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Introduction

This book! presents original mathematical models of thermal stresses in com-
posite materials, along with mathematical models of thermal-stress induced micro-
/macro-strengthening and thermal-stress induced intercrystalline or transcrystalline
crack formation. The materials consist of an isotropic matrix with isotropic ellip-
soidal inclusions. These stresses originate during a cooling process, and are a con-
sequence of different thermal expansion coefficients of the matrix and ellipsoidal
inclusions.

The mathematical models are determined for a suitable model system. The model
system is required to correspond to real isotropic matrix-inclusion composites. The
thermal stresses are derived within a suitable coordinate system. The coordinate
system is required to correspond to a shape of the ellipsoidal inclusions.

The mathematical determination results - from mechanics of an isotropic elastic
continuum, and result in different mathematical solutions for the thermal stresses,
i.e., 19 and 2 mathematical solutions for the matrix and the ellipsoidal inclusion, re-
spectively. Due to these different mathematical solutions, the principle of minimum
elastic energy is considered.

The mathematical models of the thermal stresses and of the thermal-stress in-
duced micro-/macro-strengthening and crack formation include microstructural pa-
rameters of a real matrix-inclusion composite, i.e., the inclusion dimensions ay,
ap, az, the inclusion volume fraction vy, as well as the inter-inclusion distance
d=d(a1,a2,a3,vn).

Consequently, the mathematical models are applicable to composites with el-
lipsoidal inclusions of different morphology, i.e., a; &~ a» =~ a3 (dual-phase steel),
a1 > ap =~ a3 (martensitic steel).

In case of a real matrix-inclusion composite, such numerical values of the mi-

! This book was reviewed by the following reviewers:

RNDr. Pavol Farkadovsky, DrSc., research professor, Institute of Experimental Physics, Slovak Academy of Sciences,
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crostructural parameters can be determined,

e which result in maximum values of the micro- and macro-strengthening,

e which define limit states with respect to the intercrystalline or transcrystalline
crack formation in the matrix and the ellipsoidal inclusion.

This numerical determination is performed by a programming language. The
mathematical procedures in this book are analysed in Appendix.



Chapter 1

Matrix-Inclusion Composite

1.1 Model System

Figure 1.1 shows a model system, corresponding to real matrix-inclusion com-
posites, which is considered within the mathematical models of the thermal stresses.
This model system consists of an infinite isotropic matrix and isotropic ellipsoidal
inclusions with the dimensions ay, ay, a3 and the inter-inclusion distance d along the
axes x1, x2, x3 of the Cartesian system (Ox1xx3), respectively, where O represents a
centre of the ellipsoidal inclusion.

® S S
I S | x1| dl
o ©o © 0@
inclusion
®o 0o 06 ©

Figure 1.1: The matrix-inclusion system with an infinite isotropic matrix and
isotropic ellipsoidal inclusions with the dimensions ay, a;, a3 and the inter-inclusion
distance d along the axes x1, x2, x3 of the Cartesian system (Ox1xx3), respectively,
where O represents a centre of the ellipsoidal inclusion.

As presented in [1]-[22], the thermal stresses are determined in the cubic cells
with the dimension d along the axes x;, x2, x3 and with central ellipsoidal inclusions
(see Figure 1.2). Due to the infinite matrix, the thermal stresses, which are deter-
mined for one of the cubic cells, are identical with those, which are determined for
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any of the cubic cells [1]-[22]. With regard to the volume V;y =4may,az a3 [23] and
Ve = d® of the ellipsoidal inclusion and the cubic cell, the inter-inclusion distance d
as a function of the inclusion volume fraction v;y is derived as

V[N 4na1a2a3 ( T 4na1a2a3 173
_ N _ 0,_>7 d= (1298 1.1
NS T T as . S i (-1

where the value viymax = /6 results from the condition a; — d/2 (i=1,2,3). Ac-
cordingly, the thermal stresses are functions of the material parameters ay, as, as,
VIN, d.

o
U
&

By

Figure 1.2: The cubic cells with the dimension d along the axes xi, x2, x3 of the
Cartesian system (Oxxx3) and with the plane xj,x3, where O represents a centre of
the ellipsoidal inclusion, and (x5 C x1x2, x12x3 L x1x.

1.2 Coordinate System

Figure 1.3 shows the ellipse £ with the dimensiions a, b along the axes x, y, respec-
tively. The ellipse E is described by the function

2 2
(f) +(X) —1. (12)
a b
Any point P of the ellipse £ is described by the coordinates [23]

x=acoso, y=bsina, o€ (0,2m), (1.3)
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where the normal n of the ellipse £ at the point P is derived [23]

ox )y ) B
w(x—acosoc)—k@(x—bsmoc)fo. (1.4)
n
Y E
|y
b
o X

o f

Figure 1.3: The ellipse £ with the dimensions a, b along the axes x, y of the Cartesian
system (Oxy), respectively, and the point P related to the angle o.

With regard to Equations (1.3), (1.4), we get

Xatano (az—bz) sinq s
y=—p - 5 : (1.5)
The thermal stresses are determined by the spherical coordinates (r, @v) (see Fig-
ure 1.4). The model system inFigures (1.1), (1.2) is symmetric, and then the thermal
stresses are determined within the intervals ¢ € (0,1/2), v € (0,m/2) [1]-[22].
Figure 1.4 shows the ellipsoidal inclusion for @,v € (0,7t/2) with the centre O
and with the dimensions a; = O1, ay = 02, a3 = O3 along the axes x1, xp, x3 of the
Cartesian system (O,xy,x3,x3) (see Figures (1.1), (1.2)), respectively. With regard
to Equation (1.3), any point of the ellipse £1; in the plane xx; is described by the
coordinates

X1 =a1cos®, x;=axsinQ, @& <O,g>. (1.6)

Similarly, any point P of the ellipse £3 in the plane xj;x3 is described by the
coordinates

X1op = appsinv, x3p=azcosv, app=04=/a cosz(p—i—a sin? 0,

0,ve <O,g>. (1.7)



Finally, (P,x,,x¢,xy) is a Cartesian system at the point P, where the axes x, and
xy represents a normal and a tangent of the ellipse E123 at the point P, respectively,
x12x3 L x1x2, (x12 C x1X2, Xo 1 xp0.

Figure 1.5 shows the cross section 0567 of the cubic cell in the plane x1x3 (see
Figures 1.2, 1.4). The angle v € (0,7/2) defines a position of the point P with
the Cartesian system (P,xn,xq,,xv) (see Figure 1.4) for v = vy (see Figure 1.5a),
v € (0,vq) (see Figure 1.5b), v € (vo,m/2) (see Figure 1.5¢). The points Pj, P,
represent intersections of the normal x, with O567.

o
/7 L12
X12

Figure 1.4: The inclusion with the centre O and with the dimensions a; = Ol,
ay = 02, a3 = O3 along the axes x1, x2, x3 of the Cartesian system (O, x1,x7,x3), re-
spectively. The ellipses £, E123 in the planes x1x;, x12x3 (see Figure 1.4) are given
by Equations (1.6), (1.7), respectively, where x15x3 L x1x2, (x12 C x1x2, X¢ L x12.
The point P on the inclusion surface is defined by @,v € (0,7/2), v € (0,m/2), and
(P, xn,x(p,x\,) is a Cartesian system at the point P, where P C Ej»3. The axes x;, and
xy represents a normal and a tangent of the ellipse £13 at the point P, respectively.

With regard to Equation (1.5), the normal x,, at the point P of the ellipse E1,3 in
the plane xpx3 is derived as

. COSV /aizXx12 2 2 ) < TC>
= ; - , ve(0,=-). 1.8

3 as ( sinv a3 —an 2 (1.8)
With regard to Equation (1.8), the coordinates x,, |, x3,1 of the point P have the
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forms

X121 = ;x1=0, ve(0.7) (1.9)
arn
X3 Xn X3 Xn
7 6:P2 7 P2 / 6
N
3 ] P=x¢
3 Vv
P=x, X0
ARy’ Eix
Eis {0 X12 X1
O / P, 4 5 0] / P, 4 5
a b
X3
Figure 1.5: The angle v € (0,m/2)
7 6 defines a position of the point P with the
Xg X, Cartesian system (P,xn,x(p.,xv) (see Fig-
/ ure 1.4) for (a) v = vy, (b) v € (0,v),
0 (c) v € (vg,m/2), where vy is given by
3 Py Equation (1.8). The points Py, P, repre-
E123 sent intersections of the normal x, with
P=x 0567, where 0567 is a cross section of
Y, ¢ the cubic cell in the plane x,x3 (see Fig-
o X12  ures 1.2, 1.4). The angle 0/ (x,,x3) is
P, 4 5 given by Equation (1.12).
c

Similarly, the coordinates xy,, ,, x3 > of the point P, in Figure 1.5b for v € (0,vo)

are derived as

X122 = ——

sinv <dcosv )
a2

2aj

d
alz—a%>, X32:5, V€<0,V0>.

(1.10)

The coordinates xy,,,, X3 of the point P; in Figure 1.5¢ for v € (vo,7/2) have

the forms



d

M2 = 21 () sinv’
. T
/(@) =coso, ¢ < > @) =sing, <p€<4 2>
__cosV apd T
X32 @ |:2f( )San+ alz] VAS <V0,2>. (1.11)

The coordinate x5 » of the point P in Figure 1.5a for v = vy is given by Equa-
tion (1.11), where x3, = d/2. With regard to Equation (1.8), the angle v represents
a root of the following equation

COSVo alzd 2 2 d
— S
[Zf(m)sinvO+a3 “‘2} 277

o) =cos, 9e(0.5): flo)=sing, e (F.7). (112)

as

and this root is determined by a numerical method: The angle 6 = £ (x,,x3) is de-
rived as

X3p 1
cosO = = ,
\/(X12P—X121)2+x§P \/1 + (a3 tanv/a12)2
sin® = ! . (1.13)
\/1 + (ann cotv/a3)2
Consequently, we get [23]
[\ "o d
== =0— 1.14
0 <8<p) do 99’ (19

where the function ® = © (¢) has the form

. 2
- <a£> K‘“ va) +cos2v] . (1.15)
as aln

As analysed in [1]-[20], due to the symmetry of the model system, any point P on
the matrix-inclusion boundary exhibits the displacement u, along x,,. Consequently,
any point P of the normal x,, exhibits u, along x,, i.e., uy = uy = 0 [1]-[20], where
ug, uy are displacements along the axes x, xy, respectively.

8



As presented in [1]-[22], the thermal stresses, which are determined along the
axes x,, X¢, Xg of the Cartesian system (P, xn,x(p,xg) , represent function of the spher-
ical coordinates (x,,¢,0) for ¢,06 € (0,m/2). The intervals x,, € (0,x;x) and x, €
(x1n,xar) are related to the ellipsoidal inclusion and the cell matrix, where P = Py,
P C Eyp3 and P = P, for x;,, = 0, x,, = x7y and x,, = xs (see Figure 1.5), respectively.
Finally, we get

. 2
asz sinv
x]N—PlP—\/(xlzp—xlzl)z-i-xgp—ag\/( 3(1 > +cos?v, (1.16)
12

Xy = PPy = \/(x122 —x127)" + (132 — x3p)°

. 2 2 2 2
sinv d cosv 5 ajp cosv d
= i — - .(1.17
\/< a12> ( 2a; a3> +( a3 ) Lf((P) sinv 012] (17
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Chapter 2

Mechanics of Elastic Solid
Continuum

2.1 Fundamental Equations

As analysed in [1]-[20], any point P of the normal x,, exhibits the displacement u,,
along x,. The thermal stresses are determined along the axes x,, x¢, xg of the Carte-
sian system (P, xn,x(p,xg) . Fundamental equations of mechanics of a solid continuum
are represented by Cauchy’s equations, the equilibrium equations and Hooke’s law.
Cauchy’s equations represent functions of strains and displacements. With respect
to the normal displacement u,,, Cauchy’s equations-have the forms [1]-[20, 22]

Juy

n = 3. 2.1
&= 3 (2.1)
gp= g = Z—” 2.2)

1 du
Enp = Eon = B_q;l’ (2.3)

© Ju,
o= oy = — n 24
€6 = Eon = o0 (2.4)

where €, is a normal strain along the axis x,, and © is given by Equation (1.15).
Consequently, € and €¢ are tangential strains along the axes x, and xg, respectively.
Finally, €, €,6 and €y, €, represent shear strains along the axes x, and xg, xp,
respectively. Due to uy = uy = 0, we get €¢v = &yp = 0 [1]-[22], where ugy, uy
are displacements along the axes xg, xv, respectively, and €y is a shear strain. As
presented in [1]-[22], the equilibrium equations are derived as

96, J0ug
T a0 Oy

950 _ ¢ 2.5)

26, —0¢g— Oy +xp

J0, J0 ¢
220 4 36+ 0 —2 = 0, 2.6
o 0TI 26)
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809 aGng
—+3
av +50u0 + oxy,

where G, is a normal stess along the axis x,. Consequently, G, and Gg are tangen-
tial stresses along the axes x¢ and xg, respectively. Finally, 6,¢, G,¢ and G¢,, Cgy
represent shear stresses along the axes x, and x¢, xg, respectively, where G,¢ = Ggn,
On9 = Opy. Due to €9y = &yp = 0, we get Ogy = Oy = 0 [1]-[22], where Gy is a
shear stress. With regard to €9 = 0, Gy = 0, Hooke’s law has the form [1]-[20, 22]

C)

=0, 2.7)

€ = 5110, +512 (0o + Co) , (2.8)
€¢ = 512 (0, + Op) + 51106, (2.9)
g9 =512 (Gn + Gg) + 51100, (2.10)
€40 = 544050, (2.11)
€np = 5440ng, (2.12)

where 511, 512, S44 are derived as [24]

%; 512:_%7 S44=@~ (2.13)

Finally, £ and u are Young’s modulus and Poisson’s ratio, respectively. In case of
the ellipsoidal inclusion and the cell matrix, we get £ = Ejy, u = uyy and E = Eyy,
U = uyy, respectively.  With regard to Equations (2.1)—(2.4), (2.8)—(2.12), we get

[11-[22]

S11 =

Oy = (01—0—62)2%:—202 z—: (2.14)
Gp=Gp=—c3 g—?}:Jrch—:, (2.15)
o = ﬁ %—’z;, (2.16)
Gup = sfxn %, 2.17)

where ¢, ¢2, ¢3 (see Equation (2.24)) have the forms

12



£ I P
(-2 2~ c3=—4(1—p) <0, (2.18)

(1w (1—20)°
and ¢3 < 0 due to u < 0.5 for real isotropic components [25].

Letay; =cos[Z (x1,x;)] (i =n,,0) represent a direction cosine of an angle formed
by the axes x1, x; (see Figures 1.4, 1.5). With regard to Figures 1.4, 1.5, the coefficient
ay; = cos[Z (x1,x;)] (i = n,¢,0) is derived as

Ccl] =

aj, = cos@sin®, ajp=-sin@sin®, ajg=cosoO,
ag) = —sin@, ag; = —cosQcosb, (2.19)

where cos 6, sin@ are given by Equation (1.13). The stress 6 along the axis x| has
the form

G1 =a1,0y+a19Op+a1000 + ain (Cng + Onp) + a1¢Cgn + a1000n. (2.20)

With regard to Equations (2.14)-(2.17) and due to G,y = Ogn, On9 = Opy [24], we
get

duty, Uy, 1 ouy, duy,
Gl—Yla—xn‘f‘Yz—'F (YS%‘FWW), (2.21)

Xp,~ S44Xn

where v; (i=1,...,4) is derived as

Y1 =am(c1+c2) — (arg+aip)c2, V2= (a19+aie) c1 —2ai,ca,
Y3 =ai,+aig, Y4=0(ai,+a), (2.22)

and O is given by Equation (1.15). As presented in Chapter 8, the analytical models
of the micro-strengthening 6, = G (x1) and the macro-strengthening Gy result from
the stress o1 (see Equations (2.21), (2.22)).

