This book presents original mathematical models of thermal-stress-field
interactions in composite materials, along with mathematical models of
thermal-stress induced micro/macro-strengthening and intercrystalline or
transcrystalline crack formation. The mathematical determination results
from mechanics of an isotropic elastic continuum. The materials consist of
an isotropic matrix with isotropic ellipsoidal inclusions. The thermal stresses
are a consequence of different thermal expansion coefficients of the
material components. The interactions are determined by suitable
mathematical boundary conditions, as well as by a suitable iteration
method. The mathematical models include microstructural parameters of a
real matrix-inclusion composite, and are applicable to composites with
ellipsoidal inclusions of different morphology (e.g., dual-phase steel,
martensitic steel). In case of a real matrix-inclusion composite, such
numerical values of the microstructural parameters can be determined,
which result in maximum values of the strengthening, and which define
limit states with respect to the crack formation.
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Introduction

This book! presents original mathematical models of thermal-stress-field inter-
actions in composite materials (see Chapters 3—7), along with mathematical models
of thermal-stress induced micro-/macro-strengthening (see Chapter 8) and thermal-
stress induced intercrystalline or transcrystalline crack formation (see Chapter 9).
The materials consist of an isotropic matrix with isotropic ellipsoidal inclusions.
These stresses originate during a cooling process, and are a consequence of different
thermal expansion coefficients of the matrix and ellipsoidal inclusions.

The mathematical models are determined for a suitable model system. The model
system is required to correspond to real isotropic matrix-inclusion composites. The
thermal stresses are derived within a suitable coordinate system. The coordinate sys-
tem is required to correspond to a shape of the ellipsoidal inclusions (see Chapter 1).

The mathematical determination results from mechanics of an isotropic elastic
continuum (see Section 2.1), and result in different mathematical solutions for the
thermal stresses (see Sections 3.1,4.1, 5.1, 6.1, 7.1). Due to these different math-
ematical solutions, the principle of minimum elastic energy is considered (see Sec-
tion 2.4).

The mathematical models of the thermal-stress-field interactions, which are de-
termined by an iteration method (see Section 2.3.1), along with the mathematical
models of the thermal-stress induced micro-/macro-strengthening and crack forma-
tion (see Chapters 8, 9), include microstructural parameters of a real matrix-inclusion
composite, i.e., the inclusion dimensions a, a», a3, the inclusion volume fraction
vin, as well as the inter-inclusion distance d = d (ay,az,a3,viy) (see Chapter 1).

The iteration method results from mathematical boundary conditions for the first
iteration and for the (N + 1)-th iteration (N = 1,2,3, .. .)), as well as from such a math-
ematical procedure, when the (N + 1)-th iteration considers mathematical results of
the N-th iteration, as well as mathematical results of the 1-st iteration (see Sec-
tion 2.3.1).
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Consequently, the mathematical models are applicable to composites with ellip-
soidal inclusions of different morphology (see Chapter 1), i.e., a; ~ ap ~ a3 (dual-
phase steel), a; > a» =~ a3 (martensitic steel).

In case of a real matrix-inclusion composite, such numerical values of the mi-
crostructural parameters can be determined, which result in maximum values of the
micro- and macro-strengthening (see Chapter 8), and which define limit states with
respect to the intercrystalline or transcrystalline crack formation in the matrix and
the ellipsoidal inclusion (see Chapter 9). This numerical determination is performed
by a programming language. The mathematical procedures in this book are analysed
in Appendix.



Chapter 1

Matrix-Inclusion Composite

Figure 1.1 shows a model system, corresponding to real matrix-inclusion com-
posites, which is considered within the mathematical models of the thermal stresses.
This model system consists of an infinite isotropic matrix and isotropic ellipsoidal
inclusions with the dimensions ap, az, a3 and the inter-inclusion distance d along the
axes X1, X, x3 of the Cartesian system (Oxxx3), respectively, where O represents a
centre of the ellipsoidal inclusion.

a matrix

m

O X3
-
d
o O -
inclusion

--‘--

Figure 1.1: The matrix-inclusion system with an infinite isotropic matrix and
isotropic ellipsoidal inclusions with the dimensions a1, az, a3 and the inter-inclusion
distance d along the axes x1, X2, x3 of the Cartesian system (Oxxpx3), respectively,
where O represents a centre of the ellipsoidal inclusion.

As presented in [1]-[22], the thermal stresses are determined in the cubic cells
with the dimension d along the axes x{, x2, x3 and with central ellipsoidal inclusions
(see Figure 1.2). Due to the infinite matrix, the thermal stresses, which are deter-
mined for one of the cubic cells, are identical with those, which are determined for
any of the cubic cells [1]-[22]. With regard to the volume V;y =4 may,a> az [23] and
Ve = d3 of the ellipsoidal inclusion and the cubic cell, the inter-inclusion distance d
as a function of the inclusion volume fraction vyy is derived as
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where the value viymuq = T/6 results from the condition a; — d/2 (i=1,2,3). Ac-
cordingly, the thermal stresses are functions of the material parameters a;, az, as,
viN, d.

0 0 0 0-0
X

Figure 1.2: The cubic cells with the dimension d along the axes xi, x2, x3 of the
Cartesian system (Oxxpx3) and with the plane x1,x3, where O represents a centre of
the ellipsoidal inclusion, and (x12 C x1x2, x12x3 L x;xp. The thermal stresses in the
cell A and the neighbouring cells B are mutually affected.

Additionally, the thermal stresses in the cell A and the neighbouring cells B are
mutually affected. In contrast to [1]-[13], [15]-[22], this effect is explicitly de-
termnined [14].

Figure 1.3 shows the ellipse £ with the dimensiions a, b along the axes x, y,
respectively. The ellipse E is described by the function

GGy

Any point P of the ellipse E is described by the coordinates [23]

x=acosa, y=bsina, oc¢c (0,2n), (1.3)
where the normal n of the ellipse E at the point P is derived [23]
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Figure 1.3: The ellipse E with the dimensions a, b along the axes x, y of the Cartesian
system (Oxy), respectively, and the point P related to the angle o.

xatano,  (a®—b*)sino
T b b

The thermal stresses are determined by the spherical coordinates (r, ¢v) (see Fig-
ure 1.4). The model system in Figures (1.1), (1.2) is symmetric, and then the thermal
stresses are determined within the intervals @ € (0,m/2), v € (0,7/2) [1]-[22].

Figure 1.4 shows the ellipsoidal inclusion for @,v € (0,7/2) with the centre O
and with the dimensions a; ='O1, ay = 02, a3 = O3 along the axes x{, x, x3 of
the Cartesian system (O, x1;x2,x3) (see Figures (1.1), (1.2)), respectively. Finally,
(P, xn,x(P,xv) is a Cartesian system at the point P, where the axes x, and xy represents
a normal and a tangent of the ellipse E123 at the point P, respectively, xjox3 L x1xp,
x12 C X1x2, Xo L x12. Figure 1.5 shows the cross section 0567 of the cubic cell in
the plane xj,x3 (see Figures 1.2, 1.4). The angle v € (0,7t/2) defines a position of
the point P with the Cartesian system (P, x,,,xq,,xv) (see Figure 1.4) for v = vy (see
Figure 1.5a), v € (0,vp) (see Figure 1.5b), v € (vo,1/2) (see Figure 1.5¢). The points
Py, P, represent intersections of the normal x,, with O567.

With regard to Equations (1.2)—(1.4), the angle vq represents a root of the follow-
ing equation [24]

(1.4)

d /a3 cos? @+ a2sin® @
COSVo 1 2 ( 2 2 2.9 ) d
as 2f((p) sinvq a3 1eosT@ Az s Q 2 '

f (@) =coso, <p6<0,;—t>; f () =sing, <p€<§,g>7 (1.5)
5
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Figure 1.4: The inclusion with the centre O and with the dimensions a; = O1,
ay = 02, a3 = O3 along the axes xj, xp, x3 of the Cartesian system (O,x1,x2,X3),
respectively, where E|p, E|»3 represent ellipses in the planes xjx», xj2x3, respec-
tively, and x12x3 L x1x2, (x12 C X1X2, X¢ A X12. The point P on the inclusion surface
is defined by @, v € (0,7/2), v € (0,7/2), and (P,x,,X¢,xy) is a Cartesian system at
the point P, where P C Ej33. The axes x, and xy represents a normal and a tangent
of the ellipse E»3 at the point P, respectively.

and this root is determined by a numerical method. The angle 6 = /£ (x,,x3) is de-
rived as [24]

\/a% cos2@+a3sin® @
cosO = )
\/a% cos2 @+ a}sin® @ + (a3 tanv)?
sinf — 4 . (1.6)
\/(a% cos? @+ a3 sin’ @) cotv2 + a?
Consequently, we get [23]
o [0\ 'd d
— = — =0 1.7
2 <8v> 3 Oav 147



where the function ©® = © (@) has the form [24]

a?cos? @+ a3 sin® @ v)2
0= \/ ! 2 [ . (a3 vaz) — +cos2v]. (1.8)
as a3 cos? @+ assin” @
X3 Xn X3 Xn
7 6:P2 7 Pz/ 6
AN
3 g = P=xq
P X(p X9
Ay E;
Eios N X12 X12
0P, 4 5 o [P, 4 5
a b
X3

Figure 1.5: The angle v € (0,7/2)
defines a position of the point P with the
Cartesian system (P,x;,,xq,Xy) (see Fig-
ure 1.4) for (a) v = vq, (b) v € (0,vg),
(¢) v € (vo,mt/2), where Vg is given by
Equation (1.5). The points Pj, P, repre-
sent intersections of the normal x,, with
0567, where O567 is a cross section of
the cubic cell in the plane xj2x3 (see Fig-
ures 1.2, 1.4). The angle 0/ (x,,x3) is
given by Equation (1.5).

As analysed in [1]-[20], due to the symmetry of the model system, any point P on
the matrix-inclusion boundary exhibits the displacement u,, along x,,. Consequently,
any point P of the normal x;, exhibits u, along x,, i.e., uy = uy = 0 [1]-[20], where
ug, ty are displacements along the axes xg, xy, respectively.

As presented in [1]-[22], the thermal stresses, which are determined along the
axes Xy, X¢, xg of the Cartesian system (R xn,x(p,xe), represent function of the spher-
ical coordinates (x,,@,0) for ¢,0 € (0,m/2). The intervals x, € (0,x;y) and x, €

7



(x1n,xp) are related to the ellipsoidal inclusion and the cell matrix, where P = Py,
P C Ejp3 and P = P, for x,, =0, x,, = x7n and x,, = xps (see Figure 1.5), respectively.
Finally, we get [24]

. 2
az s;mv
xiNn =P1P=a3 < 3 ) —|—C082V7
apn

. 2 2 2

sinv d cosv app cosv 5
xy = PP, = <—> < —a%) + <7 (x122 —alz) s

ain 2a3 as

d . 2
W’ aypp = Cl%COSZ(P“rCl%Sln Q. (19)

X122 =



Chapter 2

Mechanics of Elastic Solid
Continuum

2.1 Fundamental Equations

As analysed in [1]-[20], any point P of the normal x;,, exhibits the displacement u,,
along x;,. The thermal stresses are determined along the axes x;, x¢, xg of the Carte-
sian system (P, xn,x(p,xe). Fundamental equations of mechanics of a solid continuum
are represented by Cauchy’s equations, the equilibrium equations and Hooke’s law.
Cauchy’s equations represent functions of strains and displacements. With respect
to the normal displacement u,,, Cauchy’s equations-have the forms [1]-[20, 22]

aMn
= 2.1
En axH bl ( )
€p=t0= ? 2.2)
n

1 Ju
€np = Eqn = . a—(;, (2.3)

® Ju
€no = € = x_n a_\;l» (24)

where €, is a normal strain along the axis x,, and O is given by Equation (1.8).
Consequently, £ and €¢ are tangential strains along the axes x, and xg, respectively.
Finally, €,¢, €,0 and €y, €9, represent shear strains along the axes x, and xg, xg,
respectively. Due to uy = uy = 0, we get €¢v = €y = 0 [1]-[22], where uq, uy
are displacements along the axes xg, Xy, respectively, and €y is a shear strain. As
presented in [1]-[22], the equilibrium equations are derived as

d6, 0C 00
20,1—o(p—cv+x,187"+ a(’;‘p +0 a\""’ =0, 2.5)
n
J0 Jo
=2 4 30+ X =2 =0, (2.6)

foL0} oxp,
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dJo dJo
S a—\’e +36n0 + Xn ax';e =0, 2.7

where G, is a normal stess along the axis x,. Consequently, G, and Gy are tangen-
tial stresses along the axes xy and xg, respectively. Finally, ¢, 6,6 and Ggn, Cgy
represent shear stresses along the axes x,, and x4, xg, respectively, where 6,9 = Ogn,
Gu9 = Opp. Due to €gy = &y = 0, we get Ogy = Oyg = 0 [1]-[22], where Gy is a
shear stress. With regard to €49 = 0, 6pg = 0, Hooke’s law has the form [1]-[20, 22]

