mr— XE) + Kiom (———)} dodv,

2 Xp Xy XE XM

(7.129)

where O, xg, xp and sqap, cip (i=1,2,3) are given by Equations (1.21)—(1.17) and
(2.13), (2.18), respectively, and CjM (7=1,2), x3p (see Equation (6.13)), Kjops (see
Equation (7.13)) have the forms

x,33 . XE
2 CZM_

N VNG A
T
XM XE

sy =3 (cim+2com) (Prapamel 1M)2

{ {% (Pinpame € 1M)] ’ +e? [% (P1np2mEeC 1M)] 2} ;

k1o = i Comt (crar+2¢am) (prn Pome )

Cim =

S44M

0
m% (P1np2me € 1m) % (p1npamEeCom)
Saap OV P1nP2ME G 1M v P1nP2ME G 2M) - )
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The coefficient K4y, is given by Equation (7.121), where { 37 in Equation (7.121)
is given by Equation (7.130). The normal stress pi, is given by Equation (2.27),
where pyy and poyr in Equation (2.27) are given by Equations (6.89) and (3.53),
(4.130), (6.135), respectively, with respect to minimum W, (see Equation (2.23)).

Conditions Cyy; # 0, Copg # 0, Capr # 0, C3pp = 0. With regard to Equations (2.30)—
(2.32), (7.5)—(7.12), (2.21), (2.22), (2.23), we get

et = —puapaute (i + Cameana ™). (7.131)
— 3

€oM = €oM = —P1nP2ME <§ 1w+ o x4 CX—M> , (7.132)
n

0 4 0
€1pM = S44M OnoM = — [% (Pinpame G in) +xn ! % (P1np2mE Com)

10
4+ =
Xn

30 (plnPZMEC3M):| ; (7.133)

d . 0
€,0M = S44M Opop = —© [5 (P1nPasae Cing) +X5M 1 3v (p1npame Com)

1 0
+ 3 (P1n P2ME§3M)] ; (7.134)

OnM = —Pin P2ME{C e (€1m — canr) + Con [eans (canr + canr) — 2eap) x5!

2
© 2ameam } (7.135)
Xn
OoM = OpM = —P1nP2ME [C 1 (cip — cam) + Com (crm — comesm) x5
+ C3MCIM:| 7 (7.136)
Xn
_ X
wpm = Kim + KZMX,%(CJM b + K;g/l + (Ksps + 1opr) XM Ty %, (7.137)
n n
n/2m/2
" K K2 . .
W = 4/ / [% <x13‘4 _x?f) * 2C3MM+1 <x12‘;w“ _xéLWH) o Kanr (v = )
00

4 om+ Kom (x;;M+2 —xf;M”) 4 v (x%/l —x,%) dodv, (7.138)
cam+2 2
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where O, xg, xp and sqap, cip (i=1,2,3) are given by Equations (1.21)—(1.17) and
(2.13), (2.18), respectively, and QjM (7=1,2,3), K1m, Kop (see Equation (6.13)), Ky
(k=4,5,8,9; see Equation (7.13)) have the forms

cam g 1 (c3m — 1) x3)"
CIM:_i7 C2M:—) C3M_77
— 1) x C3m
CM:M—QMXK;}M l—l—x?E l,
XE
_ 3(cim —com) (Pin PzMEClM)2
Kim = >
1 9 2 Py 2
+S44{|:a(p(plnp2ME§1M):| + [E)v (PlnPZMEClM):| },
cim +canr) 3
K2M: {M+CIMZCZMC3M:| (plnp2MEt_,2M)2

1 { {88(;) (PinpamiC 2M)} ’ 1+ e? [a% (Pinp2meC 2M):| 2} ;

S44

Kamr = cim (pinPame § )’

2 2
+ i { L)a(p (Plnp2MEC?M):| +02 [aa—v(PlnPZMECSM)} },

Kspr = G im Com (cim — com) (2 +€3m) Civt Cont (P p2ME)2

2 0 d
+— n — n
Saam 90 (Pinp2meCim) 30 (PinP2mE Gom)

202

J d
+ E v (PlnP2MEC1M) Iy (plnngEQZM)

wswr = C i Camr (ciar — comr) (P Pame)*

d d
90 (Pinp2meCim) 5 30 (P1npP2me C3m)
@2

d d
Loy (P1np2meCim) == > (P1np2me C3m)
Koy = CzM C su (e — e esm) (piapame)

2 9 d
4+ —— (P 2 (pin
saant 99 (P1np2mEe Com) 30 (Pinp2me Cam)

202

J J
t S v (P1nP2uE C2um) 55 (P1nP2uE C3m) (7.139)
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The normal stress py, is given by Equation (2.27), where pyy and poyg in Equa-
tion (2.27) are given by Equations (6.89) and (3.53), (4.130), (6.135), respectively,
with respect to minimum W, (see Equation (2.23)).