Let Equations (2.14)—~(2.17) be substituted to Equation (2.18) and to [0Eq.(2.6) /d¢]
+ O [0Eq.(2.7)/dV]. Consequently, Equations (2.5)—(2.7) are derived as

%u Ju U,
2 n n n
2 — 2 _ = 07 2.23
*n ox?2 L 0x,, un+S44 (c1+c2) (2.23)
oy,
Xn = _ c3 Uy, (2.24)
0xy,

where U, is derived as
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B 9%u, %u,
0¢? ov2’

The system of the differential equations (2.23), (2.25) is solved by the mathemat-
ical procedures in Sections 3.1, 4.1, 5.1, 6.1, 7.1.

U, +©7? (2.25)

2.2 Elastic Energy

As analysed in [1]-[22] with respect to the different mathematical procedures (see
Sections 3.1, 4.1, 5.1, 6.1, 7.1), such a mathematical solution, which exhibits a min-
imum value of the elastic energy W of the cubic cell, is considered, where Wy and
Wiy 1s elastic energy, which is accumulated in the volume V7y and Vj; of the ellip-
soidal inclusion and the cell matrix, respectively. The elastic energy density w is
derived as [24]

1
w=3 (€401 +€¢0p +€606) + EngOnp + €400, (2.26)

and Wy, Wy and W have the forms

n/‘2 /2 Xy
Win = /WINdV1N=8/ / / winxZ dx, do dv,
Viv 00 0
n/2 n{Z X
WM:/WMdVMzg/ / / wa,%dx,, d(pd\/,
4% 0 0 xw
We = Win+ Wy (2.27)

2.3 Boundary Conditions

The mathematical solutions of the system of the differential equations (2.23), (2.25)
include integration constants. As presented in [1]-[22], these constants are deter-
mined, using Cramer’s rule (see Chapter 8) [23], by the following boundary con-
ditions for the ellipsoidal inclusion and the cell matrix. In case of the ellipsoidal
inclusion we get [1]-[22]

(tn),—o =0, (2.28)

(OnIN)y =,y = —Pn> (2.29)
14



where x/y is given by Equation (1.16). Additionally, the conditions (uu/v), .o 7
Foo, (&v),, o 7 E, (OIN),_¢ +— oo are required to be fulfilled [1]-[22].
In case of the cell matrix we get [1]-[22]

(Onht)x, —xyy = — P (2.30)

(tnht)y, =), = O- (2.31)
As analysed in [1]-[22], the following boundary condition can be considered

(€ntt)y, v, = 0. (2.32)

With regard to (e(pM)xn:xM = —puPus (E(PIN)xn:xm = —pnpiv [11-[22], the nor-
mal stress p, on the matrix-inclusion boundary, 1.e., for x, = PiP = x;y (see Fig-
ure 1.5), which acts along the axis x,, (see Figures (1.4), (1.5)), has the form [1]-[22]

pn = =) I: 1) (2.33)

pm+PIN
where 7, = (0.35—0.4) x T, [25] and T}, is relaxation and melting temperature of a
real composite system, respectively, and 7' is final temperature of a cooling process.

As mentioned in Section (2.2), the different mathematical procedures in Sec-
tions 3.1, 4.1, 5.1, 6.1, 7.1 result in 19-and 2 mathematical solutions for the thermal
stresses in the matrix and the ellipsoidal inclusion, respectively.

The normal stress p, is included in formulae for the thermal stresses. Conse-
quently, the coefficients pys and p;y are given by Equations (3.29), (4.26), (4.37),
(4.48), (4.59), (5.25), (5.36), (5.47), (5.58), (6.24), (6.35), (6.46), (6.57), (7.25),
(7.36), (7.47), (7.58), (7.69), (7.80) and (3.37), (6.65), respectively. Consequently,
such a combination of pys and p;y is considered to result in a minimum value of the
elastic energy W of the cubic cell (see Equation (2.27)).
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Chapter 3

Mathematical Model 1

3.1 Mathematical Procedure

Let the mathematical procedure x, [0Eq.(2.24)/dx,] be performed, and then we
get [1]-{22]

2 *U, U,

" ox? 0xy,

where ¢3 < 0 and U, = U, (x,,,0,0) are given by Equations (2.18) and (2.25), re-
spectively. Let Equation (2.24) be substituted to Equation (3.1), and then we get

[11-{22]

+(1=c3)xn=—=0, (3.1)

2%
x,%?’%n—&-c’g(l—q)Un:O. (3.2)

Let U, be assumed in the form U,/ = xnl, then we get [1]-[22]

Uy = Crxpt +Cax)?, (3.3)

where C;, C, are integration constants, which are determined by the boundary con-
ditions in Section 2.3, and A, A,, with respect to u < 0.5 for a real isotropic material
[25], have the forms [1]-[22]

A = % [1+\/1+16(1—y)[1+4(1—/¢)]} >3,

1
7»225[1—\/14-16(1—#)[1-5—4(1—#)]} <-2. (3.4)
Let Equation (3.3) be substituted to Equation (2.23), and then we get [1]-[22]

?u du

2 A A

xnaT;—i—anaT:—Zun:C]xnl—i—sznz. (3.5)
The mathematical solution of Equation (3.5), which is determined by Wron-

skian’s method (see Chapter 10) [23], is derived as
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Uy = CrxM +Coxl2. (3.6)
With regard to Equations (2.1)—(2.4), (2.14)—(2.17), (2.21), (2.26), (3.6), we get

&, =CrMx T gl 3.7)
gp=Crx 1+ Cox (3.8)

1 = 544 g = %f; X 1+%%x3“, (3.9)
€00 = S440ng = O (%%x,?ll +aa%x321> , (3.10)
o =Ci&1x ! +GEox ! (3.11)

0p =09 =C1&3x," ' 4 G Eax)>, (3.12)
o1 =M papael (3.13)
—len(hl 1)+K2x5(}”2_1)++1<3x£“+7‘272, (3.14)

where ©, s44 is given by Equations (1.15), (2.13), respectively, and £, §2+4, Eo1i42),
N, K; (i=1,2; j=1,2,3) are derived as

E[Ai (1 —p) +24] E(1+Aip)

S T2 S T -2
Eai E{M N (1) +4u] +2)
T (12w
(7»71+Vz)+i<ygaafp —Hm%)
1| (3G 9C;\ 2
=CEriait <E)(p> +©? (W)

AC1 30, A0 ac2> P

1
K3=C1G(Ee+&7)+ (a(p % +0 = v =1,2. (3.15)

18



3.2 Matrix

With regard to Equations (2.30), (2.31), (3.6)—(3.14), (2.21), (2.26), (2.27), we get

N My—1 7\' Aay—1
et = —pn | M (x_) 2m < ) , (3.16)
C1 \xm Cz XM
My—1 My—1
1 X, > 1M 1 (xn ) 2M
oy = Eary = —p | — [ = +— (= , 3.17
7\,]/[4 1
EnoM = S44M O M=—
Vl(P ”(P (C]XKIM l)
?»244 1
— ( MM 1) (3.18)

€,0M = S44M Onppt = —©O

d Xn Ayl
8\/ glx}HM ! <—M>
N AZM 1
5 (szm 1) <—M ] (3.19)
e xn \"M haae—1
O = —Pn | 7 (3.20)
E1 <XM> ( >

_M
C
CoM = Oom = —Pn l%—? <;C;> gc—M <—>>L Wl] ; (3.21)

7\-1M 1

1M = NimMX, +naagxi (3.22)

2(Aap—1

wir = Kiprxa D i )+ iy x =2, (3.23)

n/2m/2 D+l _  2hay+ Dav+1 _  2hawr+1
/ / KIM( MIM NlM ) KZM( M2M NZM )

Wy — 4
M / / Do+ 1 + Dorr +1

xk1M+7»2M+ 1 XMM-&-MM-&-I
M IN

K3y

dodv, 3.24
Myt +1 ? (3.24)
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where ©, X1y, Xus, Saans, Mivs QJM (i=12;j= ., 8) are given by Equations (1.15),
(1.16), (1.17), (2.13), (3.4), (3.15), respectlvely, and Cio Mine, Xjmr (=125 j=1,2,3;
see Equation (3.15)) have the forms

Aivr—1 Az—iv—1
XIN XIN
Ci - E_;iM < ) - §3 iM ( > 3

XM XM
Moy = — 2 (MivYiv+Yom) Vw9 [ pa
l Ciap™! Saam 0@ \ {;x !

_ Yam O Pn
AN
1 (o ’

. — : pn pn
KzM—E.>2+3lM< ixﬁMA) +S44Ml (C, e 1)]

o]0 b 2

Saap | OV G )|
o PaGoutEn) 19 pn N o pn
3M = c C x?\.1M+7»2M 2 Spam Bcp c XMM ! 8(p C XMM 1

2
L &9 L. 9 ) i=1 (3.25)
saan 99 \ G TH) 90 \ Loy

The normal stress p,, is given by Equation (2.33). With regard to Equation (3.17),
the coefficient pys in Equation (2.33) is derived as

() (1-24) [ 1 1 }
Py =""F M t2n M -wi2a) 020

3.3 Inclusion

In case of the ellipsoidal inclusion, we get Co7y = 0, otherwise we get (u, 1N)x,,—>0 —
+ oo, (g7n) e (61n),_g — Foodueto Ay < —2 (see Equations (3.4),
(3.6)—(3.12)). With regard to Equations (2.28), (2.29), (3.6)—(3.14), (2.21), (2.26),
(2.27), we get [1]-[22]

EQIN = — pnhiy (x_,,) v (3.27)
! v \xmv ’ ‘
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I X, Av—1
EpIN = EgIN = — <m) ; (3.28)

Eun
€nIN = S44IN OroIN = — i <L> x,kl“N‘l, (3.29)
90\ &1y x;‘;{/’N_l
€nvIN = S44INOpyy = —O 83 <$> x,’,‘””‘l, (3.30)
v E.;l anlvm
X, Av—1
O11IN = —Pn <a) ) (3.31)
Mv—1
GoIN = OyiN = — p;;iZN (}Z) : (3.32)
Gy =N X! (3.33)
win = ki T (3.34)
4 n/2m/2
20y+1
WiN=—F—"— UNTEdo d 3.35
w 2hv+1 0/ O/KHNxIN P av, (3.35)

where ©, x1v, s4a7v, My and &7y, E3rn, & sy are given by Equations (1.15), (1.16),
(2.13), (3.4) and ;v K175 (see Equation (3.15)) has the form

_ pnMvyun+Yan) Vv 9 ( Pn )
Nun = — - 5=

&y xiim] 544N 0P \ & 1y !

_ YaN O Pn
— )

Sa41N OV \ &y

Pn 1
Kin = 8&siv 1] Ty
Eun xn 44IN

@2
S44IN

90 \ &y xﬁ{/”v*l

2
?(%)] . (3.36)
VA& XY

The normal stress p,, is given by Equation (2.33). With regard to Equation (3.28),
the coefficient p;y in Equation (2.33) is derived as
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_ () (1= 2uw)
Eiv Ay (1 =) +2un)

PNy 3.37)

22



Chapter 4

Mathematical Model 2

4.1 Mathematical Procedure

Let the mathematical procedure d*Eq.(2.24) /dx2 be performed, and then we get
[11-[22]

2*U, 9?U,
xna—)él+(2_C3) ax% :0, (41)

where ¢3 < 0 and U, = U, (x,,9,V) are given by Equations (2.18) and (2.25), respec-
tively. Let Uy, be assumed in the form U, = x;‘, and then we get

U,=Cx, —|—C2)Cnc3—|—C37 4.2)

where Cj, C,, C3 are integration constants, which are determined by the boundary
conditions in Section 2.3. Let Equation (2.28) be substituted to Equation (2.23), and
then we get

o%u Ju
2 2
- ax%” + 2%, —ax: —2uy = C1 X, +Cox +C3 x5 4.3)

The mathematical solution of Equation (4.3), which is determined by Wron-
skian’s method (see Chapter 10) [23], is derived as

1 :

u, = C1x, (g — lnxn> +Cox,2 +Cs. (4.4)

With regard to Equations (2.1)—(2.4), (2.14)—(2.17), (2.26), (4.4), we get

2 c3—1

g, =-C 3 +1Inx, | +Ce3x,’ 4.5)
1 C

go=g9=Ci (= —Inx, )| +Cx& 1+ =, (4.6)

3 Xn

1 dCy 109G, 1 0C3
€np = 544O0pnp = <§—lnxn> %—i—an %+)C_n%’
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1 dCy 10C; | 19Cs
= =031 . — = 4.8
€,0 = 54400 |:<3 nx,,) a +x av _|_xn > , ( )
2(c1+2 2C
=-G |:(CI302)+(C'102)1HXI1:| +Cl(c1+e2) ez —2c) xS — ;Cz,
(4.9)
+2 C
Op=0p=Ci1&) [cl = (CI—CZ)lnxn] + Gy (c1—caca)xS 4 3)%3‘317
n
(4.10)
— -1, N4
61 =M1 +M2 Inx, +n3x, + 4.11)
n

w=Cix+Cix+Cix3+C1Caxa +C1 Gy s +Cr C3 K

aC1\?  , [9C\? AC\?  , [9C\?