€y = 5110n + 512 (G + Og) , (2.8)
€¢ = 512 (0n + Op) +5110¢, (2.9)
€9 = 512 (On + G¢) + 51100, (2.10)
€19 = 54409, (2.11)
€np = $440ng; (2.12)

where 511, 512, 544 are derived as [25]

=k g B = 20EH) (2.13)

Finally, £ and u are Young’s: modulus and Poisson’s ratio, respectively. In case of
the ellipsoidal inclusion and the cell matrix, we get E = Ejy, u = yyy and E = Ey,
o = uyy, respectively.  With regard to Equations (2.1)-(2.4), (2.8)—(2.12), we get

[11-22]

J
cn:(c1+cz)$—2(:2 z—” (2.14)
n n
d
Gp = 0p = —C2 aZ”Jrcl?, (2.15)
n n
1 du,
- itn 2.16
G ©  du, 2.17)

"o §44Xn a_V7
where c1, ¢2, ¢3 (see Equation (2.24)) have the forms

10



E UE
—_—, CZ:——’ C3:74<17‘u><0, (218)
(L4u) (1—=2u) (L+u) (1 —2u)
and c3 < 0 due to u < 0.5 for real isotropic components [26]—[32].

Letaj; = cos[Z (x1,x;)] (i =n,@,0) represent a direction cosine of an angle formed
by the axes x, x; (see Figures 1.4, 1.5). With regard to Figures 1.4, 1.5, the coefficient
ay; = cos[£(x1,x;)] (i = n,@,0) is derived as

cl1 =

ajp = cosPsin®, aj,=sin@sin®, ajg=coso,
agy = —Ssin@, ag; = —cosQcoso, (2.19)

where cos 0, sin0 are given by Equation (1.6). The stress 6 along the axis x; has the
form

G1 = a1, On +a19O¢+ a1606 + ain (Cng + Cng) + @19Oen + A16C6n- (2.20)

With regard to Equations (2.14)-(2.17) and due to Gnp = Ggn, Gug = Opp [25], we
get

L iy Ol 2.21)
1=n ox,, 2 Xn  S44Xp V3 00 I ov /)’ '
where y; (i=1,...,4) is derived as

Y1 =aw(c1+c2) — (a19+aip) c2, V2= (arp+aig) c1 —2aisca,
Y3 =ai, +aye, Ya=0(ay,+ap), (2.22)

and O is given by Equation (1.8). As presented in Chapter 8, the analytical models of
the micro-strengthening G = Gy (x1) and the macro-strengthening Gy result from
the stress 61 (see Equations (2.21), (2.22)).

Let Equations (2.14)—(2.17) be substituted to Equation (2.18) and to [0Eq.(2.6)/0¢]
+ © [0Eq.(2.7)/dv]. Consequently, Equations (2.5)—(2.7) are derived as

%u ou U,
2 n n n
—+2x, — —2 — =0 2.23
n ox?2 + 2 ox;, u"+S44 (c14¢2) ’ (2.23)
10
" —ax: =c3U,, (2.24)

where U, is derived as

11
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The system of the differential equations (2.23), (2.25) is solved by the mathemat-
ical procedures in Sections 3.1, 4.1, 5.1, 6.1, 7.1.

Un

(2.25)

2.2 Elastic Energy

As analysed in [1]-[22] with respect to the different mathematical procedures (see
Sections 3.1, 4.1, 5.1, 6.1, 7.1), such a mathematical solution, which exhibits a min-
imum value of the elastic energy W of the cubic cell, is considered, where Wyy and
Wy is elastic energy, which is accumulated in the volume Vyy and V), of the ellip-
soidal inclusion and the cell matrix, respectively. The elastic energy density w is
derived as [25]

1
W= (€40n + €90 + €000 + €1gOnp + €460, (2.26)

and Wy, Wy, and W have the forms

/212 xy
Wiy = /W]NdV[N =8 / / / wle,%dxn d(p dV,
Vin 0o 0 O
n/2 /2 xy
Wyt = /deVM — 8/ / / Wy d dv.,
Vi 0 0 xmwv
We = Win + W (2.27)

2.3 Mathematical Boundary Conditions

The mathematical solutions of the system of the differential equations (2.23), (2.25)
include integration constants. As presented in [1]-[22], these constants are deter-
mined, using Cramer’s rule (see Chapter 8) [23], by the following mathematical
boundary conditions for the ellipsoidal inclusion and the cell matrix.

2.3.1 Cell Matrix. Iteration Method

The iteration method is performed by the following mathematical procedure. In case
of the first iteration, i.e., N = 1, the mathematical boundary conditions for the cell

12



matrix are derived as [1]-[22]

o] =-pl, (2.28)
Xn=XIN

],

With regard to [ey] = —plVpu, [egiy] = —pl pu (111221, the
Xp=XM Xn=XIN
(1)

normal stress p, ° on the matrix-inclusion boundary, i.e., for x, = P{P = xjy (see
Figure 1.5), which acts along the axis x, (see Figures (1.4), (1.5)), has the form
[1]-22]

—0. (2.29)

pl(11) _ (oun — o) (Tr T)’ (2.30)
Pm +PIN

where T, = (0.35—0.4) x T, [26] and T,, is relaxation and melting temperature of
a real composite system, respectively, T is final temperature of a cooling process.
The coefficients pys and pyy are given by Equations (3.11), (4.11), (4.14), (4.17),
(5.10), (5.13), (5.16), (6.9), (6.12), (6.15), (7.10),(7.13), (7.16) and (3.14), (6.20),
respectively, with respect to a minimum value-of the elastic energy W¢ (see Equa-
tion (2.27)). In case of the (N + 1)-th iteration (N=1,2,3,...), the mathematical
boundary conditions are derived as

(N+1)

[GE,%H)} = —p, , N=1,2,3,..., (2.31)
Xp~XIN
{65111\171)} B _0513)7 N=123,..., (2.32)
Xn=Xm
[uflzl\‘/;l)} =0, N=1,2,3,.... (2.33)
Xn=XMm
Similarly, with regard to [e(lﬁl)} = - NH ¢M+G ¢B, [ IN} =
o. X=Xy ¢ Xp=XIN
— pﬁ, )pIN [1]-[22], the normal stress pS, +1) on the matrix-inclusion boundary has
the form
w+1) _ (ouy—our) (T, —T) + om0
Pn = nB 5 N:172737"'7 (234)

Oy +piv
where ¢y7, dp are given by Equations (4.20), (5.19), (6.18), (7.19), (7.22), (7.25).
The normal stress 6,5 = Gn]; is determined by the following mathematical pro-
cedure. With regard to Figure 1.2, the stresses in the cells B affect those in the cell
A. Let P represent a point on the cell boundary with the coordinates (xps,®,v) and

13



(xp, —@, V) for the cells A and B, respectively. Let (Pxuaxgaxes) and (Px,pxopxes)
represent coordinate systems at P in the cells A and B (see Figure 1.4), respectively.

As presented in [14], the effect of the cell B is represented by the normal stress
onp, Which acts at the point P along the axis x,4. The stress 6,5, which is a projection
of 6B, OpB, Ogp ONLO X4 at P (i.e., for x,p = xp), is derived as [14]

OnB = ﬁl (GﬂM)xnzxM + 62 (G(PM)xn:xM + 63 (GGM)xnzxM
+ (014 02) (Gnom) + (01 +93) (Cnom)y, —x,, » (2.35)

Xp=XM

where Gy, Goum, Ooms OnpM» Onoy are determined by the mathematical boundary
conditions (2.28), (2.29) (see Equations (2.14)—(2.17)), and ¥; (i=1,2,3) has the
form [14]

V1 = 1—25in2(p sin?v, ¥, =V/2sin (g —(p) sin@ sinv,

1. T\ .
V3 = 3 sin (2(p — E) sin2v. (2.36)

2.3.2 Ellipsoidal Inclusion

In case of the ellipsoidal inclusion we get [1]-[22]
(”n)x,,zo =0, (2.37)

CHM (2.38)

where x7;yv is given by Equation (1.9). Additionally, the conditions
(unin)y, o 7= Eoo, (&v)y, 0 7= £, (OIN),_o +— Foo are required to be ful-
filled [1]-[22]. The normal stress pE,N) (see Equations (2.30), (2.34)), which acts

along the axis x, (see Figure 1.4) on the matrix-inclusion boundary, is related to the
N-th iteration (see Section 2.3.1), where N=1,2,3,.... .

2.4 Energy Analysis

The normal stress G,p = G%), which is a function of the radial stress p, = pg,N),
is derived by 13 mathematical solutions (see Equations (3.9), (4.9), (4.12), (4.15),
(5.8), (5.11), (5.14), (6.7), (6.10), (6.13), (7.8), (7.11), (7.14)). TN =10orN+1 =

2,3,4,..., then pn = p) or pn = p* Y in Equations (3.9), (4.9), (4.12), (4.15),
14



(5.8), (5.11), (5.14), (6.7), (6.10), (6.13), (7.8), (7.11), (7.14) is given by Equa-
tion (2.30) or (2.34), respectively. Consequently, the mathematical boundary con-
ditions (2.31)—(2.33) for the cell matrix result in 6 mathematical solutions, which
are given by Equations (4.18), (5.17), (6.16), (7.17), (7.20), (7.23). Finally, two
mathematical solutions for the ellipsoidal inclusion are given by Equations (3.12),
(6.19).

As analysed in [1]-[15], W¢ represent the total potential energy Wr [25], i.e.,
Wce = Wr. Consequently, with respect to 156 mathematical solutions, i.e., 13 X 6 x 2,
such a combination of the mathematical solutions is considered to result in a mini-
mum value of the elastic energy W (see Equation (2.27)) [25]. Additionally, W¢ =
Wc (N) is assumed to represent a decreasing discrete function of N =1,2,3,... witha
minimum value for N = N, C {1,2,3,...} or N — . If not, then we get Nyqx = 2.
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Chapter 3

Mathematical Model 1

3.1 Mathematical Procedure

Let the mathematical procedure x, [0Eq.(2.24)/dx,] be performed, and then we
get [1]-[22]

0%y, U,
2 n n

1— —=0 3.1
xn ax’% +< C3)xl’l aXn ) ( )
where ¢3 < 0 and U, = U, (x,,¢,0) are given by Equations (2.18) and (2.25), re-
spectively. Let Equation (2.24) be substituted to Equation (3.1), and then we get
[11-[22]

0°U,
X7 ax’%” +c3(1=¢3)U, =0. (3.2)

Let U,, be assumed in the form U,, = x,z‘, then we get [1]-[22]

Uy, =CixM+Cyxl2, (3.3)

where Cy, C; are integration constants, which are determined by the mathematical
boundary conditions in Section 2.3, and Aj, A, with respect to u < 0.5 for a real
isotropic material [26], have the forms [1]-[22]

M :%[14-\/1—1-16(1—;1)[1—&-4(1—/1)]} >3,

M:%[1—\/1+16(1—y)[1+4(1—y)]} < -2. (3.4)

Let Equation (3.3) be substituted to Equation (2.23), and then we get [1]-[22]

%u Jdu
x,%aT;—&—ana—x:—Zun :Clx,i” —I—ng,z”. 3.5)
The mathematical solution of Equation (3.5), which is determined by Wron-
skian’s method [23], is derived as

17



lty = C1xM 4+ Cyx. (3.6)

With regard to Equations (2.1)—(2.4), (2.14)-(2.17), (2.21), (2.26), (3.6), we get
g, =C] 7\.1)@3\'1_1 —|—C27\.2x,};2_1,
€p= Clxr);lil —|—C2x,3”271,

aCy 5.1  dC
€np = $44O0ne = a—(plx,a'l ! + a—(;

dC 41 0Cy 5. _
€9 = 54409 = O (avx,z” Ly —x,’,‘z M),

A—1
Xn )

av
Gy =Ci1E x4 Eaxl !
6o =Gp=C1E3x 1+ CrEgxl (3.7)

where 0, s44 is given by Equations (1.8), (2.13), respectively. The coefficients &;,
€224, s, (i=1,2) are derived as

£ = Ei(1—p)+24 Epim E(14p)
(=2 T (A (1-2)
where y; (i=1,...,4) is given by Equation (2:22).