Conditions Cyy; #£ 0, C3py # 0, Capp # 0, Copy = 0. With regard to Equations (2.30)—
(2.32), (7.5)—(7.12), (2.21), (2.22), (2.23), we get

2
€nM = —PinPIME <C M — %) : (7.140)
CzM C3m
€oM = €om = —P1nP2me | S1m + + : (7.141)
0 0
€noM = S44M OnoM = — % (P1npPomeCim) + *3 30 (P1nP2mE Com)
10
5% % (P1np2meCam) } (7.142)
d 10
EnoM = S44M Onom = —O | == (P1np2mEGim) + v (P1nP2mE Com)
10
+ = pogh > (P1nP2mE Cw)} ; (7.143)

20 om (cim+2com) 283w C2M}
x3 Xn ’
(7.144)

OnM = —PlnP2ME {C wi (cim — com) —

oM (C1m + 2¢om 3MCIM
OpM = OoM = —P1nP2ME [C w1 (c1m — com) + Cam ( ) + ¢ } ;

x3 Xn
(7.145)
K K K
Wit = K+ =t K“;” TR (7.146)
n Xn X Xn Xn
n/2m/2 1 {
K K
Wy 24/ / L (xi,[—x%) + M — — 3 | +Xam (o — xE)
3 3\ xy
0 0
X K. 1 1
+ Kgpr In (—M) + —i <x12w —xlzg) + K1om (— — —>:| dodv,
XE 2 XE M
(7.147)



where O, xg, xp and sqap, cip (i=1,2,3) are given by Equations (1.21)—(1.17) and
(2.13), (2.18), respectively, and CjM (j=1,2,3), 3y (see Equation (6.13)), Ky
(k=6,10; see Equation (7.13)) have the forms

C 2 g 1 C 3 Z; 2 n 1 3
M=, o=, Cwmw=——>5, Cu=5+—=5——5,
Caxy Cum Cmxd, Xy Xy XXy

iam = 3 (cun +2¢am) (P pave Com)?

1 { [Eip (P1np2mEeC 2M):| 2 +0’ {% (P1np2mEeC 2M):| 2} ;

Sqam

2 9 d
Kem = 1 70 (P1npomeCim) % (P1npomEeCam)
2

) )
+— v (P1npamEeC1m) == v (P1np2mEeC3m),
S44M

Kiom = Com Cam (cim +2com) (Pin PzME)2

0
Saam 99 (PinpP2meCom) 5 30 (Pinp2me C3m)

2
+ 8— 0 (P1apP2mE Com) 5 0 (P1aP2mEC3m) - (7.148)
S44M ov ov
The coefficients K1y, K4ps, Kgps are given by Equation (7.121), where ;s (i=1,2,3)

in Equation (7.121) is given by Equation (7.148). The normal stress py, is given
by Equation (2.27), where p;y and poyr in Equation (2.27) are given by Equa-
tions (6.89) and (3.53), (4.130), (6.135), respectively, with respect to minimum W,
(see Equation (2.23)).

Conditions Cyys # 0, C3py # 0, Capr # 0, C1py = 0. With regard to Equations (2.30)—
(2.32), (7.5)—(7.12), (2.21), (2.22), (2.23), we get

2
€M = —DP1n P2ME (C peayxn - E§M> , (7.149)
n
EoM = EoM = —P1n P2ME <€ g xsml g% + C;’”) , (7.150)
n n
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TRREar rabe g BRGIED

€noM = S44M OnoM = —P1n P2ME <

iy 100 190y
= =-0 cau 1 — — 7.152
€,0M = S44M Onom = —OP1n P2ME ( > + ¥ v + w v ) ( )
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x
_ 2Csmeom (7.153)
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N M} , (7.154)
Xn
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Wit = kg g ) L M KM et gy et KIOM (7 55
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n/2m/2 ; 1 1
K
Wy = 4//{20 2M+1 2“““—)%“’”“)—#%(—3— >+K4M(XM XE)
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1 1
+ Kiom (— — —)] dodv, (7.156)
XE XM

where O, xg, xpr and s44p75 cipg (i=1,2,3) are given by Equations (1.21)—(1.17) and
(2.13), (2.18), respectively, and CjM (7=1,2,3), x3p (see Equation (6.13)), Ky
(k=3,7,9,10; see Equation (7.13)) have the forms

capx ! (e )
Civ=—=, Coy=—"75—, C3M—*—,
CM Cum Cm
1
B e s
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S44M av ov

The coefficients Ky, K4ps are given by Equations (7.121), (7.139), where i
(i=1,2,3) in Equations (7.121), (7.139) is given by Equation (7.157). The normal
stress py, is given by Equation (2.27), where p;y and payr in Equation (2.27) are
given by Equations (6.89) and (3.53), (4.130), (6.135); respectively, with respect to
minimum W, (see Equation (2.23)).
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