(W) o <W> (%) o (W)

6|06 e 0Cs 9C19Cy | H9C1 G
a(p aV S44

544 a(p a(p oV v

9C1 3G, | 0G0y 9C19Cs | 20C, 9
sas \ 0@ 0@ v v s44 \ 0@ 0@ av av

S44 S44

> , (4.12)

where 0, ¢; (i=1,2,3), s44 are given by Equations (1.15), (2.18), (2.13), respectively,
andm;, ke, %k G=1,...,4;k=1,...,6) are derived as

1 1 aCy aC|
——— ) 2y, 0
=3 |:C1 (12 Y1)+S44 <Y3 0 +V4—=— v >]
1 JC| dC)
= — C —_— PR
n2 { 1('Yl+'Yz)+S44< 30 Tl )}
- 1 0C, 0C,
T13—C2(7103+Y2)+Q (73%+Y4W>
1 0C3 0C;s
T]4C3Y2+—< 90 +Va av>
K — ¢y —cy lnzxn—t—z(cz_ 1) lnxn+7cl +26‘2,
2 9
c2 c1+c _ I
Ky = [%—’—Cl (1—203):| Xy%(c3 1), K3 :é,
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2
K4—C3(01—62) c3— 11nxn+2 ¢l — M x61

3 "o

2

K5 = ;17 K¢ =0,
n
2 1 2(cs—1 1

Xl:lnzxn—glnxn+§, X2 _x}’l(c3 ), X3:X_%’

2 2 21
= 3 =2 s = 5= SO =i @1

n n

The integrals @;, ¥; of the x; = K; (x,), x; =%, (xn) (i=1,...,6), respectively,
have the forms

X\ XM
;= /Kix,%dxn, ¥, = /Xixﬁdxn, i=1,...,6, (4.14)
XIN XIN

where x7y, xjs are given by Equations (1.16), (1.17), respectively. The integrals
are determined by the formulae in Chapter 10 (see Equations (10.10)—(10.12)) and

consequently, we get
2
1 1
_x;’N [(mm _§> +§ }

c—c N2 1

o) = 26 l{xi[l(lnx —g) —|—§
2(02—61) 1 1
“FT x%/, lan—g x[N lnxlN_g

(Te1 +2¢2) (XM—X?N)
27
1 c% (c1 +cz
2¢3+1 [ 2
@3 = (xp —x1v) s

)
_afa—a) |:x63+2 <

D, =

1(1=2¢3) 203+1 2C3+1)

1
_ C3+2 1 _
3 +2 ) XN < nxy o +2)}

2 c3 (2C1 +02) +2 42
C3+2[C N 3 (xﬁ N )

D5 = (xﬁ,j —x%N) , P =0,

3 3
Xy 1 21 x 1 2
Y, = 3 [(lan 1) <lan 3> + 9} 3 [(lnva 1) (1nx11v 3> + 1K

x203+1 203+1
\y2:u W3 = xp — XN
2c3+1 ’ ’
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2 5 5
¥, {x/f,;+2 {3(634_) —lan} —xf]iﬁ_z {3634_ _1anN] } ,

263—1—2 c3+2 (C3+2)
5 5 xC3+l _xC3+l
Y =x2 <g —1an) —x3y <g —1nx,N) W = Mqiﬂm (4.15)

In case of the ellipsoidal inclusion, we get (”nIN)ano — =+ oo, (EIN)anO —
+ oo, (Ov), 9 — Feodueto (Inx,), o — Feoand (x;’), ,, — + eofor
c3 < 0 (see Equations (2.18), (4.4)—(4.10)). Accordingly, the mathematical solutions
(4.4)—(4.10) are suitable for the matrix.

4.2 Matrix

The integration constants Cyyy, Cops, Csps for the matrix (see Equation (4.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)—~(2.32). The boundary
conditions result in the following combinations of Cyys, Caps, C3py. Finally, such a
combination is considered to exhibit a minimum value of the elastic energy W¢ of
the cubic cell (see Equation (2.27)).

Conditions Cyy; # 0, Cops # 0, C3pr = 0. With regard to Equations (2.30), (2.31),
(4.4)-(4.12), (2.21), (2.26), (2.27), we get

2 1 capy—1
S I, + e <§ - 1an) (»%14) ] : (4.16)

1 1 cay—1
3 Inx, — (5 — lan> <)f—;> ] , 4.17)

8nM:l%

P
.10 P 1
cyy—1 n
+ x5 P [W <§ —lan>] ) (4.18)
M
1\ 0 [ px
€10M = S44M OpoM = 9{ <1nxn - §> v (%)
., 0 P 1
C3m 1 n
R T <§1an>1 } (4.19)
M




2 +2
OuM = % {—(CWI 3 CZM) + (C1M — C2M) Inx,
1 x, \ v
+[(cim+cam) c3m —2cam] <§ —lan> (-) , (4.20)
XM
ciy+2c¢
Gw4=Gm4=—£%{—MLg—E%—(ﬁM—Cmﬁmm
1 x, ) v
—(Cm1—qufaM)<§—JHXM> (——> , (4.21)
XM
G1ar = Nia +Nans Inx, +M3prxs 7, (4.22)

a2\ 1—31 ? 3lnxy — 1
WM = <P_> Kiym +Kopm . n_le _|_K4M( cnxi/[] )

C 3_xA/[3M 3x}\/[3M

v ) [ 9 (pn 2 [acfp\]
+S44M{[3(P<Cﬂ O [8\/(@)}}

2 2

Lo (J 9 pn( =3t | L oo ) 9 fpa (1= 3inxy)
saam \ |99 | 3% xﬁM71 av | 3¢ x;/[stl
L Xam i( ) 9 | pa(3Inxy —1)

saapr 09 \ € ) 99 3]

x4 ®> 0 [ p,\ 0 pn(3lnxy —1)
+ s\ F )l I
sy OV I\ L) ov | 3gxim!
/2 m/2

2
Wy = 4/ (&> D1+ Doy l_glan +(D4M(3inxiwl_l) do dv
3xy 30y
/2 /2 ) )
4 ()] o5 (%)
= [ [ | = ()] +0r | = (L) Vaga
+S44M// IM{{B([)(C)] AP ¢ P av

/2 /2

2
IR ({a?p lWH ) dg dv
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2
1-31
lt | )
Xy

4 /2 ™/2 3
+—/ /‘PzM 0’| < —
S44M T ov

s R 9 [ pn(Blnxy—1
] e (2 [ o
Saam o O\C/do| 3(x;;
g PR 3 3 [ Ginxy—1)
> 0 (pn\ 9 | pn(3lnxy —
+S—44M 0/ 0/ Vi © av<c> v l—%)@@”‘_l ]dq)dv, (4.24)

where O, xy, saqn, civy (i=1,2,3) and Xjur, X v Piv, Wi (j=1,2,4) are given
by Equations (1.15), (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and , ;
(i=1,2),m;m (j=1,2,3; see Equation (4.13)) have the forms

C=0-0 G —lan> » Cr=[(ci+cam)esm —2com] <xl—N> CW_I,

XM
2(cim+2com)
Co=— — 3

1 [ pa ('Y2m - 2'YIM) 1 |: 0 <pn> d (pn>:| }
=— - + — (= |+ — | & ,
Nim 3 { T Saant V3m 99 \ Yam v\
Pn(Yiv+vom) 1 { d <pn> J (m)]}
= + — | = |+ — | & ,
Nom { C Saan Y3m o\ T Yam v \ T
N3y = P (v esv + Vo) <l — lan> + Vsu i l Pn <l — lan>]

+ (c1m —cam) 1HX1N] ;

CMxX;Mil 3 Saam a(l) CMx;;M71 3
Yam O Pn 1
— =—1 . 4.25
saant OV | Ly <3 an)] (4.25)

The normal stress p,, is given by Equation (2.33). With regard to Equation (4.20),
the coefficient pys in Equation (2.33) is derived as

1]1 1 cam—1
oM = [— —Inxgy — (— - 1an> <’ﬂ) 1 . (4.26)
1|3 3 XM

Conditions Cyys # 0, C3pr # 0, Cops = 0. With regard to Equations (2.30), (2.31),
(4.4)-(4.12), (2.21), (2.26), (2.27), we get

2
ey = 20 (——i—lnxn), (4.27)
Cxar \3
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1 /1 1 /1
E(PM = €M = — Zn |:X—M <§ —lnxn> — ; (§ —lan>] s (428)
1 d 1 0 [p,(1-31
EneM = S44M OnoM = — (‘ _lnxn) % ( P > +— [w] s

3 QXM Xn a(P 3§
(4.29)
1 0 ( pn 1 9 [pn(1—=3Inxy)
= —_ | i __ YT AM)
€n0M = S44M OpoM @{ <3 nxn> 90 (CXM> Xn 00 { 3¢ )
(4.30)
112 2 2 1
Ot = Pn { {(CIW"CZW+(C1M—CZM)Inxn] _ G < —lan> } ,
C XM 3 Xn 3
(4.31)
CoMm = Opm =
Pn | 1 |ciu+2com civ (1
¢ {XM [ 3 (c1m CZM)lnxn} - <3 1an>}, (4.32)
Gim = Ny +Maw Inx, + n;M7 (4.33)

n

1 2 3lnxy — 1
BV e (= —lnxg ) + Ksu (3Inxy — 1)
3 3xM

(@l

(el o i)

Xs_Mi( Pn >i{pn(3lan—l)]
saam 00 \Cxpr ) 09 3¢
xsm©* 3 [ pp \ 9 [pa(Blnxy—1)
* Sa4Mm E(CXM>E 3¢ 7 39
/2 w/2
q)lM (I)5M(31an—l

1 2
—— + D3 (g—lan> + f| dodv

Wy = 4//<pn>

3xp
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4 e o (mn \1? o222 \T
] [ ()] o ()] o

g P p) 1-31 2
+—/ /"P3M{ [pn( — an)J} dodv
S44M L) 3¢
0 0
n/2 /2 2
vt T (3 v
Sa4M ov 3C
0 0
n/2 /2 3 ;31 3
Pn Pn nxys —
+—/ /‘P ( )—[ } do dv
S44Mm M e \Cxur) 09 3¢ ¢
4 o 9 3 [pa(31 1
+—/ /‘P5M®2 (p” )—[p—”( il )} dodv, (435)
S44M0 5 CXM ov 3C

where ©, xys, saqn, civ (i=1,2,3) and Kjur, X jms Piv, ¥im (j=1,3,5) are given by
Equations (1.15), (1.17), (2.13), (2.18) and (4:13); (4.15), respectively, and {, Nz
(i=1,2,4; see Equation (4.13)) have the forms

1 |2 2 2 1
. [M o) m} L 2eaw (- _1an) ,
XM 3 XIN 3

L (pa(yomr—2vie) , 1 [ 0 (Pn ) d <pn )}}
=— + |+ Yamr = ,
Nim 3{ Con Saant V3m 5= 9o \ T Yamr v \ T

po(vtom) |1 {%Ma?p <C_,}:;4> +Y4Ma <Cx ﬂ

Nom =

Cxm Sa4M
n4M:pnYZM(1 —3lnxy) | m 9 [pa(l —31an)]
3¢ Saam 0@ | 3¢
Yarr O [ pn(1—31Inxy)
Sa4aMm av { 3C ' (4~36)

The normal stress p,, is given by Equation (2.33). With regard to Equation (4.28),
the coefficient pys in Equation (2.33) is derived as

Pm = é |:xju <; lanN> 7% (; lan>:| . (4.37)
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Conditions Cyy; # 0, C3p7 # 0, C1pr = 0. With regard to Equations (2.30), (2.31),
(4.4)-(4.12), (2.21), (2.26), (2.27), we get

C3mM— 1
gy = — 213 < > (438)
Cxm
C3Mm
Eolt = Eorr = 20 {1 - ("— } , (4.39)
Cxp xXu
1 0 P Jd (p
s === 50 () -5 (8)] e
Jd [ p Jd (p
€40M = S44M OnoM = — x [erwa— <C ;’}M> “ v (%)] ; (4.41)
oo | s (cim+cann) —2canm (" 2can
—_ & 4.42
B Cpa e comenu (% \MT e
CoM=0pyy = — & | —————— | — — ; (4.43)
g XM XM Xn
Gar = Mapgre ! 4 Y (4.44)
Xn
P Kom
B E 263M o X/;M
X 2M {

% pcw *92{ (w)]}
W{[; ) > 1
Bt (i) 5o ()] oo

_ Xem @ i
SaaMm E)(p cw 8
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n/2 /2 » 5 ®ay; Dy
e T2 (3 25)
0 0 M
n/2 /2 5 2
4 d Pn 2 ) Pn
v ] [l ()] o5 (o)} o
n/2 /2 5 5
4 9 (P 22 (P
| O/%Mﬂa(p(c)] o5 (7)) }d“"”
/2 m/2

ST Tl )R E) w3 ) )] e
(4.46)

where ©, xyr, saqm, civ (i=1,2,3) and Kjug, Y jms Piv, Wine (f=2,3,6) are given by
Equations (1.15), (1.17), (2.13), (2.18) and (4.13);.(4.15), respectively, and {, My
(i=2,3; see Equation (4.13)) have the forms

1 C3m
C=— {[C3M(01M+02M) —2coum] <xl—N> +2C2M}7
XIN XM
S (Yimesm +vam) o1 o [ pa d [ pn
3IM Cxcw Saans Y3m a(p CCW 'Y4Mav XfM )
2Ll (omi )
= +— — + . 4.47
T S Mg U ) T (g A

The normal stress p,, is given by Equation (2.33). With regard to Equation (4.39),
the coefficient pys in Equation (2.33) is derived as

o R

Conditions Cyy; # 0, Cops # 0, C3pr # 0. With regard to Equations (2.30)—(2.31),
(4.4)-(4.12), (2.21), (2.26), (2.27), we get

&M = — % {Cl (%Jrlnxn) Cocamany ™™ 1} > (4.49)
1
E(PM =Egp = % |:C1 (g — lnxn> + C2X’§3M—1 + %] y (450)
n
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1 9 (paC1 c3— d (pnC2
8n<pM—S44M<5mpM—<3—lnxn>< r )+xn3 la@( 7

¢
19 PnC3
— = 4.51
* Xp 0Q < g ’ @.51)
— _ 1 a pncl c371 a pnCZ
EneM—S44MGneM—G)K§—lnxn E( 7 )+xn > 7
19 anS
— 5= 4.52
* Xp OV ( ¢ ’ (4.52)
2(cim+2c¢
Onm = — % {Cl {M—i— (clM—czM)lnxn}
2
— Cal(crm+ean) e —2com] ' + czng}, (4.53)
n +2
CoM = Oom = % {Cl [M —(cim—cam) 1nxn}
+ Ga(crm—camesn)xp ! + clf—CS} (4.54)
n
O1v = Niar + Mo In + Mgt 4 n);ﬂ, (4.55)

n

2
e (p_c”) (KlMC%—FKzMC%“‘KWC%"'K‘WC‘ Ca+¥suCiCs +K6MC2C3)

2R e8]

{2 ()]

RCElwRe
+% Z% <pn§§1)%<pn€3;2>+®2% (PnCQ) %(Pn;.a):
+ Lo & (") % (") +®2§ (") o <pncC3>:
e bo () 5o () o () 5 (7))




WM:4/ / <&> (¢1MC%+¢2MC%+¢3MC%+‘D4MCICZ

+ D5 8183 +CD6MC2C3) dodv

+4n//272w 'a(pn§1>'2+®2 -a<p”C1>_2 do dv
Saam ) M e\ & /| Lov\ € /] ?
n/2 /2 _ 12 _ -2

4 d PnCZ 2 J <Pnc2>
v N7 il iy ¥ 0 B
+S44MO/O/ 2M{_a(P< g > o LoV ¢ /] Qv
n/2 /2 ~ 12 _ -2
T i pnCS 2 i pnC3
544M0/ O/T3M{_a@< g > o _3V< ¢ /| Qv

. o () o (72)| aoav
] vl (72) 36 (722)
| vl (72) 56 ()
2 (m2) 2

pn§3
Bv( T >] dodv, (4.57)

where ©, Xy, Saars, civ (1=1,2,3) and Ky, Yine; Pine, Yiur (i=1,...,6) are given by
Equations (1.15), ( (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and (;, {,
Niv (i=1,2,3; see Equation (4.13)) have the forms
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2 2 1
=c3mXy o, Ga=5+Inxy, G3=-—x +Inxy+esp | 5 —Inxy ||,
| capy—1 1 Cim 1 1
3 M3 3

2 2 2 1
= e [P0 ey caman] - 2R (1) !
IN

2eomxyM) (2
- {[(01M+C2M)03M—2czM]x1c]§,M T4 ZXM—} (§ +1an> ,
IN

nlM:%{pnCI('YZAé—zﬁM)+s4im [Y i (PnCC1>+y4 av (PnCC1>]}7

e [”acp (") ”Mav v ()l

S mCz(szc_z +Yom) +$ {Y i (png;z) v (pnCC2>] ’

o PnC3’Y2M 1 PnC3 d pnC3
= P g () e (22| (439

The normal stress p,, is given by Equation (2.33). With regard to Equation (4.50),
the coefficient p,s in Equation (2.33) is derived as