=1,2, (3.8)

3.2 Cell Matrix

Due to two integration constants, i.e., Cyps, C2p7 in Equation (3.6), and two mathe-
matical boundary conditions (see Equations (2.28), (2.29)), the mathematical model
in Section 3.1 is suitable to determine the stress 6,,5. With regard to Equations (2.28),
(2.29), (2.35), (3.6), (3.7), we get

Myt [ Xn A1 Mt [ xn Ao =1
M= —Pn|v— | — +o— | = ’
Cim \ xm Com \ xm
. . 1 (xn >7»1M1 . 1 (xn >7»2M1
M=€m=—DPn|7— | — | )
¢ br Cim \ xm Com \ xm
., 9 4, 0
Eng = saay Gng = —1p ! 5 (pikzu—l> — g (p—xM-l> 7
C\Cimxy, ©\ Comxyy

7»1M*1£ Pn + 7\42M71i Pn
*n 9 Mp—1 *n 9 hoy—1 ’
v CIMXM v §2MXM
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a1 At —
— M(L) v +§ﬂ<x_n> !
" "1 Cim \xm Com \ xu ’
B B Eanr (2 \ T Banr (xa \ !
GoM =Com = —Pn |7 | — +o—— :
Cime \ xm Com \ X

(@) , (V)

_l’_

Oup = — [PBPn"“pB Ps ] ; (3.9)
Sa4m

where O, x;n, Xar, Saam, Nivt ﬁjM (i=1,2; j=1,...,4) are given by Equations (1.8),
(1.9), (2.13), (3.4), (3.8). respectively. The coefficients {ay (i=1.2), pg. pi) (T =
©,V) have the forms

Aip—1 As—im—1
XIN XIN
ar =8 () e ()

M XM

o5 — i ﬁl&iM+(ﬂ2'+ﬂ3) a2+iM,
i=1 C.,tM

i Pn +i Pn
90 Clij}f/llMil el CzMX;}f}Mfl

d Pn d Pn <
ov (CWX/;QMl) Ty (CZMX%MIN e

where iy, 9 (i=1,...,4; j=1,2,3) are given by Equations (2.22), (2.32), respec-
tively. The normal stress p, is given by Equations (2.30) or (2.34) for N =1 or

N+1=1,2,..., respectively. With regard to Equation (3.9) and [EE;}L

— iV pas 1111221, the coefficient pyy in Equation (2.30) for N = 1 is derived as

Mp—1 Aom—1
1 M 1 2M
oy = — <x’N> +— (x”") . (3.11)
Cim \ xm Com \ xm

3.3 Ellipsoidal Inclusion

Py = (91 +02)

91(3V) =00 +03)

] Xn=XM

In case of the ellipsoidal inclusion, we get Coy = 0, otherwise we get (u,/v) X0
4 oo, (EIN)X,,—»O — F oo, (O1n),_,9 — Foodue to Ay < —2 (see Equations (3.4),
(3.6)—(3.12)). With regard to Equations (2.37), (2.38), (3.6), (3.7), we get [1]-[22]

X Av—1 x Av—1

n n

EnIN = — PnPINMIN <—> , €@IN = €9IN = — DPnPIN <—) )
XIN XIN
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dam—1 O [ PnPIN
€npIN = S44IN OnpIN = —X;™™ 30 ( o1 |
¢\ Xy

-1 O [ PPN
€ IN = S44IN OpvIN = —O X'V v ( ;

Av—1
XIN
Xy Av—1 X, Av—1
OnIN = —Pn\ —— ; O@IN =OvIN = — Pn pPiNnEav | — )
XIN XIN
~1
Sy =Nxm
n/2m/2
21 4 2hnt1
WiN = KIan( w ), Wiy = —/ /KIN ™ dedv, (3.12)
2Ay +1 T

where ©; xzv; Saav; v Ens &3y are given by Equations (1.8); (1.9); (2.13);
(3.4); (3.8); respectively. The coefficients M7y, ¥7n, & v have the forms

N = — Pn (MnYUN +721N) IV i Pn
&y xiim=l S44IN 0P Ay—1

E1nXn
_ YaIN i Pn
S44IN ov glle,sz_l ’
01 Jac ?
1
KN = E,.1N ( p;w1> + la— <7pilml>]
Sun Xy Sa4iN | 90 \ &y Xy

2
v \ & x;}{/m*l ,

S44IN

_Ew {hun v (1 —pn) + 4] + 2}
2(1+mn) (1 =2uy)

Ev (3.13)

where vy (i=1,...,4) is given by Equation (2.22). The normal stress p,, is given
by Equations (2.30) or (2.34) for N=1or N+ 1 =1,2,..., respectively. With
regard to Equation (3.12) and (E‘PIN)xn:xm = —pupin [11-[22], the coefficient p;y
in Equations (2.30), (2.34) is derived as (see Equation (3.8))

b () (1 —2uw)
Eunv  Emv[Mnv (1 —pn) +2un]

PIN (3.14)
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Chapter 4

Mathematical Model 2

4.1 Mathematical Procedure

Let the mathematical procedure 9°Eq.(2.24) /dx2 be performed, and then we get
[11-[22]

U, U,
(D)
n ox} +(2-c3) ox2

where ¢3 < 0 and U,, = Uy, (x,,, 9, V) are given by Equations (2.18) and (2.25), respec-
tively. Let Uy, be assumed in the form U, = x,7,‘, and then we get

=0, “.1)

U, =Cixn+Cyx? +Cs, 4.2)

where C;, C;, C3 are integration constants; which are determined by the mathemati-
cal boundary conditions in Section 2.3.' Let Equation (2.36) be substituted to Equa-
tion (2.23), and then we get

2 3214” aun o 2
X, ax% +2x, gn —2u, =C1x, +Cox,* +C3x;,. 4.3)
The mathematical solution of Equation (4.3), which is determined by Wron-
skian’s method (see Chapter 10) [23], is derived as

1 )
u, =C1x, <§ — lnxn> +Cox? 4 Cs. (4.4)

With regard to Equations (2.1)—(2.4), (2.14)-(2.17), (2.26), (4.4), we get

2
g, =—C (g —ann) +C2€3x,i3_1,

1 C

S(P =€&p = C] (g — lnxn> +C2X,€371 + —3,
n

1 JC _10Cy 1 9C

£n(p = S44(5n(p = <§ —lnxn) a(p +xrcl‘3 ! a(p x_n a(p )
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3 ov v  x, ov
_ ¢ {2(c1 +2¢2)

1 oC oC 1 oC
Sne—S44Gne—®K—lnxn> e 2+——3}
2C3c‘2
3 X,
c1+2c

3

+ (e —cz)lnxn] +Cl(c14c2)e3—2c] x5~ -
C3 (6]

Xn

— (a1 —cz)lnxn] +Cr(c1—cac3)x 1y

,1+m7

n

Oy =09 =C) {
61 =M1 +M2 Inx, +n3x,°
W=C12K1 +C22K2+C32K3 +C1Crxq4+C1 C3K5 +C2C3K6

Ll fac\? 5 (0Cy 2 X2 06\ ° 5 3G\ 2
a(@“ﬂ(w m 3 ) T (%
el 9Gs 2+®2 G ? dC1 0C ngaﬂ
sa4 |\ 90 ov s\ 0p J9 OV oV
15 (3G | (23CIAC | 6 (ACIC: | 9CC
+S44<3(P e © ov ov sz \ 00 0@ © N ov ) 4.5)

where O, ¢; (i=1,2,3), s44 are given by Equations (1.8), (2.18), (2.13), respectively.
The coefficients N, ki, xx (j=1,...,4; k=1,..7,6) are derived as

71 1 8C1 8C1
=3 [Cl (Y2*2Y1)+§; (Y3+Y4a\,” ,

¢
n2 [C1 §7 ~H(2)—i—L <Y3 %Cl + 488%)}
T13—C2(ch3+72)+i( %%4—\(4%)
n4zcavz+$<vsaacs+ %?)

) — 1 ln2 2(C276‘1) Te1+2c¢

K1 = Xp + # Inx, + 9 ,
2
cglcr+e 5 ¢
K2 = [%4—61(1—263)] xn(c3 1), K3:x_§l’
2 :
Ks=c3(cp—ca)x ™ Unx, +2{c1 _ ¢ ( C;*'CZ)} ;3—1’
2
ks =2 k=0,
Xn
2 _ 1
X1:1n2xn**111xn+ Xz:x’%(cs l)’ Y=,

3 9’
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2 L 2 2lnx o
X4 =35 = I, x5 = s - xe= T, (46)
n n

where y; (i=1,...,4) is given by Equation (2.22). The integrals ®;s, Wiy of the

Kim =K (Xn), Xjm = Xjm (xa) (i=1,...,6), respectively, have the forms
Xpm XM
q)iM = / Kisz dxn, \PiM = / X,’Mx,zl dxn, = 1, - ,6, (4.7)
XIN XIN

where x7y, xj7 are given by Equation (1.9), respectively. The integrals are determined
by the formulae in Chapter 10 (see Equations (10.10)—(10.12)) and consequently, we

get
3 In Ly? + !
oy Xiv — — z
IN IN 3 9

2
— 1 1
Dy = M {x& l(lnw ~ 3) s

2(com —cim) 1 1
N xy (Inx -3 — Xy lanN—§

(Tewm +2cam) (x5 — x3y)
27 ’
_ 1 3y (c1m + com)
C 2cay+1 { 2
D3y = ey (xp — xn),

cam(ciy—com) | ¢ +2< 1 > ¢ +2< 1 )}
(I) = | X 3 1nx — —X M 1nx —
4M 3 +2 { M M e +2 v N e +2

2 cam (2cim +com) ( c3m+2 C3M+2>
+ ) 3 M XIN )

)
D5y =c1yu <XM —x,N) , Doy =0,

3 3
1 2 1 2
\PIM = X?M [(lan— 1) <lnx — §> + §:| - XI?N |:(111)C1N— 1) <III)C[N— 5) =+ §:| s

®oyy T e (1 - 2C3M>] (xl%/lcm-‘rl 7x12163M+1> ’

|:CIM -

X
Yoy =M S ean _ﬁ , Wam =xm —xiv,
2 c3m+5 2| cm+5S
Yoy = ———— { xCmt? {7—lnx } —xGmt | 2Ty ,
M a2 { M 3(c3m+2) M N 3(c3m+2) i
5 5 xC3M+l _x03M+1
\PSM = x%,l (6 — lan> 7)C%N (8 — ln)C]N) y "P6M = A4C3—+1HV (48)

In case of the ellipsoidal inclusion, we get (”nIN)x,ﬁo — & oo, (SIN)x,,HO —

+ o, (0v), g — Feedueto (Inx,), o — + eoand (x;’) — =+ oo for
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c3 < 0 (see Equations (2.18), (4.4)). Accordingly, the mathematical solution (4.4) is
suitable for the matrix.

4.2 Cell Matrix

The stress G, is determined by two mathematical boundary conditions, i.e., by
Equations (2.28), (2.29). With regard to three integration constants Cys, Capr, Capyg
in Equation (4.4), the following conditions are considered to determine G, i.e.,
Cim #0, Com # 0, Cayy = 0; Cimp # 0, Gy # 0, Coy = 05 Com # 0, Gy # 0,
Ciy = 0. Consequently, the mathematical boundary conditions (2.31)—(2.33) are
applied in case of Cypy # 0, Caps # 0, Capr # 0.