M= é {Cl <1nX1N N %) —Gaxf ! - E] : (4.59)

XIN
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Chapter 5

Mathematical Model 3

5.1 Mathematical Procedure

Let the mathematical procedure 9*Eq.(2.23)/dx2 be performed, and then we get
[11-[22]
9 Uy ) a2un Xn U,
o, 51

g ox3 R oxz  sas(cy+cp) Oxy G.1)

where s44, ¢; (i=1,2,3) and U, = U, (r,¢,V) are given by Equations (2.13), (2.18)
and (2.25), respectively. With regard to Equations (2.24), (4.2), we get

U,

X
" ox,
where C|, C,, C3 are integration constants, which are determined by the boundary

conditions in Section 2.3. Let Equation (5.2) be substituted to Equation (5.1), and
then we get

=3 (Crxn +Coxy +C3), (5.2)

3 uy 5 9%uy

" ox} " oxZ

The mathematical solution of Equation (5.3), which is determined by Wron-
skian’s method (see Chapter 10) [23], is derived as

G+ 4x =C1x + xS +Cs. (5.3)

4 : 1
u, = C x, <§ — lnxn> +Cox+Cs (5 —i—lnx,,) . (5.4)
With regard to Equations (2.1)—(2.4), (2.14)—(2.17), (2.26), (5.4), we get
1 C
e =Ci (g—lnxn> +Cresxe T 2, (5.5)
n
4 G (1
go=g9=Ci (2 —Inx, ) +Cx& '+ = ( ~+1nx, |, (5.6)
3 Xp \ 2

4
€np = 544 Opp = <§ — lnxn> % +x, 20 +x
n
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1 | 190 1(1 >ac3
2

—+lnx,, %,



_ _ 4 aC o 18C2 1 /1 dCs
8,,9—S44G,,e—®[(§—lnxn> v +x v +xn E—i-lnx,, vl (5.8)

-7
c,=C {cl 2 _ (c1 —cz)lnxn} +C(e1+e)es —2e]x™ !
C
+ 2 (e1—2er0nxy), (5.9)
n
dc) — o1
6o =09 =Cj —(c1 =) Inx, | +Ca(e1 —c2¢3) x5,
C -2
) <Cl 2 e lnxn> : (5.10)
Xn 2

+1M;51n
— 1+ I 3G W .11)
n

W:C12K1+C22K2+C32K3+C1C2K4+C1C3K5+C2C3K6

x &162832 x| (90 g2 (0G)
S44 a(p ov S44 a(p ov
L1 [(3G) g (20N 1 (2C10C: | g0C acy
s44 | \ 0@ oV S44 \ 0@ 0@ ov dv
1 (3C19C | iBC10Cr) | 16 (3C0C: | 020Gy
+S44<8(p Ery +6 ov ov sas \ 0@ 0@ © ov ov » 5:12)
where O is given by Equation (1.15), and n; x;, x; (i=1,...,4; j= .,0) are
derived as
B 1 4 dCy oCy
m=3 [Cl M +4'Y2)+a (73%‘9"Y4w>] )
B 1 dCy aC
n= [Cl (Y1+Y2)+S44 <Y3 30 T, ﬂ
1 15[8)) ¢,
N =CMe+1)+ < ) +Y4 av>
- 2 L d0Cs 0C;
“4—C3<7‘+2)+2s (’“a T Bv)
1 aC aC
ﬂs—C3Y2+— <Y3 30 =y 8v3>
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— — 17
_a2—a lnzxn + S Inx, + ata

18
2
cz(cr+c
Ky = 73( 12 2)+cl(1203):| 2es= 1)
r ¢y Inx, _a Inx, c—2c¢
3 x2 x2 4x2

c3 (e — 701)] Lol

Ks=c3(c1—c) x5~ 1 Inx, + |:201 + 3 Pl

Inx, 4ci—c

b

Ks = (301 —Cz) . 3x
n n
201(1—63) €3~ zlnxn+(czcg—c1) B

8 _
¥1 = In’x, — 3 Inx, + 2es=1)

?7 X2:xi’l 9
lnzx,, lnxn 1 8 1 1
L= T Tag M TR
4 5ln 21n?
Xs =3+ 3xx”— 2)“”, %6 =252 Inx, 4152, (5.13)
n n n

With regard to Equations (4.14), (5.14), we get

? 2
Cc) —C| 1 i . 1
D = 6 {x%/[ [(lnx —§> +§ —X;N [<1nx1 —g) +§ }
Ccl—C2 1 1 17¢1 4+ ¢
+ 9 |:x;\/[ (hlxM_ §> x]N (IHX]N — §>:| T < - x%]\[)
1 A cr+o
¢2:263+1 |: 3( : )+c1(1_2c3) ( 20341 [2]\?‘3—&-1)7
O3 = [XM <ln2xM—21an+2) — XN <ln2xlN—21nx]N+2)}

c—2c¢
4

clcr—c) [ esn2 1 342 1
Oy= """ |x13 | —_ ] =X | -
4 o ) |:XM (an . ) XN nx;y C3—|-2

1 c3(c2—Ter) +2 +2
+c3+2{201+ 3 ("2 =43"%)

3c1—c 1 1 4ec1—c
D5 = 12 z[szw<lan—5> —x1N<lnx1N—§>]— 16 2<xM x%N),

2c1(1=¢3) [ eyt 1 Lot 1
D= 2T et () ! gy —
6 c3+1 M v c3+1 Iy XN c3+1
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€263 —C1 (XC3+1 _xC3+1)
)

c3+1 M N
3 3
1 17 1 17
\Pl = x}_M |:(1an—3) <1an— §> +?:| —XITN [(IHX[N—?)) <11’1xl]v— g) + ?:l 5
v, x}%/[CH-l _x[2]63+1
2¢3+1 ’
Y3 =xpInxy (lan — 1) —xn Inxpy (IIIX[N - 1) + S(XM44_XIN),
2 4ez+11 5| 4e3+11
\P __ = C3+2 7_1 _ C}Jr 7_1
YT 12 {xM [3 (c312) an} TN |\F(est2) N
263, —x%) 5 1 1
\IIS_%—FE X3 lan_E —x3y ( Inx; —5
1 1
— xﬁ,, <1n2xM— Inxys + 2) —|—ng <1n2x1N —Inxy + 2) ,
2 1 1
¥, — c3+1 1 _ _ c3+1 1 _
6 ol [xM nxys —C3+1 Xriy nxy ot
1 +1 +1
. (xAC; —x& ) : (5.14)

where x7y, x)s are given by Equations (1.16), (1.17), respectively. The integrals
(4.14), which consider Equation (5.14), are determined by the formulae in Chapter 10
(see Equations (10.10)—(10.12)):

In case of the ellipsoidal inclusion, we get (uun), o — £ o, (&), o —
+ oo, (Ov), 9 — Feodueto (Inx,), o — Feoand (x;’), ,, — + eofor
c3 < 0 (see Equations (2.18), (5.4)—(5.10)). Accordingly, the mathematical solutions
(5.4)—(5.10) are suitable for the matrix.

5.2 Matrix

The integration constants Cyys, Cops, Csps for the matrix (see Equation (4.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)—~(2.32). The boundary
conditions result in the following combinations of Cyys, Caps, C3py. Finally, such a
combination is considered to exhibit a minimum value of the elastic energy W¢ of
the cubic cell (see Equation (2.27)).
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Conditions Cyy; # 0, Copr # 0, C3pr = 0. With regard to Equations (2.30), (2.31),
(5.4)-(5.12), (2.21), (2.26), (2.27), we get

1 4 C3M71
& = — % lg—lnxn—cwf <§—IHXM> <;Tr;) 1 ) (5.15)

pn |4 4 Xn a1
E(PMZSGM: — Z lg—lnxn— (g—lﬂXM) <E> s (516)
_ _ 4 a Pn ciy—1 a Pn 4
EnoM = S44M OnoM = (hlxn - g) % (Z) +x,M % Cx]f;M71 g —Inxy )
(5.17)

d 4
cay—1 Pn
+ xCm % [ijf;wl <§—lan>] }, (5.18)
Teopy—c
OnMm = % {M"F(CIM_CZM) Inx;,
4 Xn cam=l
+[(CIM+02M)C3M—202M] (g—lan> <—) , (5.19)
XM
Ciym =Ny + M2y Inx, +T]3Mx,f3M_1, (5.20)
_ _pn|Com—4cCiy
OpM = Opm = ? f + (ClM_CZM)lnxn
4 C3M_1
+(C1M—C2MC3M) <— —1an> (x—n> ‘| , (5.21)
3 XM

2 2
4—3In 3Inxy —4
Wy = (Pn) Kim +Xom B jClM + K4M( z xi/[l )
¢ 3y 3xy

5@ ek
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Xom 9 | pn(4—31Inxy)
T W V30 | 27w T
S44p L) 3CxM

? 3 [pn(d=3mx00] )’
Frofaiegm]))

X4M 0 (p_) pn(3lnxy —4)
S44M a(P C 3§xCSM T s o1
Xw© 3 (pn) 3 {pu(Binxy —4)
+ S4ap OV <C> a\; 3C>XC3M 1 ) (5.22)

) 2
4-—-31 Dy (31 —4
D+ Doy n_xM + a nxiw ) do dv
3 c3y—1 cyy—1
Xy 3x,;

)
A Tl B o
4 }2

=

|

~
—
LS} \
R
ST

99
g P) 431 ?
+—/ /‘P2M®2 9 | pudd= 31nvir) an) de dv
S44M.O ov 3

0

4 n/2 m/2 5 ] a1 N

_ DPn Pn nxy —
+ //T _< ) — 1| dodv

S44Mm T i oL} C a(p SC cay—1 ¢

4 n/2 m/2 5 N - y

— 2 9 (Pn) O P OIXM )
+S44MO/ 0/ i © 8v<§>avl 3] ]dwdva (523)

where O, xy, saan, civy (i=1,2,3) and Xjur, xjms Py, Wi (j=1,2,4) are given
by Equations (1.15), (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and {, C;

(i=1,2),m;m (j=1,2,3; see Equation (5.13)) have the forms

(= cz_z;l(__me) C1 = [(cim+can) canr— 2CZM]<?A];>@M_1’

cim—Tcom
C= — - (c1m —cam) Inxgy,

1 pn(YlM+4y2M) 4 |: d <pn> d (pn>:|}
= = + — (= |+ )| ¢
Nim 3{ 4 Saant V3m 9o \ Yam v\ T
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Pn ('YIM“F'YZM) 1 |: d (pn> ) <pn>]

pu— — - + — T 3

Naom C Saant Y3m 3o \ C Yam v\ T
Vv 9 [ Py (g B me)]

Mam = Co (Yimeam +Yam) + s 90 | Cao T \3
Yam d Pn 4
— ——1 5.24
The normal stress p,, is given by Equation (2.33). With regard to Equation (5.16),
the coefficient pjs in Equation (2.33) is derived as
1|4 4 AR

=—|=--1 —(=-1 — . 5.25

Pm q [3 nx;N <3 an) (XM) ( )

Conditions Cyys # 0, C337 # 0, Copy = 0. With regard to Equations (2.30), (2.31),

(5.4)—(5.12), (2.21), (2.26), (2.27), we get
1 1 xur (4
Eart = — % K5 +1an> (g - lnx,,) —A: (5 - 1an>} , (5.26)
n 1 4 X 4 1
oM = €oM = — % |:<§ + lan> <§ — lnxn> — f (g — lan> (5 + lnxn>:| ,
(5.27)
0 1
E€noM = S44M OnoM = <lnxn - 3> % {% <§ + lan>:|
0 [ pnxuy 4
— 1 — |— (1 —= 5.28
o () g (m3)| o
4\ 0 [pn (1
€M = S44M Onom = O { (lnxn - 5) % [% <§ +1HXM>:|
1 /1 0 [pnxm 4
— | =+1 — 1 —= 52
+xn(2+nx")8(p{ z XM =3 o (5.29)
1 -7
OuM = % { (— + lan> {M — (C]M — CZM) lnxn:|
4
Ll (— . 1an> (clM—ZCZMlnx,,)} , (5.30)
Xn

43



Mapr + N5y Inxy,

Ciym =Ny +Now Inx, + BEE— (531
n

1 dein —
CoM = Ogpr = % { (5 + 1HXM> {w —(c1m —cam) lnxn:|

4 _
FIMT gy ) (EM2M iy, ) Y, (5.32)
Xn \ 3 2

p 2 1 4 2
Wy = (5) lKlM (2 —I—ll’lxM> —|—K3Mx%/[ <3 — lan>
1 4
+ Ksprxm 5 + Inxys 37 Inxps

(&l Gl o G2 o)

([ G} oo (3 o (-l

[ ()] 22 ()

i Glile G o
rums [ ] (2) fouoome) o (3

1 4
+ Dsyx00 (5 +lan> (g — lan>} dodv

4 n/‘2 /2 3 | 5
“aa] [l Gl G}
S44M0 5 8(p C 2




where O, xy, saqm, civy (i=1,2,3) and g, X v Piv, Win (j=1,3,5) are given
by Equations (1.15), (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and {, {;
(i=12),mm (j=1,2,4,5; see Equation (5.13)) have the forms

- C;<2+1an> c1<——1an) cl_ (clM 2o nxy),

cimy—"Tc
Co=xu {M —(c1m—cam) IHXIN} ,

__ pn(nut+4vu) (1 4y3m 0
Ny = 3¢ 2+1 3S44M8(p C 2+lan

dyay 9C [ pn
N [C (2“an”

P (Yive +Yomr) (1 > Yam 0 { ( )]
= P OWEM) (2 gy ) 4 B OB
v ¢ Saam 09 | G \2 e

Yam O [pa
+ — Saant N |: T (2 +1HXM>:|
_ PnXm (2Y1m + Yam) 4 Vsm_ 0 [Pnxyu 4
Nay = 20 <IHXM 3 + Ssan 90| C Inxy, 3

Yart O [ puxy 4
B e (T
+Z&MME)V[ ¢ <an 3>]
nsyy = PrMam (lan—f> +Y3_Mi [pan (lan_fﬂ
g 3) samop| G 3

Yam O [Py _4
T av[ 7 (1an 3>] (5.35)

The normal stress p,, is given by Equation (2.33). With regard to Equation (5.27),
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the coefficient pys in Equation (2.33) is derived as

1 1 4 xy (4 1
Py = z |:<§+1an> <§ —1nx1N> o <3 lan> (2 +1nx1N>] . (5.36)

Conditions Cyys # 0, C337 # 0, C1yr = 0. With regard to Equations (2.30), (2.31),
(5.4)—(5.12), (2.21), (2.26), (2.27), we get

1 C3m
€M = — % [C3M (5 —anM) x,fW_l — xXL] , (5.37)
n

pnl /1 oM
S(pM =& = — f |:<2 —I—lan) x;3M7 — ? <2+lnxn>] s
n

(5.38)
1 1 d pnx;/;M
- ——(Z11 2
€noM = S44M OnoM %, (2 + nx,,) S < ¢
1
xgm1 7 [pcn (§+IHXM>:| ) (5.39)
! 3 ("
€avM = S44M Opyyt = © o 2+1nx,, P ¢
d [pn (1
— ot = | 2 (4 5.40
st [ (3 ome) | 440
x;w*l
OnM = Pn C
1 XM
X [C3M(CIM+CZM)_2C2M} E+1HXM —x—(clM—Zclenxn) ,
n
(5.41)
OpM = Oom =
cay—1 1 2
- % {(CIM_CZMC3M) <§+lan> —%4 <w+cw lnxn>] ,
(5.42)
|
Oy = me;sM—l + w, (5.43)

Xn

2 2
1 , . 1
Wy = (%) [KzM (E + 111XM> +xaarxgy M+ Kep Xy <§ + lanﬂ
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B G o [ o)

x3m | 9C3um <anffM>2+®23C3M (angijy]

Saar | 0@ C g

d
C3m
: ’“M@{i [ (i) 55 ()
S4aM g

30
{ < anMﬂ ai(pnxﬁw)}’ (5.44)

1
Dy (2 + lan) + (I)3Mx263M

1
+ Dgprxy M <§ —}—lan)} do dv

s PP [ 1 2.0 2
4 A p(l 29 [P
v ] [l o] @ [ (5 mm)] favas

0
/2 ey 2 ey 2
—l—i// » CI&Y (PnXM > +®23C3M <pan > do dv
S44M0 ) 9 g ov g
n/2 m/

.2 xC3m
] oot 2 o) (")

0 [pn (1 9 [ paxyi"
+8v{§< +1n M>]5< . >}d(pdv, (5.45)

where O, xy, saam, civy (i=1,2,3) and g, Y v Piv, Wi (j=1,3.5) are given
by Equations (1.15), (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and , {;
(i=1,2), m;m (j=3.,4,5; see Equation (5.13)) have the forms

C_&<2+IHXM> Cuxg ! g =M
XIN

1
Cz =XM [C3M (01M+02M) _202M]xlcl\3/M ’

CiM — 26’2M lanN)

Ny = Py (mesm+vam) | Yam 9 <p,,xj‘ij>
g Sa4rr 0@ ¢
L Yam 9 (pnxACjM)
441 OV d ’
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Pn 2y +vom) (1 Ysu 0 [pn (1
Nan 2C (2 Mt a9 | T \2 M
1

Yar 9 [pn (1
+2S44M8V[§ <2+1an>:|,

_ Pt (1 Ysu O [pn (1
Nsy = C <2+lan) +S44M 9 {C <2+lan>]
Yam O [pn (1
+ Saang OV { z <2 +lan>} . (5.46)

The normal stress p, is given by Equation (2.33). With regard to Equation (5.38),
the coefficient pys in Equation (2.33) is derived as

1 1 can—1 ijM 1
Py = Z |:<§ +lan) x[;/M — Xy (E +Inxy | | . (5.47)

Conditions Cyy; # 0, Copr # 0, C3pr # 0. With regard to Equations (2.30)—(2.32),
(5.4)-(5.12), (2.21), (2.26), (2.27), we get

gnM:—& Ci l—lnxn +C203Mx,f3M_1+9 ) (5.48)
¢ 3 Xn
n 4 c — m 1
8(pM=€eM=—% |:C1 (g—lnxn>+C2xn3M 1+C;—n[<§+lnxn>]7 (5.49)
_ _ i_ i pnCl CSM*IE pnc2
FroM M Ol = Ks 1) a<p< ¢ )*"" o\ ¢
1 1 d PnC3
w55 (72 20
4 3 [ pn (e
s o) 3 (53 (5)
1 1 d Pn§3
S HOS
" -7
Ot = — %{Cl {M_(CIM_CZM)IHJ%]

. Camr (c1m —2copm Inxy,) }

+ 82 [(C1M+CZM)C3M7ZczM]xg3M*1 -
n

(5.52)
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n deipr—c
Ogm = Opm = — % {Cl [M— (CIM—CzM)lnxn]

_ cim—2com
+ Cacim—camesn) XEM ™+ Gy <f +cim lnxn> },
(5.53)

+ Inx
X N4y + N5y Xy

y—1
O1ym = Nim + Mo Inxy, +M3p73 P
n

, (5.54)

2
e (%) (18 2ur 83 + anr €3 - anr G o K501 3+ Kewr £ G )

%{ o ()] e ()] 2}
ECSIRIECS))
e e st

) 2(08) w2 ()3 (5]

e 7 (") o (") +@22>av (") o ("))

(") s () o (7)) 5 ()] e
Wy =4 72 7/2(&)2 (q)lMCz + Doy G + Dapg 3

J C_, 1 2 3

+ Paar G182+ Psur 183+ Ponr §2L3) dg dv

s O (pnGi\1* o2[2 (PaCi\T?
vl [ ()] <o [ ()]} o
n/2 /2

] [ R EE)] + [f (E)] fse
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+®2a% (PnCC2> a%(mg@)] dodv, (5.56)

where O, xy, saam, civ (i=1,2,3) and Kjng, % v Piv, Wi (j=1,3,5) are given
by Equations (1.15), (1.17), (2.13),(2.18) and (4.13); (4.15), respectively, and {, {;
(i=1,2,3),nm (j=1,...,5; see Equation (5.13)) have the forms

_ 1
G =xi ! [CBM <E+IHXM> - 1} ;

4 1 1

Cz =3 —Inxy, — <E +lan> (g —lan> ,
1 4

Camr = x3;" {g —Inxy —c3m <§ - lan)} ;

cay—1 |:CIM - 7C2M

:xM 3 —(C1M—02M)lanN:|

1 1 _
+ [(c1m+com) ez —2cam] <2+lan> <3—lan> x,cﬁ,M !

4 c3mxy
+ (cim—2coy Inxgy) | = —Inxy
3 XIN
-7 1 _
- {C3M [M —(c1m—cam) lnxm} (E—HHXM) x]f,;M !
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+ [(c1m+cam) c3m —2coum] ( —lan> ' !

" (cim—2con Inxpy) xy M (l _lan>}
XIN 3

‘“M:_png(wglcﬂyzm‘ssjw{ %( C1>”4Maav (pncCIﬂ’
. :pncl(vlngm S4iM {YW (p >+ Yo o <pn§1>}’
n3M:_PnC2('ylM£3M+Y2M) S41M[ <pnf_,z> 4Mav <pnCCz>}’
mM:_pnCs(Z;héﬁsz) 2S44M{ s PnG ) (pn;z)}’
v 2 o o () oy (m@@)}_ 637

The normal stress p,, is given by Equation (2.33). With regard to Equation (5.49),
the coefficient pys in Equation (2.33) is derived as

pm = ! {Cl (— —IHX1N> + x4+ Somt (l +1le11v>} . (5.58)
g xiv\2
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Chapter 6

Mathematical Model 4

6.1 Mathematical Procedure

The differential equation (2.23) is transformed to the form

%u, duy,
Up = —s44(c1+c2) <X£W4‘2xn87—2un), (6.1
n n

where s44, ¢; (i=1,2) and U, = U, (x,, 9, V) are given by Equations (2.13), (2.18) and
(2.25), respectively. Let x, [0Eq.(6.1)/dx,] be performed, and then we get

U, 3 Pu, ) o%u,
S _ ghniy . 2
3 sa4(c1+¢2) <x,, P +4x;, 32 (6.2)

Let Equations (6.1), (6.2 be substituted to Equation (2.24, and then we get

3 2
x; axz’l +(4—C3)on;—203xna—x:+263un =0. (6.3)

Let u, be assumed in the form u, = xZ‘, then we get [1]-[22]

C
tn = Crxy + G + 3, (6.4)

where ¢3 < 0 is given by Equation (2.18), and C}, (,, C3 are integration constants,
which are determined by the boundary conditions in Section 2.3. With regard to
Equations (2.1)—(2.4), (2.14)—(2.17), (2.26), (6.6), we get

‘ 2C
&n=Ci+Cexg -2, (6.5)
xl’l

. C
ep=t0=C+Cx 47, (6.6)

n

aC, .. ,0C; 193G
€ = $44 GO = e S 4 6.7
no S44 noQ a(p +xn a(P x;l a(p7 ( )
oC, 410G, 1 9Gs
€19 = 54409 = © Wﬂff IW Sov (6.8)
n
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2C5(c14+2¢)

6, =Ci(c1—c2) +C(e1+e) ez —2exp ! - o ; (6.9)
n
Cy(c142c
6o =0¢=Ci(c1 —c2) +Ca(c1 —crc3) X, 1—!—%, (6.10)
n
o =" +mx !+ 2—33 6.11)
n

K K
W= K| + Ky x & ”+x—2+1<4x,§3*1+x—§+1<6x53*4, (6.12)

n n

where O is given by Equation (1.15), and 1, x; (i=1,2,3; j=1,...,6) is derived as

—amrm) (% g X
m=6M+" St V3 90 48\/

1 JC BC
ﬂzzcz(cherYz)Jr;( 2+ 2)

1 aC
ﬂs—C3(Y2—2Yl)+< =+
S44

8C3>
(5o )

3 (c1 — ) C% 1
K= 2 + S44 d
(c1 +02)C§ 1 15[6)) aCy 2
pr— —— 2 —_ [ P
K2 |: 5 +cr—2c03 C2 + Saa 90 v )

1
K3 —3(01+262)C3+—

@%)
K= (c1—e2) 2+63) Q1O+ — <

2 (9C; 9C; o? dCy %
00 0¢p av ov
2 (BCZ 0C3 @282@)

(o )

9C G A0, ac2>

¢ 0p oV oV
su

[202(1—03)—61}(72(?3—!—— 30 90 N v (6.13)

6.2 Matrix

The integration constants Cys, Copy, C3pr for the matrix (see Equation (4.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)—~(2.32). The boundary

54



conditions result in the following combinations of Cyyy, Caps, C3py. Finally, such a
combination is considered to exhibit a minimum value of the elastic energy W¢ of
the cubic cell (see Equation (2.27)).

Conditions Cyys # 0, Copr # 0, C33r = 0. With regard to Equations (2.30), (2.31),
(6.4)—(6.12), (2.21), (2.26), (2.27), we get

C3M71
ey = — 20 l1c3M<x”> ] (6.14)
¢ XM

Pn Xn cam—1
e = == 22 1= (2) 7). (615)

9 ([ pn 1 0 Pn
/ _ _ c 1
EnoM = S44M OnoM = — l—a(p <_C > —x,,3M _8(p (Cx,ij_l>] ) (6.16)

d [ pn C3M~1i Pn
(g (eg)| e

Pn Xn cam~1
ou == 7 ey — cavr — [ean (e + cam) — 2¢om) <—> ; (6.18)

XM
Pn Xn el
OoM = Opy = — 7 cim—cam — (¢1m — camC3m) (a) ) (6.19)
O1vr = MNias+ Marxe !, (6.20)
war = Kipg + Kapgxe Y +icapxg Ml (6.21)
n/2m/2 § §
M wm 2esytl _ 2esu+l
—_— ) (ot gt
M= //[ xM Xy +2CM+1 x XIN
Kam +2 M2
m(x;y xS )] dodv, (6.22)

where O, xy, xpr and sqaps, cing (i=1,2,3) are given by Equations (1.15)—(1.17) and
(2.13), (2.18), respectively, and C, N, Kim (i=1,2; j=1,2,4; see Equation (6.13))
have the forms
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C3pm 1
XIN
C=civ—cam—[cam(cim+conm) —2com] <XM> ,

Ny = — Pn(Yuwc—i-YzM) S41M[ Kl <p >+Y4Maa <]Zl>},
Pn (YlMC?»Mjrsz) [ ( ) e p ( P )]’
ximl S44M c3y—1 v \ gx]
2
= et () ﬁ{[%(%ﬂ W[ ()]}

2
(cim+cam) 5y
Komr = |:—+C1M 26’2MC3M N
Xy
ciy—1 C

2
1 d ? 0
Pn
et B
Xpm
2 d (pn)\ 0 Pn , 0 (pn) 0 Pn
2 [2 ()2 (Yo ()2 ()]

(com —c1m) (2+cam) (&)
(6.23)

Noym =

Kap =

The normal stress p,, is given by Equation (2.33). With regard to Equation (6.15),
the coefficient pys in Equation (2.33) is derived as

cyy—1
par= é ll - @—A]j) ] . (6.24)

Conditions Cyys # 0, C337 # 0, Copy = 0. With regard to Equations (2.30), (2.31),
(6.5)-(6.12), (2.21), (2.26), (2.27), we get

3
ey = — 22 [1 — 3w ("—M> 1 , (6.25)
C Xn
3
€M = Eop = — f [1 - (’;—M> 1 , (6.26)
3
EnoM = S44M OnoM = — {% (%) - % % <p"CxM>] , (6.27)
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d (pn 1 9 pnx3
€noM = S44M Onoy = —© {E (f) _X_ﬁ 3 ( CM)] ) (6.28)

3
X
OnM = — % lCIM_C2M+2(ClM+Zc2M) (X—M> ] ) (6.29)
n
p )’
CopM = Opy = — é’ [ClM—CzM— (cim +2com) (—> ] ; (6.30)
n
i =N+ 2o, 6.31)
xn
Ky K
war =Ky + k2 (6.32)
xn x}’l
n/2m/2 1 |
K
Wy = 4/ / Kin (x?\,[—x;N) + oM <T T) +Kspy In <x—M>] dody,
s 3 3 \xy Xy XIN
(6.33)

where O, xy, xpr and sqaps, cing (i=1,2,3) are given by Equations (1.15)—(1.17) and
(2.13), (2.18), respectively, and , N3y, K37 (f =3,5; Equation (6.13)) have the forms

3
XM
C=civ—com+2(cim+2cam) <—> ;
XIN

3 3 3
PnXyy (Yans — 2iar) 1 |: J (pan) 0 (pan)]
= _|_ JE— + P ,
N3m g Saans Y3m 3 4 Yam

i \Y 1 (9 (paxif\]
K3M=3(01M+202M)< CM> iy {%( CM”
2

0 [ (paxi,
o v (224
_ 2 [0 (pn) O (Puxy 29 (pn)\ O (PnXis
KSM“M[%(?)%( z >+%(E)®( z ﬂ'(“‘”

The coefficients M1y, K127 are given by Equation (6.23), where { in Equation (6.23)
is given by Equation (6.34). The normal stress p,, is given by Equation (2.33). With
regard to Equation (6.26), the coefficient p,s in Equation (2.33) is derived as

-3
Py = % [1 - (%) ] . (6.35)
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Conditions Cyys # 0, C3p7 # 0, C1pr = 0. With regard to Equations (2.30), (2.31),
(6.5)(6.12), (2.21), (2.26), (2.27), we get

P x cay—1 Y 3

e = — 2 s (—) ) (—) , (6.36)
C XM Xn

C3M71 3

eqn = Eon = — L2 (x—) - (’“—M) , (6.37)

C XM Xn

J 1 9 (pnxy
Enght = S44M OnopM = — la— <cx“3M 1) xg! -5 % (p gMﬂ . (639)

€nOM = S44M OnoM = —

X C3M_1 X 3
Suvr = — 223 [eswr (canr+ canr) — 2eau] (—n) —2(c1m+ 2c2m) <—M) ;
g XM Xn
(6.40)

xp \ ! ar\’
OoM = Gy = — P (eon —camesm) (—n> + (c1m +2c2m1) <—> ;
C XM Xn

(6.41)
C3M— 1 n3M
Cim =Mamx,™ ™ + e (6.42)
) K3
war = Kangy N B e e, (6.43)
xn
n/2m/2
WM:4/ /[ KoM (x/%/lcsM-‘rl 2C3M+1)+K3_M<%_L3>
s 2cay+1 3 \xy Xy
K
+ M <x;;M b 1)] dodv, (6.44)
cay—1

where O, x7y, xpr and saaps, ciyg (i=1,2,3) are given by Equations (1.15)—(1.17) and
(2.13), (2.18), respectively, and { has the form
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g= {[C3M(C1M+62M) —2cam] <M> e +2 (01M+202M)} (X—M>3a