Conditions Cyy; # 0, Copr # 0, C3py = 0. With regard to Equations (2.28), (2.29),
(2.35), (4.4), (4.5), we get

2 1 cowt
Eanﬁ —+Inx,+c3p | = —Inxy An ,
Cm |3 3 XM
1
P |1 1 X\ M
S(pM =&y = — C_M § — lnxn — (§ — lan) (}E) N

1\ 9
€n1oM = S44M OnoM = <lnxn - §> 30 (%)
0 p 1
cip—1 n
+ anM a(p C C'gM 1 (5 - ]an>
1 8 "
€noM = S44M Onom = 6{ (lnxn - 3) E (é)_M)

.0 ; 1 ]
+xrfw lav Q qu 1(3lan) },

Pn {2(C1M+2C2M)

+ (C M — C2M) Inx,

M= 3
1 Xn cam—l
+[(cim+cam) c3m —2com) <§_lan) (-) ;
XM
Dn | Cim+2¢om
OpM =0y = — 75— | ——5—— — (c1m — capr) Inxy,
Cm 3

1 X cam—1
—(c1m —cameam) <31nXM) (> ,
XM

24



pispn 1 { (¢) 9 ( ) (v) 0 < )}
W=— % — — —— + — |+
ons Cm S44M P15 3¢ a(P Cum P1 ov \Cm

B
P2B Pn 1 pZB
+ W (g —Inxy S44M a(p [ C?M I lnXM>]

pg\l/i J Pn 1
i S 49
+ S44M av CMXIL“;M—I <3 an) ) ( )
where ©, xpy, 44y, cim, (i=1,2,3) are given by Equations (1.8), (1.9), (2.13), (2.18),
respectively. The coefficients C s, Cing, Pins pg) (i=1,2; 1= @,Vv) have the forms

1 X cam—1
Cv =Com —Cim <§ —IHXM) . G = [(cim+cam) c3m — 2 com] (gj) ,

2(cipy+2c¢p
Com=— {w + (c1m _CZM)lanN] ;

cim +2¢om
3

p2B = {191 [(c1m+cam) cam — 2 cam] + (02 +03) (c1m — canr €3m) }xﬁwlv
1 1
pg(lp;):(ﬁl+19‘2) (gln.)CM>7 pg\g:@(ﬁlJrﬁ,?) <§IHXM>7

péB)_(ﬁl'i_ﬂ) et p%)— O (0 +03) x5!, (4.10)

PIB= (02 4+03—201) + (comr — cim) (01 + 02 +93) Inxyy,

where ¥; (i=1,2,3) is given'by Equation (2.32). The normal stress p, is given by

Equations (2.30) or (2.34) for N=1or N+ 1=1,2,..., respectively. With regard

to Equation (4.9) and [ (1) } — —ptY pas [11-1221, the coefficient pys in Equa-
Xp=X,

tion (2.30) for N = 1 is derived alg

ciy—1
pm = Ct,l |;1anV (;lan) <))Z\1/1V) ] . 4.11)

Conditions Cyy; # 0, C3py # 0, Copy = 0. Similarly, with regard to Equations (2.28),
(2.29), (2.35), (4.4), (4.5), we get

Pn 2
&M = = +1
nM C_,M X <3 + len> )

€ € po| L (] In Ll In
oM = oM — CM X 3 Xn X, 3 XM )
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1 d n 1 0 [pa(1—=3Inx
€noM = S44M OneM = — <§ lnxn> 3= (C;XM) +x—n 30 {w] )
€noM = S44M OnoM =

1 d P 1 0 [pn(1—3Inxy)
_6{(5_1”") %(CMXM>_X_n§P[ 3Cm 7
GnM — é?_n {i [M+<61M—C2M)lnxn:| — 2C2M (%—lan) }7
M

XM 3 Xn
GoMm = Oom =
_ b L et 2em | = M (L
C_,M X 3 M 2M n X, 3 M )

P1BPn 1 |: (9) J < Pn ) (v) 0 ( Pn )]
Opp=———— —— |Pip =~ +Pip o
? Cmxy  Saam Pi 90 \ Emxm Pis ov \ Smxm
()
P3spn (1 P3p O [pn (1
+ Cor <3 lan>+s44Ma(p &M <3 Inxyy

(v)
Pip O [pn (1
+ B [CM (3 1an)} , 4.12)

where ©, xp7, Saap, cipg and P, pg (i=1,2,3; T= @,Vv) are given by Equations (1.8),

(1.9), (2.13), (2.18) and (4.10), respectively. The coefficients s, p3p, pgTB) (T=09,v)
have the forms

1 (2 2 2 1
Cy=— M+(01M—62M)IHXIN + com = —lInxy |,
XM 3 XIN 3
1
p3p = — |c1m (D2 +03) — ZCIMﬂI] ;
XM

1+ 0 00, +0
@) Dt (01 +93) (4.13)

3B T XM ’ 3B T Xy ’

where O; (i=1,2,3) is given by Equations (2.32). The normal stress p, is given

by Equations (2.30) or (2.34) for N=1or N+ 1 =1,2,..., respectively. With

regard to Equation (4.12) and [SE;]H = —pﬁll) pm [11-[22], the coefficient pys
X=X,

in Equation (2.30) for N = 1 is derived as.

1 1 /1 1 /1

Conditions Cyys # 0, Capy # 0, Cppr = 0. Consequently, with regard to Equa-
tions (2.28), (2.29), (2.35), (4.4), (4.5), we get
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PnC3m (xn ) csm—1
EnM = — —_— ,
CM XM \ XM
Pn |:1_ (x_n>c3M:|
CM Xn XM ’
1 a Pn o [ pn
TS T, [ (T U
e a _ Pn d (p

au—1
_ Pn)c3m (C1M+62M) *2C2M X\ 2coy
GnM — T - + 9
CM XM XM Xn

EoM = Eop =

_ _ Dn |Cim—comCay [ Xn ey
Com =Oom = — ¢ |—— = -,
M XM XM Xn
__Ppa 1 [ (g9 P\ ot 0 (_Pn
OnB = CMX;;M Saap [plB a(p C +plB v C C3M
P3sPn , 1 [ (¢) 9 ( Pn (v) d [ pa
+ CM +S44M {p33 a(p C +P3p 5= v C , (4.15)

where ©, xp, s44pm, civ (i=1,2,3) and pjg, pg.B) (j=2,3; T =@, V) are given by Equa-
tions (1.8), (1.9), (2.13), (2.18) and (4.10), (4.13), respectively. The coefficient £y
has the form

C3m

+2C2M}. (4.16)
XIN

The normal stress p,, is given by Equations (2.30) or (2.34) for N=1orN+1 =

1,2,..., respectively. With regard to Equation (4.15) and [8((;1‘),[} =— psl]) PM
Xn=XM

[1]-[22], the coefficient pys in Equation (2.30) for N = 1 is derived as

ou = KX’N> SMI} (4.17)
[

Conditions Cyy; # 0, Cops # 0, C3p1 # 0. Finally, with regard to Equations (2.21),
(2.27), (2.31)—(2.33), (4.4), (4.5), we get

1 2 _
M = — C_M |:§1M <§ —|—lnx,,> —C_,QMC3M)C;3M l:| ’
C3M:|

1 1 _
EoM = Eom = 7 |:C1M (5 —hlxn) +Comx ! + ;
n
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EnoM = S44M OnoM = <

1 Cim c3— 13 Com

€,0M = S44M Opom = © [( -

_|___

3

1

lnxn>

d

Cam

(e

Xp OV

(

Cm

Cu

)]

)+

n

w5

Cu

- C2M [(CIM

ool

1
Com = Oom = C_

2(cim+2com)

3 + (C IM— CzM) lnxn]

|

2¢
+com)cam —2com] xS 4 2eamGam

Xn

2

2
CMFIOM () lnxn}

3

1 cimm
+ Com (c1m —comeam) %M + x},
n
—1, Nam
Giym = Nim + Moy Inx, +n3p 3 +x—,
n

2
1
wy = (C_M> (KlMC%M-l-KzMC%M‘FK:&MC%M

el e (2]
e e ()]
+2iiii{_a¢(%17>_2+@fai(ii’f)ﬁz}
() a8 wa () 2(%)
) A wa (@) 2(%)
e () 5 (5) o () 5 (2))

+ % Ciar Qo+ sn1 C v Cang + Ko Com C3M)
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n/2 m/2

2
1
(C_M> (‘I)lM C v+ @onr Chg + P Gy + Pang Sana Som

S

Il

N
o
o

+ Dspr 81 Cam + <D6M§2MC3M) dedv

4 TE/ZT[/Z _a C 12 _a C -2
T 9 (51 2|9 [ 5IM
+s44M0/ O/\PIM{-Bcp(cM)_ o5 (e)] }dq)dv
n/2 /2 _ 2 - 12
4 d (Com o[ 9 (Com
+m0/ 0/T2M{_%<C7>_ +0 _E<—M | dodv
/2 /2 _ 42 - 2
4 J (Csm [0 <C3M>
- N 9 ([ 53M 9 53M
+s44Mo/o/ 3M{-a‘P<CM>_ o Lov \ Cm /| o
4 /2 /2 5 C 3 C
P Y ;>_ ﬂ)
544M0/0/ M {8@ Cm ) 00 \ Cm
Jd (T 0
27 (3IMy 2
+68V<CM

3
3 pirCiv 1 { (9) O (CiM) (v) 0 (CiM)]
ot S v saam Pis 99 \ Cm Pis 3y Cm (-18)

where ©, xp, s4am, iy Kjm, Xjms Pjm, Y jms piss Pg) (=123; j=1,...,6; 1=
¢, V); are given by Equations (1.8), ( (1.9), (2.13), (2.18); (4.6); (4.8); (4.11), (4.15);
respectively. The coefficients Cing, Car, Mjnmr (1=1,2,3; j=1,...,4) have the forms

Cit = —pnCim +0n8CioMm, i=1,2,3,
—1
Ciim = (cim+cam) C3MXEM )
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where v (i=1,

2eomxp™
1 M
Ciom = [(cim +comr) cap — 2com] X33~ + ,

XIN
2

Coim = (c1m + com) (§+IHXM) )

2(ciy+2c¢ 2¢omX 1
Coom = 2(ew +2cm) + (e — o) Inxgy — =22~ iy )

3 XIN 3
243y
C3im = — (c1m +cam) { +(1 +03M)1an} 0"
2(cim+2com

C32M = - {(f) + (CIM — C2M) lanN] xlf,;M

1
—[(c1mr +cam) c3m — 2 cam] <§ - 1HXM) i

Cm = (cim +com)
« {_ |:2(C1M‘:|;202M)

1
+ (ClM — CzM)lanN:| C?,MXA,;M

2
+[(c1m + cam) cam — 2 cam) <§ + 111XM> gt

2 CZMXL3M }
XIN

st ol 1) (5]

L

Com (Yimez+vam) | 1 J (Com
Cu Um{ %(c_

nan = L () g ()] @

n [2+C3M

(1— C3M)1an]

N3y =

XM_

Equation (2.34) for N+1=1,2,... are derived as

1 1 _
q)M: C_ |:C11M <§—]FIXIN> +C21MXIC§/M 1+ C31M:| ’

M XIN

1 l C;Mfl C32M
Op=7—|Ciom | 5 —Inxpy | +Coomxpy’™ + . (4.20)

CM 3 XIN
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.,4) is given by Equation (2.22). The normal stress p, is given by
Equations (2.30) or 2.34)for N=1orN+1=1,2,...,
to Equation (4.18) and [eqgu]  _

respectively. With regard
—pnby + 6,5 0p, the coefficients ¢y, Op in



Chapter 5

Mathematical Model 3

5.1 Mathematical Procedure

Let the mathematical procedure 9°Eq.(2.23)/0x2 be performed, and then we get

[11-[22]
Au, 5 0%y, Xn aU,
r pIE +4x;, 8x2 RS P 0, 5.1

where s44, ¢; (i=1,2,3) and U, = U, (r,¢,V) are given by Equations (2.13), (2.18)
and (2.25), respectively. With regard to Equations (2.24), (4.2), we get
U,
ox,
where C1, C, C3 are integration constants,,which are determined by the mathemat-
ical boundary conditions in Section 2.3., et Equation (5.2) be substituted to Equa-
tion (5.1), and then we get

=3 (Crxp+Crx9 +C3) (5.2)

Xn=S_—

3 a Uy 4 2 a
Xn ox 3 Xn ox 2
The mathematical solutlon of Equatlon (5.3), which is determined by Wron-
skian’s method (see Chapter 10) [23], is derived as

L= 14 CxS +Cs. (5.3)

4 1
u, =Cix, <§ —lnxn) +Cox 4G <§ —l—lnxn) . (5.4)

With regard to Equations (2.1)—-(2.4), (2.14)-(2.17), (2.26), (5.4), we get

1 C
e, =C; <§ —lnxn> +Cre3xs 4 —37

n
4 Cy (1
ep==ep=0C) (3 lnx,,> +CoxP l+x <2+lnxn>,
n

€10 = $44Cnp = A—l—lnx 8C1+ 13C2+i 1—i—lnx %
ne = 844 Onp = 3 a(p a(p \2 n a(pa

4 aC aC 1 /1 aC
£n6:S44GnG:@|:<§_lnxn> al+ ! 82+ ,,(E—an”) 8—\73:|7
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—Tco
3

c
6, =C; [ ! (clcz)lnxn} +C[(c1+c2)e3—2c)xs™ !