XM XIN
o — X3 [2can (1 —c3m) — c1ul <@>2_ 2 9 ( pa k] (an?w>
xp ! g S4am 00 \ { XM -1 op\ ¢
2 3
S99 (e 0 (p”xM). (6.45)
Saapm OV \ L xi" ov\ ¢

The coefficients N2y, K2a7 and N3y, K3p7 are given by Equations (6.23) and (6.34),
respectively, where { in Equations (6.23), (6.34) is given by Equation (6.45). The
normal stress p, is given by Equation (2.33). With regard to Equation (6.37), the
coefficient pys in Equation (2.33) is derived as

()ﬂ) cy—1 B (X_M) 3] | (646)
XM XIN

Conditions Cyys # 0, Copr # 0, C3pr # 0. With regard to Equations (2.30)—(2.32),
(6.5)—(6.12), (2.21), (2.26), (2.27), we get

cyy—1 3
3C3M()’C‘—A"4> —2(C3M—1)<);—M) H (6.47)
xn C3M71 xM 3
b 2]}

XM Xn

(6.48)

.
M7

9 ([ pn
EnoM = S44M OnoM = — % z

¢
1 3 i Pn ceam—1 + 3y — 1 i anfw
op \ gxgnt )" x5 dp\ ¢ ’

cpy+2
(6.49)

9 ([ pn
€.0M = S44M Opop = — O {E <%>
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1
cay+2

(e et 2 (o)
v \ {xpv xp  ov\ (

(6.50)

Pn 3 X\ M !
OnM = — f CiM — CoM — - [C3M(01M+62M) 726’2M] <—>

3M+2 XM
2 2 .
1 2lewr2e) ()7L 6.51)
3y +2 Xn
Gont = Gonr = — 22 erp— can — 3 (e = cavies) <x_”)cwl
? o ¢ cam+2 XM
) 3
R (6.52)
cam+2 Xn
> 3M
G1v = Niw+ Moy M+ Tlx3 : (6.53)
n
K
wM—K1M+K2Mx2(C3M )-i- ;M+K4 xcw 1+ 3 +K6MXC3M 4 (6.54)

n

n/2m/2

M 3 Komr 2ea+1 _2c3u+]
WM 4/ / |:T M x[N) _26 M+l (x C3Mm ]\?3M )

K3m 1 1 ) Kam cay+2 cay+2
LT . TR
3 (x?N xy) a2 \M ™

+ ks In <x—M)+ Kom <x;;M boxpe 1)] dodv, (6.55)

XN cay—1

where O, x7y, xpr and saaps, ciyg (i=1,2,3) are given by Equations (1.15)—(1.17) and
(2.13), (2.18), respectively, and {, k;ps (j=2...,6; Equation (6.13)) have the forms

cay+2 \xv

X cay+2
=3 esp (i + camr) — 2 coml <x;1/[v) ,
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3 1 0 0
= 5 {pn (Ylfjwtyz) +— [’y %0 (—Zr};_]> +Y4a— ( ]Z;;_l>‘| },
3+ CxM S44 0\ v CXM
_an—1 {pnx%/[(’YZ_Z'YI)+1 {YSE)(pnxL) +Y48<pnxj3w>”’
cam+2 g saa [ TOQ N\ G v\ ¢
2
(3 N\ [lemtean) By Pn
Kom = <C3M—|—2> <|:2+CIM_ZC2MCSM CXC3M_1
I ? 2 ’
Saam Gy v\ LV
K3y = cam — 1 3(cim~+2com) pnx?\,[ 2
w=\ o2 M M

W{m e a2
cchlM(

C3m 1

2

/—\ &

Kapm =

g
5@ ales) o n (@)
u- e () ()

_ (e = 1) [2ean (1= c3u) — ciu] [ Pn }
X Clesm+2)

L Slewu=1) 0 m )2 (pih
2 2 a L’3M*1 a C
S44M(C3M—|- ) () CXM ¢
60%(cz—1) 9 Dn 0 ( puxyy 6.56
+ 2 E cay—1 av C : ( . )
saap (c3m +2) Cxyy
The coefficients M1y, K1as are given by Equation (6.23), where £ in Equation (6.23)

is given by Equation (6.56). The normal stress p, is given by Equation (2.33). With
regard to Equation (6.48), the coefficient pys in Equation (2.33) is derived as

C3M—1 3
3 <)”—N> +(esp—1) <X—M) ] } . (6.57)
XM XIN
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6.3 Inclusion

In case of the ellipsoidal inclusion, we get Co;y = C3;v = 0, otherwise we get
(UnIn)y, o — £ o0, (&17), .o — £ 0, (OIv),_9 — Foo due to c3 < 0 (see
Equations (2.18), (6.4)—(6.10)). With regard to Equations (2.28), (2.29), (6.4)—
(6.12), (2.21), (2.26), (2.27), we get [1]-[22]

EnIN = EIN = €9IN = —Pn PIN; (6.58)

EnIN = S44IN OnIN = —PIN aa[:: ; (6.59)

€n0IN = S44IN OnpIN = —O pIv aali 2, (6.60)

OnIN = OpIN = OBIN = —Pns (6.61)

O1LIN = — PIN [pn (n +Y2)+$ (Y3%—IZ;+Y4 %)} ; (6.62)
N =P { 2353;\/ - S4inv (%) 2 " <%> 2] } , (6:63)

/2 m/2 ’ )
_ 4p%N 3 3}7% 2 Ipn Py
e . / 0/ o 2pmv - saary |\ 09 ’ ov dodv, (664

where ©, s447y are given by Equations (1.15), (2.13), respectively. The normal stress
P 18 given by Equation (2.33). With regard to Equation (6.58), the coefficient p;y
in Equation (2.33) is derived as

_ 1 —2uy

6.65
Eoy (6.65)

PIN
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Chapter 7

Mathematical Model 5

7.1 Mathematical Procedure

Let the mathematical procedures 0Eq. (2.24) /dr, Eq. (6.2) /r be performed, and then
we get

0*U, oU,
Xna—x%+(1—03) o, =0, (7.1)
U, 5 Puy, %u,
P = —s44(c1+c2) <xn Tx}, + 4x, Tx% ) ) (7.2)

where s44 and ¢y, 2, ¢3 < 0 are given by Equations (2.13) and (2.18), respectively.
Let the mathematical procedure dEq. (7.2) /dr'be performed, and then we get

92U, 5 0%u, Pu,  %uy
- 6 4 ) 7.3
ax% S44 (cl + CZ) <xn axi + 6xp axz + ax% ( )
Let Equations (6.2), (6.3) be substituted to (7.1), and then we get
o*u Au *u
2 n n n o
x; axd +(7—c3)xn =] +4(2—c3) a2~ 0. (7.4)
Let u,, be assumed in the form u,, = xf;, then we get
c3 G
up =Crx, +Cox, +x7+C4, (7.5)
n
where C| ...,Cy4 are integration constants, which are determined by the boundary

conditions in Section 2.3. With regard to Equations (2.1)—(2.4), (2.14)—(2.17), (2.26),
(7.6), we get

2C
en=C1+Crosxi - 22, (7.6)
xi’l
G C
s(p:.ge:cwczx;fwxgwxi, (7.7)
aC 9C; 139G, 1aC
R e = Tt 7 (7.8)
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IC1 | 190G | 19Cs 1ac4

€0 = S44C,9 = O — = 7.9
w0 =S440m0 =0 | F St a Sy Y v (79)
2C 2 2¢,C,
on=Ci(c1—2)+ (1 +e2)e3s —2e)xf ™ — 3(Cl3+ @) _ 2o 1.(7.10)
X3 Xn
C 2 C.
G(P—Ge—cl(cl—Cz)+C2(Cl—CQC3) xoh 4 3(C1x_3’_ C2)+C; 4, (7.11)
n
— x4 E-i- 4 (7.12)
n x'l
K
w=1 +iox, 7 4 6+K4+(K5+K9) el y 5 3 K7 ‘5 S+
x8 X} x3 Xn  Xp
(7.13)

where © and 1; (i =1,2,3) are given by Equations (1.15) and (6.13), respectively, and
N4, X; (j=4,5,6) are derived as

1 dCy 0Cy
T]4—C4Yz+—<Y3 3 + Y4 8v>
LA
ov

<ac4> +6?
oL}
. 2 (0,80, | 300,
Ks = (¢ 02)(2+C3)C1C2+ (a(p 0 0 e 8\/)
A1 3Cs <30 38
K ®Of——
s44 a(p a(p ov ov
2 <8C2 9Cs 290 %)

1
K4—(,‘1C4%+

9 I v ov
1 aCl ac4 2 aC1 8C4
Kg = (01—02)C1C4+ (a(p % C) WW)
1 aC2 aC4 2 aCz 8C4
K9(C1—C26‘3)C2C4+—<% 30 WE)

1 [(9C;3Cs  ,9Cs C;
KIO—(CI+2CZ)C3C4+—<8(P E)(p (C] FOEA

=2 (1=c3)—c1] G +—

(7.14)

The coefficient x; (i=1,2,3) is given by Equation (6.13). In case of the ellipsoidal
inclusion, we get Coyy = Ca;y = Cqyy = 0, otherwise we get (unIN)anO
(&), o — £ 0, (O1n),_9 — Feodue to c3 < 0 (see Equations (2.18), (6.4)-
(6.10)). In case of Cy;y # 0 (see Equations (6.4), (7.5)), the mathematical solutions
for the ellipsoidal inclusion is presented in Section 6.3.

— &£ oo,
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7.2 Matrix

The integration constants Cy,y, Copg, C3pr, Capg for the matrix (see Equation (4.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)—(2.32). The bound-
ary conditions result in the following combinations of Cyys, Copr, C3ps, Capg, Where
the combinations of Cyyy, Caps, C3py are presented in Section (6.2). Finally, such a
combination is considered to exhibit a minimum value of the elastic energy W¢ of
the cubic cell (see Equation (2.27)).

Conditions Cyys # 0, Caps # 0, Copr = C3pr = 0. With regard to Equations (2.30),
(2.31), (7.5)—(7.13), (2.21), (2.26), (2.27), we get

v = — %, (7.15)
e(pM_eeM_—p”<1—1 , (7.16)
C Xn
1\ 0 (pu
_ (LYo 7.17
€npM = S44M OnoM < xn> 0 ( C ) ; (7.17)
1\ o
€16M = S44M Onopt = —© <1 - x_n> 3y (%) ; (7.18)
2
Ot = — 22 (01M02M+ cMm) ; (7.19)
C Xn
C
CoM = Ogrr = — % <CIM —Com — 1M> ) (7.20)
n
i =N+ 4 (7.21)
Xn
K
Wit = Kin =3 (7.22)
X2 xp
n/2m/2
K K
= st 52 ()
00
(7.23)

where O, x7y, xyr and s44p, cipg (i=1,2) are given by Equations (1.15)—(1.17) and
(2.13), (2.18), respectively, and , N4, Kjm (j=4,8; see Equation (7.14)) have the
forms
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20 XM
C=civ—com+ ;
XIN

Pn2m 1 |: d <pn> J <pn>:|
= +— By (5 ) Framns- (5 )]
T s [P0 (T ) T v
2 2 2
) ()] [ (%)
= 2 —1 = (F )] = (F :
e ClM(c) S44M{[a<p z v\ C
2 2 2
—emg—en (P2~ 2 (pn 9 (P
won = ez en) () S44M{[acp<c>} () } (724
The coefficients M1y, K1as are given by Equation (6.23), where £ in Equation (6.23)

is given by Equation (7.32). The normal stress p, is given by Equation (2.33). With
regard to Equation (7.16), the coefficient pys in Equation (2.33) is derived as

Py = % (1 —i) (7.25)

Conditions Cyys # 0, Caps # 0, C1ar = C3pr = 0. With regard to Equations (2.30),
(2.31), (7.5)—(7.13), (2.21), (2.26), (2.27), we get

PunC3M [ Xn can—1
et = — T , (7.26)
¢ \awm
C3M—1
1
oM = Eopm = — P Xn -——1, (7.27)
C | \xm Xn
a pn a pn
o o= | L) 2 (P 7.28
EnpM = S44M OnoM la(p <Kxﬁ}’”l> 30 ( C (7.28)
0 Pn d Pn
€10M = S44M Onoy = —© v (Kxj}”_l> v (Z . (7.29)
x, \ M 2
Ot = — 22 {[C3M(01M+02M) —2coum] <—n> + ZM} ; (7.30)
C XM Xn
X\ ¢
GoMm = Opp = — on |:(CIM02MC3M) <—n> - IM] ) (7.31)
C XM Xn
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T (732)
g = Kopg a2 ”+K4M+1< o1, (133)
x3
n/2m)2
vt | [ty (47 ) o)
c;;;fi : (w2 - x?NM*zﬂ dodv, (7.34)

where ©, xpy, xjyr and saqaps, ciyy (i=1,2,3) are given by Equations (1.15)—(1.17)
and (2.13), (2.18), respectively, and C, koas (see Equation (6.13)), Kops (see Equa-
tion (7.14)) have the forms

x1N> e +202MXM
XM XIN

2
+C1M_2CZMC3M:|< ij;l)
2 2
S| ol ()
S44M o1} C csu—1 ov Cxﬁf[Mfl
KgM:_Clecle%M (ﬁ) 1 i( Pn > J (pn>
XM Ky Saam 00 \ 1y xS ! BT

2
SN /. i<&>, (7.35)
Saap OV \ kxS ov \ Ky

The coefficients N2y, and Mays, Kaps are given by Equations (6.23) and (7.24),
respectively, where { in Equations (6.23), (7.24) is given by Equation (7.44). The
normal stress p, is given by Equation (2.33). With regard to Equation (7.27), the
coefficient pys in Equation (2.33) is derived as

1{ an\
ou = 1 <_> . (7.36)
€| \xm XIN
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)

3y (et +cam)
2

Kom = {
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Conditions C3); # 0, Caps # 0, C1ar = Copr = 0. With regard to Equations (2.30),
(2.31), (7.5)—(7.13), (2.21), (2.26), (2.27), we get

200 (xv\’
EnM = T - ) (7.37)
n
p v’ 1
e =om=—7 || — | ——|, (7.38)
C Xn Xn
XIN 3 1 ) Pn
EnoM =S4 Onpyt = — | { —~ | — o\ T ) (7.39)
n n
3
XIN 1|0
€noM = S44M OnoM = — l(x—) - x_] v <%> ) (7.40)
n n
2pn v\ e
o = — | (i +2com) [ — ) — ) (7.41)
C Xn Xn
p XIN 3 C1M
G(PM: GGM = — Zn l(CIM—zczM) <—> — X ] 5 (742)
n n
iy = 2—5” + % (7.43)
n n
K3p | Kam  Klom
= 7.44
Wy X,(l) x,% Xﬁ ) ( )
T K 1 1 1 1
WM=4// — = — | T Kan (ks —xav) +Kiom | — —— | | dodv,
00 3 \xy Xy N XM
(7.45)

where O, xzy, x)rand s44p7, cipr (i = 1,2) are given by Equations (1.15)—(1.17) and
(2.13), (2.13), respectively, and {, k3,7 (see Equation (6.13)), Koas (see Equation
(7.14)) have the forms