C
+3 (c1—2c21nxy,),

Xn

dc; —c
Op = Og =C [ ! 2 (Cl —Cz)lnxn:| +C (6‘1 —6263) c3—1
C -2
+ =3 (c1 @ +cq lnxn> ,
Xn
_ 415 Inx
61 =M1+ M2 Inx, +M3x3 ! 4 W,
n

w=CK+Cix+Cik34CCricy +C1 C3K5 +CoC3 K

8C1 2 2 8C1 2 A2 BCZ 2 BCZ

<W) o (W) "o (W) @(av>
% | (96 2(9Gs X4 (9C10Cr | 50C1 ICy

+S44l<aq>) o (8\/ +S44 30 99 T v av

15 (313G | 001G | s (ICIC: | ,3C 903
+ (acp ) © ov v s44 \ 00 0@ © ov ov )’ (5-5)

S44

where O is given by Equation (1.8). The coefficientsn; x;, x; (i=1,...,4; j=1,...,6)
are derived as

1 4 aC aC
n1:§|:cl('Yl+4'Y2)+—< N RV 1)}
§44

foL0} av
_ 1 dCy oCy
M2 =— [Cl M +72) +Q <Y3%+'Y4w>] )
_ 1 0C, 0C,
M3 _CQ(YICH_YZH_E <Y3 90 +Y4 = 5y >

1 aC aC
N4 =C3 <Y1+Yz>+—(v —3+ Y4 3)

28544 8 av
1 0Cs dC3
=C -

N5 3Y2+ (Ysa + 48v>

— cp—c 17¢1+c¢
I, T

2
Ky = {763 (C12+C2) +cp (1 —2C3):| x,%(crl),
» o lnzxnicl Inx;, c¢—2c
3T x2 x2 4x2
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-7 ,
Ks=c3(c1—c2) x llnxn 2C1+M x;371’

Inx, 4eci—
K5:(301—C2) 0Xn M

- )

Xn 3xn

K6—261(1—C3) e zlnxn +(cac3 —c1) x>~ 27

1
Xlzln xn_glnxn—f—;’ X — 3(53 1),

_Inx, Inx, 1

8 -1 -1
B="g T3t ta =’ =2 In,
4 51 21n?
X5:§+ S?anf r;xn’ X6 72)563 21nx,,+x“ 2a (5.6)
n n n

where v; (i=1,...,4) is given by Equation (2.22). With regard to Equations (4.7),

(5.6), we get
2 2
COM — C1M 1 1 1 1
QIM_6{XISVI l(lang)) +§ — Xy [<lnxm3> +§ }

CIM — CoMm 1 1 17 cip + com
+ 9 [x?v, (lnx - §> —xy (lan - 5)} + BT (x?‘,,—x?N) ,

1 C§M (c1m +com) 2 1 2c3+1
1—2 ( cay+ c3y+ ) ,
Yo +1 { ) +em ( cam) | (X — Xy

D3y =c1m [XM <ln2xM —2Inxyy +2) — XIN <ln2x1N —2Inxy + 2)}

Doy =

oM —2¢im

1 (XM — XN ) s

—Clm [XM (lan — 1) — XIN (lanN . 1)] +

c3m (cim — com)

q) =
M cm+2
1 1
~ cap+2 1 - o cay+2 1 —
{)CM ( nxys P T 2) xIN nxyn o+ >
c3m (com —Teim) +2 12
+C3M—|-2 [26‘ M+—3 ] (x;/;"” _xIC]i/M )’

36‘1M — oM 1 1
(DSM = 2 |:x12‘,1 (lan - E) _X%N (lanv — E)]

4CIM —Com (

§‘N
Sm
N—

2eim (1 *C3M> e+l 1 cam+ 1
Dgyy = Xy Inxy — X Inx;y —
M cay+1 M M eant1 N N em+1
MM U (] o)
a1 M IN )



3 1\ 1
Yy = XTM {(lan -3) (lan - 5) + 37]

3
1\ 17
- X’TN [(lanN ~3) (mx,N - 5) n 3] :

2c3y+1 _ 2cay+1
XN

X
You =M
M 2c3y+1 ’

5 —
Wiy = xprlnxy, (lan — 1) —xn Inxgy (lanN — 1) + M,
i [desy+11 P S

Wiy = xGut2 {——lnx }—x‘”ﬁ ————— —Inx ,
4M C3M+2{ M 3(cam+2) M TIN5 (e +2) w

2 (x2, —x? 5 1 1

1 1
—x3 (lnzxM —Inxy + 5) +x7y (ln2xw —Inxzy + —> ;

2
2 1 1
Yeur = xS (g, — —x U (pyy —
oM caay+1 [ M M cay+1 IN IN sy +1
1 cay+1 C3M+1)
Xy; —X , 5.7
C3M—‘r1 ( M IN ( )

where x7y, xps are given by Equation (1.9), respectively. The integrals (4.14), which
consider Equation (5.7), are determined by the formulae in Chapter 10 (see Equa-
tions (10.10)—(10.12)).

In case of the ellipsoidal inclusion, we get (”ﬂIN)x,ﬁo — 4 oo, (8IN)xn—>0 —
+ oo, (0v), g — Feodueto (Inx,), o — *eoand (x’), o — =+ oo for
¢3 < 0 (see Equations (2.18), (5.4)). Accordingly, the mathematical solutions (5.4)
are suitable for the matrix.

5.2 Cell Matrix

The stress 6,5 is determined by two mathematical boundary conditions, i.e., by
Equations (2.28), (2.29). With regard to three integration constants Cyys, Capr, Capy
in Equation (5.4), the following conditions are considered to determine G, i.e.,
Cim#0, Coyy #0, C3yp = 0; Ciyp # 0, Capp # 0, Coyg = 05 Coyg # 0, C3yy # 0,
Ciy = 0. Consequently, the mathematical boundary conditions (2.31)—(2.33) are
applied in case of Cypr # 0, Capr # 0, Capr # 0.
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Conditions Cyy; # 0, Cops # 0, C3p = 0. With regard to Equations (2.28), (2.29),
(2.35), (5.4), (5.5), we get

1 (4 > (xn ) csm—1
&M = —Inx,—c3y | = —Inxpy ) | — ,
CM 3 XM
4 4 xn C3M71
8(pM = &M = CM lnxn (5 — ]an> (m) ,
€noM = S44M OnoM = lnx,,—i1 i Pn
' ! 3) 09 \Cm
0 p 4
c 1 n
+ x, M a(p l“le (3 lan>] R
4\ 9
€n0M = S44M OnoM = @{ (lnx,, ) ( Pn >
Cm
0 p 4
c 1 n
+x 3M— a(p lic xcw i <§ —lan>] }7

P ) Tcom —Cim
nM CM 3

4 Xn cam—1
+[(C1M+02M)C3M~262M} <31an> (> ,

XM

+ (C]M — CZM) Inx;,

CoM = Opm = +(c1m —com) Inx,
Cm 3

Capy— 1
+(c1m—cameam) (__lan> < )
P1B Pn 1 |: (9) d (pn) (v) <p >:|
Cnp = — - E
i Cm S44M P15 3¢ a(P C B g
Papn (4 923
_P2BPn (T ~1
+ C szM—l <3 nxys S44M a(p [ C3M i an)]

YK 4
4P 2 Pn <— - lan> 7 (5.8)
Saam OV | {3
where ©, xyy, saap, ciyg(i=1,2,3) are given by Equations (1.8), (1.9), (2.13), (2.18),
respectively. The coefficients C s, Cing, PiBs pg) (i=1,2; T = @, V) have the forms

Pn {CZM —Aciy

Em = Com —Cim <% —lan> ;
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cau—1
XIN cim—Tcom
Cim = C1mB <XM) , Cov=—"—"" — (c1u —com) Inxgy,

3
Cimp = (c1m +com) cam —2¢com, Comp = w — (c1m — cam) Inxpg,
P18 = %{ Yim (e1v — T cam) + (Yam +Y3m) (461M—62M)}
+ (cam — c1m) (Yim +Yam +¥3nr) Inxpy,
p2p = {YIM [(c1a +can) €3 — 2cam] + (Yans +Y3ur) (C1as — Con €3m1) }XﬁM g
P\ = (Yiar +72m) <g _lan) . P =0 (i +7am) (g —lan> ;
pﬁ‘,ﬂ) = (Y +v2m0) x5 P%) =0 (v +yam) x5, (5.9

where iy, 95 (i=1,...,4; j=1,2,3) are given by Equations (2.22), (2.32), respec-
tively. The normal stress p, is given by Equations (2.30) or (2.34) for N =1 or

N+1=1,2,..., respectively. With regard to Equation (5.8) and [8((;124

— p,(ll) pum [1]-[22], the coefficient pys in Equation (2.30) for N = 1 is derived as

C3M71
o= |4 (f - me) (’ﬂ) . Q=MMB. (5.0
CM 3 XM

:|)C”:)CM

3

Conditions Cyy; # 0, C3pr # 0, Copr = 0. With regard to Equations (2.28), (2.29),
(2.35), (5.4), (5.5), we get

__ Pyl 1 (4

e = 3 {(Z—anM) (3 lnxn> ) (3 lan)} ,
EoM = Egy = CM {(1 —anM) (g — 1nxn> — );—M (g —lan> (% —l—lnxn)} ,
€n1oM = S44M OnoM = (hlxn ) [é)—M ( + lan)}

< +Inx, i an< M—i>],

o) 3
4\ 0

€avM = 544M Onpm = O q ( Inx; — = 30 + Inxp

1 PnXMm 4

+ — o (2 —ann) [ T (lan— 5)] },
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1 -7
OnM = Pn { (5 +lan> [M —(c1m czM)lnx,,]

Cm 3
XM 4
+— | = —Inxy | (1 —2comInxg) ¢,
X, \3
Pn 1 deiy —com
CoM = Oom = (;M +1n XM — 5~ (c1m —cam)Inx,

4 _
—l— — | = —Inxy M+C3Mlnxn s
X, \3 2

PiaPn (1 P3Pnxm (4
=——— | =+1 = —1
OnB CM (2 + an> CM <3 nxy,

1 (@9 [P (v) 9
S44M {PIB a(p CM +1nXM +p3B aV

L[ @ 9 [paxm (4 (v) O [Paxm (4
s44M{p 5 3 {c (3 1“’””)]“’3% Gy 37|y

— —

where O, xp7, Sa4p, Cints P1Bs p&TB) (i=1,2,3 1= @,v) are given by Equations (1.8),

(1.9), (2.13), (2.18); (5.9), respectively. The'coefficients s, Civ, P35, pg;) (i=1,2;
T = @,V) have the forms