2
X
C=— [2 (cim +2com) +2com <IN> ] ;
Xy

2

3
X
K =3 (01M+ 202M) <p"CIN)
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2 2
aflaCE) e b))
Saap | |09 g d g
2 3
3 t) s oo (") 36 (2)
Kiom = —X7y (1 +2¢ = - — = — | =
ton = iy (e14a + 2280 ( g > saam 09\ § ) dp \ C
_ O [0 (paxiv) 9 (pa)] (7.46)
S4am | OV g av C
The coefficients 13y and M4y, K4)7 are given by Equations (6.34), (7.24), respec-
tively, where { in Equations (6.34), (7.24) is given by Equation (7.46). The normal

stress pj, is given by Equation (2.33). With regard to Equation (7.38), the coefficient
pu in Equation (2.33) is derived as

7x1N—1
Cxmv

(7.47)

Conditions Cyy # 0, Copr # 0, Capr # 0, C3p, = 0. With regard to Equations (2.30)—
(2.32), (7.5)—(7.13), (2.21), (2.26), (2.27), we get

cay—1
- (x—”> ] : (7.48)
XM

C3M—1 _
e — oy = — 22 d 1 Lo (3 4 (eaw =D | | (7.49)

C_: C3m XM Xn

EnoM = S44M OnoM =
9 pn) V[ et @[ oo ), cau—10 (anM>

——|x = + 5= , (7.50
{a(p ( ¢ s | 00 \ g xp 09\ (7.50)
€n0M = S44M OnoM =

0 Pn 1 [ ean—1 d Pn ey —1 d DXt
{av<2;>c3M Xy aV(CxE;M‘1>+ - av< 7 >”,(7.51)

Pn 1 % )
Onht = = 7 | et —eam = [e3m (c1m + cam) — 2¢am] (XM)

N 2com (c3p — l)xM}) ’

C3M Xn

enM:_p_gn

(7.52)
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C3M—1

Pn 1 Xn
Ogm = Oey = — — § civ — cam — —— | (c1m — cameam) | —
C C3M XM

—1
4 corle = 1) )XM]}, (7.53)
Xn
_ cu—1 Nam
C1m = Nim +NamX, + (7.54)
n
2esu—1) | Kam -1, K8m
Wy = Kin+ KopXn +—5 + (Kspr + Konr) x,, t— (7.55)
n n
n/2m/2
WM 4/ / |:K1M XM X[N>+2 Kom (XZC3M+1_X?]€,3M+1)+K4M(XM_XIN)
cay+1

Ksm + Kom 42 12\ Ksw
+ m (XEM X;;VM ) * T (XM xIN):| dodv, (7.56)

where O, xy, xpr and sqaps, ciyg (i=1,2,3) are given by Equations (1.15)—(1.17) and
(2.13), (2.18), respectively, and £, ;s (i=1,2; see Equation (6.13)), Kim (j=4,5,8,9;
see Equation (7.14)) have the forms

c3m (i +com) —2c xv\ M 200 (e —1) x
¢ = (c1ar— cant) — leam (cive+conr) M) (ﬂ) . v (capr— 1) Xy
€3mM XM CIMXIN

Pn"M(wal)]zJr ! {a|:PnXM(C3M1):|}2

CC3M Sa4M a(p CC3M
> (gfemicly
T v )
saam | OV Ceam
Kspg = — (c1ar —cam) (2+c3m) (@)2_ii (_)i o
C3MXEM71 g 54400 \ €/ 99 CcsszC\}Mil

_ﬁi<Pn>i o
S44pm ov C ov CC3M 5/3[1\/1 1
2\ [ Pn 1
o )
_Li(m) J {M]
Sqapr 09 \ G ) 99 Cesum
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e 0 <p> 0 {M}

saam oV \ T ) ov Cesm
2
(v —comesm) (s —1) [ pa
om = Xy 2 Ccam
M
(C3M_ 1) J DPn i DPnXM
- Saant €2y, 00 au=l |9 d
44M €50 9@ \ { Xy ?
e’ —1) 9 " o ( pn
+ (C3M2 ) v ZMA v (p XM> . (7.57)
Saapm 5y OV A\ Cxyf A4 g

The coefficients My, Ky (i=1,2) and n4 are given by Equations (6.23) and
(7.24), respectively, where £ in Equations (6.23) and (7.24) is given by Equation (7.57).
The normal stress pj, is given by Equation (2.33). With regard to Equation (7.49),
the coefficient pys in Equation (2.33) is derived as

pM:l{l—LlCﬂ)c}Ml—i—M}}. (7.58)
C c3Mm Xpr XIN

Conditions Cy,, # 0, C3,, # 0, Cayy # 0, Cpy =0, With regard to Equations (2.30)—
(2.32), (7.5)—(7.13), (2.21), (2.26), (2.27), we get

3
_ b 3 (2w
et = ll : (xn ) ] : (7.59)
|1 33

EpM = €oM = — % I+5 ();—A:) - ;;AZ] ; (7.60)

B B o ([ pn 1 9 [paxy, 3 0 (puxm
EnoM = S44M OnoM = — [a(p <C.>> + E% < C 2%, a(P C (7761)

B B o [ pn 1 90 [puxiy, 3 0 [ puxy
€n0M = S44M OnoM = — [5 <?) + 2x3$ ( q - Z—an T )
(7.62)
3
n 3

OnM = — % [ClMczM (c1m +2cam) <);—M> + czfo] : (7.63)
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3
cim+2cm (xm 3cimxm
OoM = Opm = — L lclM02M+ — <> - ] J (7.64)
4 2 Xy 2xy,
O =My + o AV (7.65)
n Xn
K K K
Wit = Ky =y K4§4+ oM | S M (7.66)
xn n xn Xn xn
n/2m/2 ! 1
LS K3
Wy = 4// [ M xM xlN)+TM<T >—|—K4M()CM—X[N)
XIN XM
XM 8M [ 2 1 1
+ K¢ ln<—>+—(x X7 )—I—K10M<———>]d v,
e e 5 \ MYy PR ¢
(7.67)

where O, x7y, xj and sqap, ciyg (i=1,2) are given by Equations (1.15)—(1.17) and
(2.13), (2.18), respectively, and , x3)s (see Equation (6.13)), s (i=4,6,8,10; see
Equation (7.14)) have the forms

3

Xif 3oy Xy

C=(cim—cam) — (C1M+202M)< > R L L
XIN XIN

ssewzen (5 S [ GO [ (T )
(52 e { [ ]+ [ (5] )
i [ () (52 o () ()
g
3x (e +20m) (%)2

~ 3xm(eim—cam) <pn>
Ksy=————>5—|F
PnXM 20 (Pn) 9 (PnXu
)+ () w (77
4

¢
2S344 [aa(P <p£> aa(P <

RCALE) A o
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The coefficients M15s, N3as, K147 and Nayy are given by Equations (6.23) and (7.24),
respectively, where { in Equations (6.23) and (7.24) is given by Equation (7.78). The
normal stress p, is given by Equation (2.33). With regard to Equation (7.60), the
coefficient pys in Equation (2.33) is derived as

! 1+1<x—M>3—3x—M (7.69)
PM=7 2 \xmv 2 | '

Conditions Cy,, # 0, C3,,, # 0, C4y, # 0, C1,, = 0. With regard to Equations (2.30)—
(2.32), (7.5)—(7.13), (2.21), (2.26), (2.27), we get

cau—1 3
_ Pn Xn XM
8nM——Z e3m oy — M .
M n

x, \ M ¢ )\ (esy42)x
g@M—eeM——p—gK—") () R gy

, (7.70)

Xn 2xy

40 c3m 0 x
EnoM = S44M OnoM = — [x,fw Ay ) M (pn M)

do \gxgr ') T2xiop \ ¢
(3 +2) 9 (pnxm
et (7.72)

d c3u 9 (Paxy
— _ cay—1 Pn M D
€n0M = S44M OnoM = — {xnm v <Cx;/3[M1> N ﬂg ( g )

(e3m+2) 0 [ Pnxum
O

p X C3M—1
OnMt = — Zn { [e3n (c1m + camr) — 2¢am] <i>

xr\® o (esn+2)
— (eamc1m +2¢aum) ) (7.74)
n

Xn

x_n> el Rl (c1p+2¢am) <XM>3

Pn
O, =0 = — C —C C —
oV = Oou =7 l( 1M — C2MC3M) (xM > .

v (C3M+2)XM} (7.75)

2xy
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-1, M3m | Mam
Oy =Manxg¥ !+ x—3+ . (7.76)
n n
X K
war = Kapg 1)+%+%+K7MX§W*4+K9MX§W71+ ;CZMv (7.77)
n n n
n/2m/2
Koum 2yl 2esy+1) , Kam (1 1
W:4// 7()( skl 2esu )+_ -
M o |:2C3M+1 M N 3 x;’N x%/[
K7pm _ _
+K4M(XM_XIN)+C3M_1 <x§}M gy 1)
KM (52 i) s aon (- —— ) | dodv, (7.78)
ey +2 XIN XM

where O, x7y, xj and s4ap, ciyg (i=1,2) are given by Equations (1.15)—(1.17) and
(2.13), (2.18), respectively, and , ;s (1=2,3; see Equation (6.13)), ¥y (j=4,7,9,10;
see Equation (7.14)) have the forms

csy—1
_ XIN
C — xjc\f[/w 1 {[C3M (C1M+CZM) — ZCZM] (W)

3
XM com (Cap+2)xu
—ay(eiy+20m) | — ) + # )
XIN XIN

2
2
Cim+Cam)c
Kom = [M+01M—202MC3M:| < ZZI)
C Xy

2
2 2
aﬂ Pn 1 + o2 @ Pn 1 ’
90 \ ¢ X v \¢ Xy

3 2
PnC3mXy,
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1 9 [ pncauxs 2 9 [ pnciyx 2
g Lo )] e [ ()]
25441 | [ 0@ g av e
0 +2)1°
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coa{[2 () 2 (2]}
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n CIMX
Ky = [202M(1*C3M ,clM ( oy 1) p 23/2/ M)
cay 0 Pn J <pan>
+ = T 13-
S44M a(p C_,XCW a

n @203M d an
Saam OV Z;ch !

xm (cim—camesmr) (am+2) ((pa
2xﬁ,3,M ! C

ComMt2 9 pn |0 <PnXM>
2s4am 0@ \ Lx ! ) 09\ L
O (au+2) 9 Pn 9 (pnXm
2 S44p Bv C cu=1 | gy C
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Kiom = — eaym (civ+2com) (e3m+2) ( SCM>

~amlaunt2) _( ) (anM>
dsqapr 0@ g
@263M(C3M—|-2 9 pan 9 PnXm

4s4am a_< ¢ )3\’( g )

Kom = —

(7.79)

The coefficients 1, N4 and N4 are given by Equations (6.23) and (7.24), respec-
tively, where { in Equations (6.23), (7.24) is given by Equation (7.79). The normal
stress pj, is given by Equation (2.33). With regard to Equation (7.71), the coefficient
py in Equation (2.33) is derived as

1 cay—1 3 42
PRI .70 R 17 (7 R G 74 O
C XM 2 XIN ZX1N
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Chapter 8

Strengthening

The analytical model of the micro-strengthening G5; = G (x1) and the macro-stren-
gthening Gy results from the following analysis [3, 4, 12, 13, 21]. Figures 8.1
and 8.2 shows the plane x}x} in the cubic cell (see Figure 1.2) for x; € (0,a;) and
x1 € {a1,d/2), respectively, where [x1,x2,x3] are coordinates of the point P C x}x}.
The plane O'P P, with the ellipse E»3 (see Figure 8.2) represents a cross section
of the ellipsoid inclusion in the plane x5x}. With regard to Figures (8.1), (8.2), the
goniometric functions in Equations (1.8)—(1.17) have the forms

' X3

y dn
X1

/ Ps an

E
P 23 dr

O —
@ X3 X2
(0) Z

Py Py /Ps X5

/ X2

X1

Figure 8.1: The plane x)x} in the cubic cell (see Figure 1.2) for x| € (0,a;), where
[x1,x2,x3] are coordinates of the point P C x5x}. The plane O'Py P, with the ellipse
E»;3 represents a cross section of the ellipsoid inclusion in the plane x5x} (see Fig-
ure 1.2).
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X3
d/2
X1
/ Py dy
dn2
Ly
~y, P
O
/o ’; X2
Ol
P] |/P3 X'z
/ X2
Xl = —

Figure 8.2: The plane x,x} in the cubic cell (see Figure 1.2) for x| € (a1,d/2), where
[x1,x2,x3] are coordinates of the point P C x)x}.

. X2 X1 1 X2
SINP = ————, COSP = ——, tanp=—=—

[2, 2 [, 2 cot  x
Xy t+xy Xy t+x3

)
2 2
X1 +x35 X3 X3

sinv = 5 3 3 COSV =
X{+x5+x3

(8.1)

r T s’
x%—i—x%—}-x%

where cos 0 is given by Equation (1.13). With regard to Equation (1.2), the param-

eters by, b3 of the ellipse E»3 along the axes x5, x}, respectively, are derived as (see
Figure 8.1)

ary/a? —x? azy/a? —x?
/ /
by=0P=———, b3=0P,=—"—", (8.2)
ai ai
and then we get
as b%—x%
by = PyPs = ————. (8.3)
a



The micro-strengthening Gy = Gy (x1) represents a stress along the axis x;, which
is homogeneous at each point of the plane x’zxg with the area S = d> /4, i.e., Gy #
S (x2,x3).

Ifx; € (0,a;), then the elastic energy surface density W, which is induced by o
and accumulated within the area S;y = nb, b3 /4 of the plane O'P, P, and within the
area Sy = (d/2)* — S;v of the plane xhx5 (see Figure 8.1), has the form

Wy = 007, (8.4)

where G is related to x; € (0,a;). The coefficient ® is derived as

1 1 1 d?

0= 3 {nb2b3 (m — @) +E—M} , (8.5)
where Ery and Ejs is Young’s modulus for the ellipsoidal inclusion and the ma-
trix, respectively. The elastic energy surface density W;g, which is induced by the
stress 61 = 61 (x7) (see Equations (3.22), (4.22), (4.33), (4.44), (4.55), (5.20), (5.31),
(5.43), (5.54), (6.20), (6.31), (6.42), (6.53), (7.21), (7.32), (7.43), (7.54), (7.65),
(7.76)), has the form

e L(Wins . Wius
5=5\ g T Ey )
by by
Wins = / / o1 dxs | dxz,
0 \0
by / dJ2 a2/ do
WIMS:/ /G%dx:; dx2+/ /G%d)g dxy, x1€(0,a1>. (8.6)
0 by by 0

The micro-strengthening G, = G (x1) for x| € (0,a;), which results from the
condition Wy, = Wis [3, 4, 12, 13, 21], is derived as

1 Wins  Wims
Ol =4/ — | =—+ , X1 € 0, . 8.7
lst \/2(1) ( E[N Ey > ! < a1> ( )

If x; € {(a1,d/2), then the elastic energy surface density Wy, which is induced by
o, and accumulated within the area Sy = d> /4 of the plane x’zx’3 (see Figure 8.2),
has the form

2 2
Wt — sttd
K 8 Ey )
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where Gy is related to x| € {aj,d/2). Similarly, we get

a2 d)

d
Worrs = / / G% dxgdx3, X1 € <a1,5>. (8.9)
0 0
With regard to the condition Wy, = Wag [3, 4, 12, 13, 21], we get

2/ Was

Wams
2Ey’

Wos =

Oost = 7 (8.10)
Finally, the macro-strengthening Gy is derived as [3, 4, 12, 13, 21]
5 a d/2
G—S’:E / Ol dx) + / Oogdxy | . (8.11)
0 ai

If oyy < oys or oy > oy, the strengthening exhibits a resistive effect against
compressive or tensile mechanical loading, respectively.