Cm = Cxi;w (2 +1an) —Cim (: —lan> ,

XM cim —1com
Civ=—(ctm —2comInxy), Com=xum {7 —(c1m —cam) 1Hx11v} )
XIN 3
cim —Team
Cimp=cim—2comInxy, Comp = xm [f —(c1m — c2m) lan:| )
(c1m —2¢com) (Yam +Y3m)

1
P3p = —{ClMYlM +
XM 2

+ [c1m (Yam +Y3m) — 2 comYim] lan}

(Yim +7Yom) ( O (Yim +7v3m)
p(B)_T 2+1an oY) = — 2+1an (5.12)

where vy, 95 (i=1,...,4; j=1,2,3) are given by Equations (2.22), (2.32), respec-

tively. The normal stress p,, is given by Equations (2.30) or (2.34) for N =1 or

N-+1=1,2,..., respectively. With regard to Equation (5.11) and [8((;13,1

:| Xn=XM
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— pgl) pum [11-[22], the coefficient pys in Equation (2.30) for N = 1 is derived as

1 1 4 xy (4 1
PmM = Tn [<2+lan> (3 lnxnv> e <3 lan> <2+lnx1N>] . (5.13)

Conditions Cyy; # 0, C3p1 # 0, Cipy = 0. With regard to Equations (2.28), (2.29),
(2.35), (5.4), (5.5), we get

C3m

1
eat = — 22 [C3M< +1an) el _2M ] ;
cM 2 Xn
1 xom 7
EoM = € = — 5—; [(2 +lnXM> v — f <§ +lnxn>] ;
n
1 /1 0 XM
E€noM = S44M OnoM = - <§ +1Hxn> % (pnCA]:I >
n
d0 [pn (1
cau—1 n 1
it g | (e
0 xom
€qvM = S44M OnvM = @{ ( +lnxn> . (p"CAA; )

i)

cay—1

DPnXn
I I R L —
. Cu
1 XM
X {[CSM (cim+cam) —2com] (§+1HXM) - x—(01M—262M 1nxn)},
n
GoMm = Oom =
nxstl 1 X cim—2c¢
_ L T |:(CIM_CZMC3M) <§+lan> —x—M (w-wm lnxn)} ;
p1apPn (1 > pSBpnx;;M
Onp = — ~t+lnxy |+ EAM
? Cm <2 M Cm
L | (@0 [pn[l w) 0 [pn (1
L NGB N (| e P
S44M{plB 09 [Cm 2+HXM TP ov [Cu 2+HXM
[IROK <pnx1f}“> (v) 9 <an15?”4>]
+—|pl? = +pl) = , 5.14
S44M {933 00 Cu P3s ov Cm ( )

where O, xy, Saam, civ (i=1,2,3); pj, p]B (j=2,3; T = @,v) are given by Equa-
tions (1.8), (1.9), (2.13), (2.18); (5.9), (5.12), respectively. The coefficients s, Cip
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(i=1,2) have the forms

CM:cﬂ<

M

1 _
3 +1an) —Cimxy™ l,

XM _
Cim= o (i —2com nxgy), Gomr = xmr [ean (v + canr) — 2cam) X1,

Cime = cim —2com Inxy,  Comp = [cam (cim + com) — 2 com) xp, (5.15)

where Yir (i=1,...,4) is given by Equation (2.22). The normal stress p, is given
by Equations (2.30) or (2.34) for N=1or N+ 1= 1,2,..., respectively. With

regard to Equation (5.14) and [eﬂr}}w} — —ptV pus [11-122], the coefficient py
X=X
in Equation (2.30) for N =1 is derived as.

1 [/1 XM (1
Py =7 Kz +lan) xp — . <2+IHXIN)} (5.16)

Conditions Cyy; # 0, Cops # 0, C3pr # 0. Finally, with regard to Equations (2.21),
(2.27), (2.31)—(2.33), (5.4), (5.5), we get

1 _
&M = — é% [Cm ( —lnxn) +8am camx, 1+C3M} :

3 Xn

4 , 1
oM = €M = — 5—;{ |:C1M <§lnxn> +C2Mx’23M*1+C37M < +]nxn>:| ,

X \2

4 0 [ pn co—1 9 (Pn
€noM = S44M OnoM = — Kg —lnx,,) % <P€E;M> + x,, M 1% (pCCAjM)
1 1 a pnc3M
*z(z““")%(—w )]’
4 ) . co—1 0 [ Pn
EnvM = S44M OnoM = -0 |:<§ _]nxn> % (pCCMlM) +xn3M IW <p§CAjM>
1 /1 0 pnC3M
t () (7))

cimy—7Tc¢
Onm = — 5_1:1 {ClM {M - (ClM—CzM)lnxn]

-2 1
+ CZM[(CIM+C2M)C3M_262M]x23M71 + CSM (CIM - Com Il.Xn) } ,
n

Pn 4eim —com
CoM = Opy = — AL (c1m — com) Inx,
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e ciy—2c
+ Com (cim —comeann) x5+ Lo <1M#2M +cim lnxn>},

B + Inx,
Oim = Nin 4+ Nans Inx +Mapr xS~ wv
n

2
p
wy = (C_IZI> (KIM Clar + %2 Gopg + 63m Gy

+ K4MC1MC2M+K5MC1MC3M+K6M§2MC3M)
e e
ez ()] w3 (28]

{_Z(IJHCCQM)_Q*@Z = (22 }
i

X3M

S44M

3

R[S0 S8 o3 8 £ 5]

BRI 200
M

¢
SRRl

<pn C3M>]
n/2 m/2

2
WM:4/ / (CM> (¢1M§21M+¢2M§22M+q>3M§§M+CD4MC1MCzM
0 0

+ <D5MC1MMC3M+<D6MC2MC3M) do dv
n/2 m/2 _ 2

4 0 pnClM)- 2_8 (Pn§1M>_2
¥ — +0° | — dod
S44Mo/o/ IM{-a(P( Cn /| Lov\ Cwm /] o
n/2 m/2 _ 2

] [l RO 8] e

4 n/2 m/2 f 5 -2 5 -9
4 / / Wiy g (pnC3M) +82 o9 <pnC3M> d(p dv
Saam o 100\ Cm /| Lov\ Cu /|
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/2 m)2
s44M/ / ‘P“M[ (pnci;M>% . )

Com
rerl 9 <pnC1M ;}ZPHCZM)} dodv

/2 /2

s (%
)
S44M/ / v g (P50 ) 5 (2
)
&=

+®28 (PnClM %(péjM” do dv
/2 /2
A
o353 ()

PiB PnCim 1 [ () d (pnCiM) (v) J ( nCiM):|
nB = — | Pjg == | 5 — , 5.17
onb = z Cm +S44M Pi 90 \ Ly TP Gy Cm G-17

i=1

where @, XM, S44M, CiMs KjM’ XjM; (I)jM’ \P]’M; PiB; ng’) (i=1,2,3; j=1,...,6;
T = @,V); are given by Equations (1.8),( (1.9), (2.13), (2.18); (5.6); (5.7); (5.10),
(5.13); respectively. The coefficients Ciar, Car, Mjm (1=1,2,3; j=1,...,4; see Equa-
tion (5.6)) have the forms

Cist = —puCitmt + 008 Ciomy i=1,2,3,
1
Cin = (c1m +com) [cw <2+1an> 1} e =1

1 iy — copInxgy ) x oM
Ciom = [(c1m + camr) c3m — 2¢2m] <§+lnx )va v (e = camInsa) ,

XIN
751
%““%M)’

Coim = (c1m + com) <

4 X
Coom = (c1m — 2 com Inxpy) (§ - 1an) M

_ [CIM —Tcom

XIN

1
3 — (c1m —cam) lanN] <§ + lan> )
1—4csy

3 + (CgM — 1) lan:| xM ,

Caim = (c1m + cam) {

cim —Tem ¢
Caom = [f —(cim— CZM)IHXIN] x"
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Cm =

Nim = —
Nom =
N3y = —

Nay = —

1 Pn C3M> 0 (
- + R
2544m {Y a(P ( Cm MGy Cm

{Y "¢ <pn CM3M

Nsm = C

where Vi (=1,

4
—[(c1m + com) c3m — 2 com] (§ - 1I1XM)

(cim+cam)

{ [C1M —Tcm
X —_—
3

+ [(c1m + com) ey — 2 com) [7 (cim 4 com) —5Slnxy + 6ln2xM]

1—4c
+ (c1m — 2comInxgy) [ 3 M
PnCim (Yime +47v2m)
3Cm

4 pn§1M> 0 <
+ R
Y { fam a<p< G )M ov\C

PnCim (Yime+Yom)
Cm

1

Saam
PnCom (Yimcam +Yom)
CM

I Pn CZM) )
- + -
Saant Y3m 5= 90 < Tn Yamr Iy

Pn §3M (2v1m +7v2m)
ZCM

SRS
v sum

XM

Om = CLM [CUM <§ - lnxuv) +Coimx
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[ pnClM
V3Ma(p < T > +Y4M8V (

(

bop = CLM {Cle (g —IHX1N> + Coomxj,

C3p— 1
IN

IN

1
X

PnCim

Cu

Pn CZM

Cm

PnClM)

Pn C3M

3 —1

CSIM

1
XIN (5 + ln)C]N>:| N

g

)

)]
>”“Mav<

.,4) is given by Equation (2.22). The normal stress p, is given by
Equations (2.30) or 2.34)for N=1or N+1=1,2,...,
to Equation (5.17) and [&PM]x,,:
Equation (2.34) for N+1=1,2,...

1
(ClM — C2M) lan:| |:C3M (E +lleM> — 1:|

+(e3m—1) lan]

)]

+—

32M

pnC3M

)

C3IM— 1
M

C3M—l
XN

C3m
Xy }
b
XIN

(5.18)

!

respectively. With regard
= —pnby + 6,8 0B, the coefficients ¢p7, dp in
are derived as

(l‘f‘lanN)]. (5.19)
N \2

+
XI



Chapter 6

Mathematical Model 4

6.1 Mathematical Procedure

The differential equation (2.23) is transformed to the form

’u Ju
U, = — PR, L | 6.1
n S44 (Cl + C2) <xn ax% +2x, aXn Un |, (6.1)

where s44, ¢; (i=1,2) and U, = U, (x,,®,V) are given by Equations (2.13), (2.18) and
(2.25), respectively. Let x,, [0Eq.(6.1)/dx,] be performed, and then we get

2,
n axn

5 0%, 0%u
= —S44(01+C2)( X;, 5 3 " Ay ’21 = 2"> (6.2)
Let Equations (6.1), (6.2 be substituted to Equation (2.24, and then we get

3814”
na’;

92 0
F (4= 2L e, 2 4 desu, = 0. (6.3)

" OxZ ox;,

Let u,, be assumed in the form u,, = le‘, then we get [1]-[22]

. C
lty = C) X+ CoxS + x—j (6.4)
n

where ¢3 < 0 is given by Equation (2.18), and C;, C;, C3 are integration constants,
which are determined by the mathematical boundary conditions in Section 2.3. With
regard to Equations (2.1)—(2.4), (2.14)—(2.17), (2.26), (6.6), we get

1 2Gs

-
X

€, =C1+Crcax?™

o | C3
8([) =& = Cl —I—sz,? +x—3,
n

01, 190y, 196,

81’!(0 = 544 Gi’l(p = % +xn‘ aq) x3 %?
dCy G, 1 8C3
0 =S40 = O | Z N T
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2Cs (6‘1 +262)

6, =Ci(c1—c2) +Caf(c1+e2)e3 —2ea)x ' — 3 ’

xn
Ci(c1+2c¢
6o =09 =C1(c1—c2)+Ca(c1 —cac3) x> 1+¥’
n
or=mn+Mmx !+ 11_33’
w1 a1 B e L B e, 6.5)

n l’l

where O is given by Equation (1.8). The coefficients , x; (i=1,2,3; j=1,...,6) are
derived as

1 dCy oCy
n = Cl('Yl+'Yz)+—< 8(p+48v)
1 oC BC
T]2=C2(ch3+“{2)+§< =2 2)

- 1 8C3 dC3
T]3—C3(Y2—2Y1)+a< +Ya 8\/)
Kl:3<C1702)C% 1 <%) Lo <a 1)2]

2 S44 ov
2 2
oo DG s, a+L 9N o2 (22
2 S44 B(p d

1
3 :3(c1+2cz)c§+a

aC3\? 5 [C3\?
Gﬁ)*e(W)

_ 2 (9C19C, | r9C1dCy
K4—(C1—Cz)(2+c3)C1Cz+ <a(p 0 +0O P av>

2 (3006, 220196
S44 20 Jo ov av

[2c2(1—03)—cl]C2C3+ <

920G | g9 %> (6.6)

00 99 av dv

wherey; (i=1,...,4)is given by Equation (2.22). In case of the ellipsoidal inclusion,
we get (u,,IN)anO — &£ oo, (8IN)x,,—>O — & oo, (GIN)rHO —— &0 due to
(Inx,), o — =+ eoand (x)), o — = o forcz <0 (see Equations (2.18),
(6.4)). Accordingly, the mathematical solution (6.4) is suitable for the matrix.
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6.2 Cell Matrix

The stress G,p is determined by two mathematical boundary conditions, i.e., by
Equations (2.28), (2.29). With regard to three integration constants Ciys, Copr, Cay
in Equation (6.4), the following conditions are considered to determine G,p, i.e.,
Cim #0, Coy # 0, C3pyp = 0; Crpy # 0, C3yp # 0, Copyr = 0; Copyr # 0, C3y # 0,
Ciy = 0. Consequently, the mathematical boundary conditions (2.31)—(2.33) are
applied in case of Cyyy # 0, Copyy # 0, Capy # 0.

Conditions Cyy; # 0, Cops # 0, C3p = 0. With regard to Equations (2.28), (2.29),
(2.35), (6.4), (6.5), we get

!
€noM = S44M OnoM = —

i(&) _xL'3M—li Pn
a(p CM n a(p QM .X;,;M_l )
3 (&) _xfstli Pn
ov \ Ly " av Cm x}f/jw71 ’

Pn Xn Can~1
OnM = — T cim—com — [ezm (cim + com) — 2¢2m] (—) ,

/
€00 = S44M Onom = —O

M

C3M—1
Pn Xn
GoM = Oom = — »— |C1m —Cam — (1 — cameam) | — )
Cm XM

P1BPn 1 |: (9) d (pn ) (v) d (pn >:|
O = — DBPr __—_|plo) T (P M (L
b Cv Saam Pis 90 \Cum P15 3y Cm

P2B Pn 1 | (¢ 0 Pn (v) 0 Pn
-+ + — |+ (e ||
CMXX/;M_l bt [sz 90 chﬁM—l P25 3, CszffM—l

6.7)

where O, X7, sqap, cim (1=1,2,3) are given by Equations (1.8), (1.9), (2.13), (2.18),
respectively. The coefficients {yy, pig, pl%) (i=1,2; T= @, V) have the forms

C3M—1
XIN
Cv=cim—cam—[cam(cim+cam) —2com) (E) ;
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p1 = (01 +92+03) (c1m — cam)

P23 = {1% [(cim + cam) eam — 2 com] + (V2 +03) (cim — camcam) } cam =1

pﬁ‘l‘? =01+, P%) =0 (9 +13),

pSy = (B1+02)x57 ", Sy = O (01 +03)x5 6.8)
where iy, 9 (i=1,...,4; j=1,2,3) are given by Equations (2.22), (2.32), respec-

tively. The normal stress pj, is given by Equations (2.30) or (2.34) for N =1 or
N+1=1,2,..., respectively. With regard to Equation (6.7) and [ (1)} =

Xn=XMm
(1)

—pn pm [11-[22], the coefficient pys in Equation (2.30) for N =1 is derived as

1 C3M71
Py =7 - ll - (%) ] . 6.9)

Conditions Cyy; # 0, C3py # 0, Copy = 0. With regard to Equations (2.28), (2.29),
(2.35), (6.4), (6.5), we get

5]
)

o ( pn
EnoM = S44M OnoM = — % C7M 3 a(p

d [ pn 1 9
€10M = S44)M Opoy = —© {av <C>M) — ; > (

Cm
OuMt = — g—;[ [ClM—CzM-Fz(ClM—FZczM ]

CoM = Oy = — 57'; lCIM—C2M (c1m+2cam) () ] )

Xn

pPn 1 [ (¢ 0 (pn> (v) O (pn>]
= — B +pll) = (£
BT saam ["“* ap \&u) P18 v \ Ly

3 3
P3B PnXyy 1 [ () d (anM) (v) d (anM):|
+ —+— + — , (6.10

Cm saam |7 99 \ € P36 ov \ Cu (©.10)

where ©, xp7, Saap, Civ; P1Bs p(l};) (i=1,2,3; T = @, V) are given by Equations (1.8),
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(1.9), (2.13), (2.18); (6.8), respectively. The coefficients (s, p3p, pg;) (T=0,v)
have the forms

3
X,
S =cim—com+2(cim+2cam) (ﬁ) . Cmp=3(cim+cam),
(192+133f2131)(C1M+2C2M)

p3p = 3 ;
m
U1+, O +9
pif = P02 gl = O0LED) 611
M M

where vy, 9 (i=1,...,4; j=1,2,3) are given by Equations (2.22), (2.32), respec-
tively. The normal stress p, is given by Equations (2.30) or (2.34) for N =1 or

N+1=1,2,..., respectively. With regard to Equation (6.10) and {S((;[S,I

— p,(,l) pum [1]1-[22], the coefficient pys in Equation (2.30) for N = 1 is derived as

| -3
Pwr =7 - ll <)’;—“]4v> 1 (6.12)

Conditions Cyy; # 0, C3py # 0, C1pyr = 0. . “With regard to Equations (2.28), (2.29),
(2.35), (6.4), (6.5), we get

:| Xn=XMm

EnoM = S44M OnoM = —

i _ Pn xCSM*I _ l i p”xgl

90\ Cpap )" 500\ Sy /|
9 Pn xC3M—1 _ i i p_nx?"l

ov Cprxin™ 1 x3ov\ Cy ’

X C3M—1 X 3
Onm = — [cam (c1m + cam) — 2com] <n) —2(c1m +2c2m) <M> ;
CM M n

€,0M = S44M Onop = —©

Pn et AR
OpM = Oom = — C_M (c1m — come3m ( > +(c1m +2c2m) (x_> )
n
P1B Pn P35 Paxyy"
nB CM 2 ) CM
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: (@9 [pn (1 v 9 [pn (1
" saam {913 90 C > +1Inxy )| +p3p 5o v C > + Inxpy
L [ 0 (Poxif™ | (v) 0 (puy” _
o S44M [p33 o0} CM +P3p v CM , O=M,MB, (6.13)
where O, xy, s44m, Cim; P B 95-2 (i=1,2,3; j=1,3; 1= @,v) are given by Equa-

tions (1.8), (1.9), (2.13), (2.18); (6.9), (6.12), respectively. The coefficient {y; has
the form

Cm = {[C3M (c1m +com) —2cam] <f$) C3M+2+2(CIM+2C2M)} <X—M>3

XIN
(6.14)

The normal stress pj, is given by Equations (2.30) or (2.34) for N=1orN+1=
1,2,..., respectively. With regard to Equation (6.13) and [S:((;X,,} =— p,(ll) Pm

Xn=Xpm

[1]-[22], the coefficient pys in Equation (2.30) for N =1 is derived as

A (xw el X\

Conditions Cyy; # 0, Copy # 0, C3pr # 0. Finally, with regard to Equations (2.21),
(2.27), (2.31)-(2.33), (6.4), (6.5), we get

1 2C3m
EnM = C_M<C1M+§2MC3MXCW - 23 >7
n

1 ay— 3M
EoM = €M = — C_M (CIMJrCzMX,‘,W 1+Cx—3> )

Cim esy—1 O CzM 1 0

€noM = 544M OnoM = a(P(CM + xS 18— 72%
1

X

©)

ClM) em—1 9 (CzM) (§3M>]
€100 = o S +x, M — |+ ==+
OM = S44M OnoM = { <CM X, T v \ Ty
1

Onm = — C_M{CIM (c1ar — cant) + Com [(c1m =+ cam) e3n — 2 cop] x5!

_ 2C3m (61M+2c2M)}

x ’
1 C3M— 1

CoM = Opm = — T Cim (c1m — cam) + Com (c1m — comcam) X,
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+

Cam (cim+2cam)
x; ’

-1, N3m
Gy =My + Moy X, + 3

n

2 1 K3M
Wy = KlM +K2MX (C3M ) + x + K4 wa\/] 1
n Vl

xC —4
+K Cam—4

n/2m/2

KiM (3 3 Kom 2eap+l 2eay+l
WM:4//{T(xM_x’N)JrzchH(meM )
0 0

Kam 1 1 Kapm cay+2 c3y+2
L N R (x sut2 O3y )
3 (x?N x13w> camp+2\UM N

K
+ Ksp In (x—M) +—M (x,f,;M R 1)} dedyv,
xiv)  cam—1

e (5 ()
+M+ 1 {p((p) <C2M>+p(v)_ <C,2_M):|’ 616

Cm saam | 28 9o \ § B 9v Cm
where O; x;y; X5 Saams Civs PiBs P l-B (i=1,2,3; T = ¢,v) are given by Equa-
tions (1.8); (1.9); (2.13); (2.18); (6.8), (6.11), respectively. The coefficients {y,
Cat> Mints Kim (i=1,2,3; j=2...,6; Equation (6.6)) have the forms

Civt = —pnCitm + 008 Ciom, 1= 1,2,3,
Ciim = (e + conr) (2 +eam) xpam =3,

[(61M+62M)C3M—ZCZM]xlfVWI+2(C1M+2C2M) T

CIZM = > 3 P
m XN
_ 3(ciu+com) _am—cy 2(cim+2cm) Xm
CZIM =T T 2 CZZM - ) - 3 ’
M M XN

Caim = (cim +cam) (1 — c3p) X3y,
Caom = xm { (e — cant) X" 1 = [(crm + camr) cap — 2com] X~ 1} ,

Cm = (cim+com)

_ csm—1
X{(CIM_CZM)(2+C3M) Cau—3 3[(01M+C2M)C312w 2com) Xy
M
2(cipr+2cap) (1—cap)x ;;M}
B 2 ;
IN
Cim (Yimr +Yom) 1 { 9 <C1M) 3 (CIMH
Nim Cnr Saant 'Y3Ma(p T Y4M8v ;
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 Com(imeam +vom)
Nom = —
CM

S [Y 30 <%;2M) BEY (%M” ’

St o (60) e (2]

3 (CIMZ— cam) (%1/\;) g

) e 2 ),

2
Cimt+Cam)c 2
Koy = [( ) 3M+61M2C2M63M] <C§,Z[>

Kim =

e

2
K3y =3 (cim+2com) (%)

(R BT

Kapr = Cime Qom (c1m — comr) (24 c3m) (LM>

s on (80 () 75 ()5, ()]
d
0

e o ()2 () o2 (22) 2 ()]

<

[Ty

1
Kom = Sam Cam [2com (1= c3m) — c1m] <C_M>
2 CzM) J <C3M> 2 0 <C2M> d <C3M>:|
+ — — | |+ —=(— || 5— ||, (6.17
s [aqa(cM o\t ) T\ v )
where Viys (i=1,...,4)is given by Equation (2.22). The normal stress p,, is given by

Equations (2.30) or (2.34) for N=1or N+1=1,2,..., respectively. With regard
to Equation (6.16) and [egu], _. = —puOu + Cupds. the coefficients ¢y, ¢p in
Equation (2.34) for N+ 1 =1,2,... are derived as

1
om = T <C11M+C21Mxlc;iz’" = C%ﬂ) ;
M x

IN
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bp= (Cle +Coomxi !+ C;ﬂ> . (6.18)

IN

1
[
6.3 Ellipsoidal Inclusion

In case of the ellipsoidal inclusion, we get Co;y = C3;y = 0, otherwise we get
(unlN)x"HO —— &+ oo, (81N>xn*>0 —— & oo, (GIN)rHO —— +oo due to ¢3 < 0 (see