The macro-strengthening Gy = Gy (v,a1,a2,a3) is.a function of the inclusion vol-
ume fraction vy and the dimensions a1, a;, az of the ellipsoidal inclusion. In case
of a real inclusion-matrix composite, such values of the microstructural parameters
VIN, d1, a2, a3 can be numerically determined to result in a maximum value of |Gy|.
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Chapter 9

Crack Formation

The analytical model of the crack formation in the matrix results from the following
analysis [3, 4, 5, 19]-[22]. Figures 9.1, 9.3 show the ellipse £1»3 in the plane x15x3
of the cubic cell (see Figures (1.4), (1.5)), where ajp = O4, x122 = OS5 are given by
Equations (1.7), (1.11), and a3 = O3.

With regard to the plane xj,x3 for @ € (0,7/2) (see Figures 1.4, 1.5), the elastic
energy density w = w (x,,®,V) (see Equations (3.23), (3.34), (4.23), (4.34), (4.45),
(4.56), (5.22), (5.33), (5.44), (5.55), (6.21), (6.32), (6.43), (6.54), (6.63), (7.22),
(7.33), (7.44), (7.55), (7.66), (7.77)) is determined as a function of the coordi-
nates x,, v € (0,t/2) (see Equations (1.6)—(1.17)). The elastic energy density w =
w(x12,0,x3,a1,a2,a3,vy) as a function of the coordinates x|, x3 is determined by
the following transformations

X3 . X12 X3 1 X12
Xp=——, SinV=——"-—_ cOSV=——— tanv=—— =
C

050’ [2 2 2 2 cotv  x3’
X1y X3 X +x3

where cos0 is given by Equation(1.13).

9.1)

Matrix. The curve integral Wy, of wyr = wys (x12,9,x3,a1,d2,a3,viy) along the
abscissa P1 P, (see Figure 9.1) in the plane x15x3 of the matrix (see Figures 1.4, 1.5)
has the form

d/2
VVC = /Wde3: / WMdX3. (9.2)
PP 0

Let fioar = flom (X12,9,a1,a2,a3, vy ) represent a decreasing function of the vari-
able x12 € (a2,x0p), which describe a shape of the matrix crack in the plane xjox3
(see Figure 1.4), where @ € (0,t/2), ay, a, a3, vy are parameters of this decreasing
function. As presented in [3, 4, 5, 19]-[22], we get

8f12M . \V WcszﬁJZ\/I 9.3)

ox12 Oy
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X3
P>
X12
Eix;
3
X12
O 4 P, 5

Figure 9.1: The ellipse E1,3 and the abscissa Py P, in the plane xox3 of the cubic cell
(see Figures (1.4), (1.5)), where a1y = 04, x122 = OS5 are given by Equations (1.7),
(1.11), and a3 = O3.

X3
Eys3
3
flom
XoM
X12
O 4 6 5

Figure 9.2: The decreasing function fi2as = fiom (x12,9,a1,a2,a3,viy) of the vari-
able x5 € {(a12,x0p), which describes a shape of the matrix crack in the plane xx3
(see Figure 1.4) for ajp > ayz?[ or ajp > agﬂcl) (see Equations (9.8), (9.9)), where
xom = xop (@) defnes a position of the crack tip in the matrix, and ¢ € (0,7t/2), aj,

ap, az, vyy are parameters of this decreasing function.

where Uy is energy per unit length in the matrix. In case of intercrystalline crack
formation, we get
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K2
By = —EM (9.4)
Ey
where Kjcys is fracture toughness of the matrix. In case of transcrystalline crack
formation, we get

Yy = Vgpur, 9.5)

where the energy Ugp) per unit length is related to the inter-atomic bonding of
boundaries of crystalline grain in the matrix.
As presented in [3, 4, 5, 19]-[22], the condition

(Wert) s,y —ay, — Ot =0, (9.6)

is a transcendental equation with the variable a;, and the parameters ¢ € (0,7/2),

ai, az, az, VIN (see Figure 1.4.
IC cC TC TC
The roots agzjg[ :agzj& (9,a1,az,a3,vy) and a&ZM) :agzM) (9,a1,a2,a3,viv) (see

Equation (1.7)) of Equation (9.3) for 0y, which is given by Equations (9.4) and (9.5),
represents such a dimension of the ellipsoidal inclusion along the axis x13 C x1x, (see
Figures 1.4, 1.5), which is critical with respect to the intercrystalline and transcrys-

talline crack formation in the plane x1x,, respectively. Accordingly, if aglz(;& > agﬁc/l)

or aglz?l < agf,), then the intercrystalline or transcrystalline matrix crack is formed
in the plane x;x;, respectively.
Let the function ag])w = a(l)z(g,[((p,al,az,a%vm) (X=IC,TC) of the variable ¢ €

EZ,)I - The critical dimension a%,), M=

ag,),M (ay,az,a3,vin) (X=IC,TC) along the axis x13 C xjx; (see Figures 1.4, 1.5)
defnes a limit state with respect to the formation of the intercrystalline matrix crack
(X=IC) and the transcrystalline matrix crack (X=7C) in the plane x;x; at the mi-
crostructural parameters ay, az, a3, vy (see Equation (1.1)). Accordingly, if ajp >
agj)w (X=IC,TC), the condition [3, 4, 5, 19]-[22]

(0,1/2) exhibit the minimum afﬁ v foro=o

Weri— O =0, ap>dl),, X=IC,TC (9.7)

represents a transcendental equation with the variable xj, and with the root xgy; =
xonm (@, az,a3,viv), which defnes a position of the crack tip in the matrix (see Fig-
ure 9.2). Consequently, the decreasing function fi2p = fiom (X12,9,a1,a2,a3,viN)
with the variable xj» € (a12,x0ps) and with the parameters ¢ € (0,1/2), a1, a2, a3,
viy (see Figures 1.4, 1.5), which describes a shape of the matrix crack in the plane

x12x3 for app > ag/)w ((X=IC,TC)), has the form [3, 4, 5, 19]-[22]
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1
Jiom = s [CM_/ (\/W@—ﬁﬁ) dﬂz} , X12 € {a12,%0Mm) , (9-8)

where Cyy = Car (@, a1,a2,a3,viy) is derived as [3, 4, 5, 19]-{22]

Cur = [ / (W) dxu} . 9.9)

X12=XoMm

Inclusion. The curve integral Wov of wiy = wyy (x12,9,x3,a1,d2,a3,viy) along
the abscissa PP, (see Figure 9.3) in the plane x1,x3 of the ellipsoidal inclusion (see
Figures 1.4, 1.5) has the form

X3

X12

3
[ p Eqx3

X12

0 P, 4 5

Figure 9.3: The ellipse E23 and the abscissa P PP; in the plane x1,x3 of the cubic cell
(see Figures (1.4), (1.5)), where a1y = 04, x127 = OS5 are given by Equations (1.7),
(1.11), and a3 = O3.

b 2

1
Wein = /WINdx3+/WMdX3: / wyn dx3 + / wyrdxs, (9.10)
PP PPy 0 by

where ajy = 04 (see Equation (1.7)), a3 = O3, and b; is derived as (see Equa-
tion (1.2))

as a%z_x%z
by=PP=———, xpp€(0,a12). (9.11)
ap
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With regard to the intercrystalline and transcrystalline inclusion cracks (see Fig-
ure 9.4), the sign -’ and the subscript M in Equations (9.3) and (9.3)—(9.7) are re-
placed by the sign *+’ and the subscript /N, respectively.

X3
Eix3
3
flom
X0
X12
O 6 5

Figure 9.4: The increasing function fi2;y = fiamv (X12,9,a1,a2,a3,viy) of the vari-
able x13 € (a12,x07n5), which describes a shape of the inclusion crack in the plane
X12x3 (see Figure 1.4) for ajp, > aslzclg\, or.arp > aglcl\), (see Equations (9.8), (9.9)),
where xo;v = xo7v (@) defnes a position of the crack tip in the inclusion, and
¢ € (0,m/2) is a parameter of this increasing function.

Consequently, the increasing function fio;n = fi2iv (xlz,(p,al,ag,ag,vm) with
the variable x5 € (aj2,x07y) and with the parameters @ € (0,7/2), ay, az, as, vin
(see Figures 1.4, 1.5), which describes a shape of the inclusion crack in the plane

x1ox3 forajp > aglgg\, orapy > agf]\),, has the form [3, 4, 5, 19]-[22]

1
=— AW, =02 — 12
S . [/ < N 1N> dx1p CIN:| . X12 € (a12,Xo0mv) (9.12)

where Ciy = Cy (@, a1,a3,a3,viy) is derived as [3, 4, 5, 19]-[22]

Civ = U( w2 —ﬂ;N> dxlz] . 9.13)

X12=X0IN
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Chapter 10
Appendix

Cramer’s Rule. The system of 7 linear algebraic equations is derived as

anxy+apxy+ ... +aipx, = by,
anxi+apxy+ ... +aiux, = b,

am X1 +ampxy+ ... +awmx, = by. (10.1)

The root x; (i=1,...,n) is determined by Cramer’s rule [23]
(n)
D; )
x,-zm, i=1,0.,n, (10.2)

where the determinant D™ with n rows and # columns has the form

alln a129 aln
D(n) _ azy, azz, ... axn
anl, Ap2, ... dpn

(—l)lﬂauDY;_I) = 2(_1)1“61”1)5{’—1). (10.3)
1 i=1

-

1

The subdeterminant DE") is created from D) , 1.e., the i-th column of D) ig
replaced by

by
by

. 1 TOWS. (10.4)
by
Similarly, the subdeterminant Dgﬁl) (i,j=1,...,n)with (n—1) rowsand (n—1)

columns is created from D(”), i.e., the i-th row and the j-th column of D™ are omit-
ted. If n =2, then we get
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2 ai, aip
D) = ’ =ajax —apay]. (10.5)
azl, axp
Consequently, if n = 3, then we get
A ait, aiz, di3
DW= ay, axn, ax
asy, asp, dsz
a a a a a a
—q | P> 9 21, 423 21, 422 (10.6)
asz, daszj asy, dasj asy, das2

Integrals. The derivatives of the functions f = X, f = Inx and the constant C are
derived as [23]

! 1
(ﬂ) — AL (Inx) = -, C' =0, (10.7)
x
The indefinite integrals of /' = x*, f = Inx and the constant C have the forms [23]

A

I d

/xxdx:x RILY W /—lenx, /Cdx:Cr. (10.8)
A+1 X

In case of the product fg of the functions /' = f(x), g = g(x), we get [23]

(fg)'=rg+ /g (10.9)
and then the integral of f'g has the form [23]

/f’gdx:fg—/fg’dx. (10.10)
With regard to Equation (10.17), the following integrals are derived as [23]

1
A 7 / }\7
A1 A1 ><x A1 A1

XM 1 :
=—|Inx—— -1
ror (=g ) a2
1
/ln)cabc:/l><lnxa’x:)c1nx7/)c><fa')c:xln)cf/l><a’)c:x(1nx71)7
x

/xllnzxdx: L KM lnzx—Z/xxlnxdx
A+1

/ x?»+l x?Hrl 1 x?Hrl
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P 1 \? 1
— <1nxx+l) o] At 1. (10.11)

Let F = F (x) be a primitive function of f = f(x) in the interval x € (a,b), i.e.,
b

f = dF/dx. The definite integral [ fdx is defined by Newton-Leibniz’s formula
a
[23], which has the form

b
/fdx:F(b)—F(a). (10.12)

Wronskian’s Method. The differential equation (4.3) with a non-zero right-hand
side [23] is derived as

Pu, 2 du, 2uy,
ox2  x, 0x, X2

3
=g, g= Cx"7? (10.13)

i=1
where the integration constants Cy, Cy, C3 are determined by the boundary conditions
in Section 2.3. If g = 0, we get

u, 2 oup 2uy,

2

iy afill =0. 10.14
Xz xp0x, X2 ( )

If u, = x*, then the solutions u{,; t2, of Equation (10.24) have the forms
1
Ulp = Xn, u2n:;- (10.15)

n

The solution u,, of Equation (10.22) is derived as [23]

2 w2
— TR R i .
Uy = i;azum, a —/—Wm dx,, i=1,2. (10.16)

Wronskian’s determinants (), Wi(z) (i=1,2) with 2 rows and 2 columns are
have the forms [23]

) ne ot ) 0, uzm @) Utp, 0
WO =1 Quy, duyy [+ M= duy, | AT = ouy, |- (10.17)
oxp >  Odxp & Ox, Xy’

The determinant Wl-(z) (i=1,2) is created from W(z), i.e., the i-th column of w2)
is replaced by the following one [23]
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0
2 rows. 10.18
2 } ( )

Let f1,..., fn represent n solutions of a differential equation of the n-th rank with
zero right-hand side. Let the functions f1, ..., f, of the variable x exhibit continuous
derivatives to the (n — 1)-th degree. The solution of this differential equation with a
non-zero right-hand side (i.e., g # 0) is derived as [23]

f:l;aifi, a,:/de. (10.19)

With respect to f1, ..., fu, Wronskian’s determinant wn) (i=1,...,n)with n rows
and n columns have the form [23]

fls fls oo fl’l
N 9h Afn
o —| o ot x| (10.20)
I s "1
1 gandr el
where Wl.(n) (i=1,...,n) with n rows and n columns is created from W, i.c., the
i-th column of W (") is replaced by the following one [23]
0
0
7 TOWS. (10.21)
4

Numerical Determination. Numerical values of the thermal stresses in a real ma-
trix-inclusion composite include integrals and derivatives, which are determined by a
programming language. If = f(x), then a numerical value of the derivative df/dx
is determined by [23]

3 St Ay~ /()
ox Ax '
In case of the angles @, v (see Figure 1.4), the step Ax = Ap = Av = 1076 [deg]
is sufficient [3, 4, 5, 19]-[22].
Let F represent a definite integral of the function /= f(,Vv) with the variables
@,v € (0,m/2). Let n, m be integral parts of the real numbers ©t/ (2A9), ©/ (2Av)

(10.22)
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[3,4,5, 19]-[22], respectively. Numerical values of the definite integral /" are deter-
mined by the following formula [23], [3, 4, 5, 19]-[22]

m

n/2 /2 u
F= / / flov)ydodvay ( S £ (i x Agsj X AV)A(p> Av,  (1023)
0 0

j=0 \ i=0

where the steps Ap = Av = 0.1 [deg] are sufficient. Finally, the average numerical
value f of the function f = f (@, V) with the variables ¢,v € (0,7/2) is determined
by the following formula [23]

, /2 w2

2 m n
7= (%) / /f((p,v) dodv ~ <%> Y (%f(ixA(p;ijV)A(p) Av.
00 (10.24)
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