Equations (2.18), (6.4), (6.5)). With regard to Equations (2.37), (2.38), (6.4), (6.5),
we get [1]-[22]

Enm = EoM = €M = —PnPM,

opn

EneM = S44IN OnoM = —PM 20’
apn
€,0M = S44IN Onom = —O Py N

OnM = OpM = O6M = —Dn;

1 8 opn
Oim = — Pm | Pn (Yun +Y21n8) + +Y41N >

S441N
_ 3p;, 2 apn apn
iy =iy {2PM * S44IN {( 09
/2 /2 2
_%// s 302 2 [ (9pa\, (P
Wiy = =5 [ w30t (5e) * Gy dodv, (6.19)

where O, sqay, Yiy (i=1,...,4) are given by Equations (1.8), (2.13), (2.22), re-
spectively. The normal stress p, is given by Equations (2.30) or (2.34) for N = 1
orN+1=1,2,..., respectively. With regard to Equation (6.19) and (S(P’N)x oy
—pnPin [11-122], the coefficient pyy in Equations (2.30), (2.34) is derived as

L —2un

= . 6.20
PIN En (6.20)
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Chapter 7

Mathematical Model 5

7.1 Mathematical Procedure

Let the mathematical procedures dEq. (2.24) /dr, Eq.(6.2) /r be performed, and
then we get

0°U, U,
Xp = o 2 +(l—c3) o, =0, (7.1)
U, 83 0? Un
o, —s44 (c1+¢2) ( o 3 "+ 4x, o2 ) (7.2)

where s44 and c1, ¢, c3 < 0 are given by Equations (2.13) and (2.18), respectively.
Let the mathematical procedure dEq. (7.2)/dr be performed, and then we get

2U, 4y Pu,  u,
5o 5o " 4 6x, 8”3 142" > (7.3)

Let Equations (6.2), (6.3) be substituted to (7.1), and then we get

= —sa4(c1+c2) <

*u Au, %u
X, ot +(7T—c3) x4 "3y 3 +4(2—c3) o2 0. (7.4)

Let u,, be assumed in the form u, = xn, then we get

C
= C) Xy + Cox& + x—j +Ci, (7.5)
n

where C ..., Cy4 are integration constants, which are determined by the mathematical
boundary conditions in Section 2.3. With regard to Equations (2.1)-(2.4), (2.14)—
(2.17), (2.26), (7.6), we get

2C
Sn:CI—‘rCzcg,x,?_l— 33,
X
n
G C
go=8=C1+Cxg 1+ 2+ 2,
X2 X
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dCy 190G, 109C3 1 9Cy
Fro =S40 = 5 T Sy Y G0 T o

aCy oCy 1 9Cs 1 3C4
tA e e @ 3~ 1 _—
76 = 344 Ond v Ty 3oV x, 0v

2C; (Cl —1—262) B 2¢7Cy

o, =C (Cl —62) +C [(Cl —‘r-Cz) c3 —2C2] 3=l _

x3 X,

G (c1+2c) c1Cy

G(p—(?e—C1(61—62)+C2(01—Czc3) X6~ 1 ( x3 )+ P

n
=gy 2y
x5 xn

—K1+K2x,,<“ DB B kst xg!
}’l n
K, 4 Kg K
o e T 2 2 (7.6)

Xn Xn X,

where © and 1;, x; (i=1,2,3) (i=1,2,3) are given by Equations (1.8) and (6.6), re-
spectively. The coefficients N4, ¥; (i=4,...,6) are derived as

1 dCy dCy
T'I4—C4Y2+— (Y3a—+ Y4 8\/)
9y’
v ’

8C4 2
(%) 5
_ aCy G, 28C1 00,
K5—(Cl—cz)(2+03)C1C2—|— (a(p a(p +0 aV a\/)

2,06, | 200,26,
S44 a(p a(p ov ov

1
—C1C4+—

9020 ,aCs ACs
[202(1_03)_C1]C2C3+_(%%—F@ WW ,
1 (dCdCs _,0C 9Cy
Kg = (61—62)C1C4 (a(p a(p ® WW
1 (dC; dCy 5 0C; 9Cy
Ko = (c1 —c2¢3)CrCy + (a(P 3o +0 8_Va_v>
dC3 dCy 5 0C3 @)

00 9o oV ov (7.7)

1
K10 = (c1+2¢2)Cs C4+ <

where v; (i=1,...,4) is given by Equation (2.22). In case of the ellipsoidal in-
clusion, we get Coyy = Cay = Ca4yy = 0, otherwise we get (MnIN)x,ﬁo — & oo,
(SIN)x,,HO — F oo, (On),_9 — Feodue to c3 < 0 (see Equations (2.18), (6.4)-
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(6.10)). In case of Cy;y # 0 (see Equations (6.4), (7.5)), the mathematical solutions
for the ellipsoidal inclusion is presented in Section 6.3.

7.2 Cell Matrix

The stress 6,p is determined by two mathematical boundary conditions, i.e., by
Equations (2.28), (2.29). With regard to Equations (6.4), (7.5), the condition Cjs # 0,
Capy #0,Cjy = Crar = 0 (i, j,k=1,2,3; i # j # k) is considered in Section 7.2, where
the condition Ciys # 0, Cjpr # 0, Crar = 0 is analysed in Section 6.2. Consequently,
the mathematical boundary conditions (2.31)—(2.33) are applied in case of Cjy # 0,
Cim #0,Capr #0, Coyy =0 (i, j,k=1,2,3; i # j # k), where the condition Cy # 0,
Coy # 0, Capy # 0 is analysed in Section 6.2.

Conditions Cyy; # 0, Cqpr # 0, Copy = C3pr = 0. With regard to Equations (2.28),
(2.29), (2.35), (7.5), (7.6), we get

n

_ . Pn CiM
G(pM—GeM—_C_M<ClM_CZM__>a
pispn 1 { () 0 (m) (v) 0 (m)]
wp=— et = —— |y o (o ) Py A |
Ont Cv Saam Pis 0o \Cm P15 5y Cm
pappn 1 { () 0 (pn> (v) 0 (m)]
+ = — () 4+ =— ()], 7.8
S sa 1P 30 \ Ty ) TP v \ 2 (7.8)

where O; xyn, Xp13 Sa4pr; Civs P1Bs pﬁ? (i=1,2; T =0@,V) are given by Equations (1.8),
(1.9), (2.13), (2.18); (6.8), respectively. The coefficients C s, pr) (T = @, V) have the
forms
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2CoM XM
bl

XIN

(B2 +03)ctmr —20100m () V1 +D2  (v) OB +03)
X ) p4B - i p4B - ) (79)
M XM XM

Cv=cim—com+

P4B =

where U; (i=1,2,3) is given by Equation (2.32). The normal stress p, is given by
Equations (2.30) or (2.34) for N=1o0or N+1=1,2,..., respectively. With regard

to Equation (7.8) and [3((;124} =— p,(,l) pm [11-[22], the coefficient pys in Equa-
Xp=X
tion (2.30) for N = 1 is derived as
1 1
=—(1-——. (7.10)
P = T ( XlN)

Conditions Cyys # 0, Caps # 0, Cipr = C3pp = 0. With regard to Equations (2.28),
(2.29), (2.35), (7.5), (7.6), we get

cay—1
PnC3M [ Xn M
€M = — — )
Cu \xm

e ()" 5
i(ﬁ) : <p">1
ov (Z; X 1) ]’

Pn cam—1 2C2M
Onm = — Cn [cam (c1m + com) —2¢2m] o )
n

EnoM = S44M OnoM = —

€0M = S44M Onop = —©

XM
_ . Pn S
Com = Opy = — y (c1m — camcam)
n 8 d

OnB = — % 3 ©  cam—1 )_ ﬁ

CM'XA;M S44M (P zM B 3y C w

Pappn | 1 ) 0 [ Pn Pn

- [ a—( >+ o5 (c—)] @
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where ©; Xy, Xar; S44m Civs P jB pgg (i=12; j=2,4; 1= @,v) are given by Equa-
tions (1.8); (1.9); (2.13); (2.18); (6.8), (7.9), respectively, and (s has the form

xv \ M 260
Cm = [cam (c1m + camr) — 2¢oum] < IN) MM (7.12)
XM XIN

The normal stress p,, is given by Equations (2.30) or (2.34) for N=1orN+1 =

1,2,..., respectively. With regard to Equation (7.11) and [8((;12,1} =— psll) PM
Xn=XM

[1]-[22], the coefficient pys in Equation (2.30) for N = 1 is derived as

cay—1
ou = l(x”v) 1], 0 = M, MB. (7.13)

% XIN

Conditions Csy; # 0, Cqpr # 0, Crap = Copy = 0. With regard to Equations (2.28),
(2.29), (2.35), (7.5), (7.6), we get

> 3
pn<x1N>
EM=—\—) >
CM Xn
3
B Pn | [ XIN 1
EQM_EGM__C—Ml<xn> _E]’
xv\ 1] 9 [ pa
EnoM = S44M OnoM = — ~ ] " u % C_M )
n n

3
XIN 1|0 [ pa
E€noM = S44M Onom = — o ) ol C—M )
n n
c

2

3
P
CoM = Ooy = — CT\’; l(CIM —2com) (

ov
M]
3
N\ M
n ) Xn ] '
__Pspn 1 ((p_< Pn ) (v)j< Pn )}
Onb CMX,SW S44M {[333 el CMX?W TP v \ Ly XM

pagpn 1 { () O <pn> (v) 0 (pn)}
+ =22 +pod— (=21, 7.14
Cm S44M P45 3¢ dp \C Pas ov \Cm ( )

where ©; Xy, Xar; S44m Civs PjB pS-? (i=1,2; j=3,4; T = @, V) are given by Equa-
tions (1.8); (1.9); (2.13); (2.18); (6.11), (7.9), respectively, and (s has the form

GnM:C_

(c1m +2cam) <)ﬂ)
X X
XIN
X,
) o
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2
CM = — 2(C1M+2C2M) +2com (Z:IV) ] . (7.15)

The normal stress pj, is given by Equations (2.30) or (2.34) for N=1orN+1=
1,2,..., respectively. With regard to Equation (7.14) and [8&}12,[} = — p,(il) M
Xp=X,
[1]-[22], the coefficient pys in Equation (2.30) for N = 1 is derived asM
_ XIN — 1

M= (7.16)

Conditions Cy; # 0, Copy # 0, Cqpr # 0, C3py = 0. Finally, with regard to Equa-
tions (2.21), (2.27), (2.31)—(2.33), (7.5), (7.6), we get

— & L‘3M71
€M = T <§1M+C2MC3M)C" ) ;
EoM = Egy = — g—; <C1M+ Comxy ™!+ C;—M> ;

d (pnCim cam— d [ pnCom 1 9 (pnCam
€noM = S44M OnoM = % < Cor ) +x,° l% ( P +x_n% Cor ,
€10M = S44M OnoM =
d (pnlim esu—1 O [ PnGom 1 0 (puCam
© L)V ( Cum ) T Cm +xn ov\ Cwm ’

Onm =

: 2

- é)*M {ClM (c1m — cam) + Comr [(e1ns +cam) €3 — 2cap] xS 1 — W},

Com = Oom =

Pn

_ 4MCIM
T [ClM (cim — cam) + Comr (c1m — cam c3m) XM 1+C7} ;

Xn

—1, Nam
Civ =Mim +Nom X, + o
n
2 cay—1 K4M —1 K8M
war = K+ Ko M 2t (Ksp + Kopr) X, + =
n

n
n/2m/2

"KM [ 3 3 Kom 203+l 2cau+l
W :4 ( B ) ( 3M N " )
M // [ 3 M NN +2C3M+1 Xy XIN
0 0

K5y + Koy (xC3M+2 C3M+2>

+ wanr (xm — xv) + g +2 M —XIN
K
+ % (x%,,—x%Nﬂ dodv,
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Onp = —

pisPnliv 1 {p
Cm Saam

_ p2pnCom 1 p((p)i PnCom +p(v)ﬂ PnCom
Cm saam | 2B 09\ Cm Bov \ Cu

B P4BPnC_,4M _ 1 |:p((p)a (pnC4M> +p(V)i (pnC4M):| ’ (717)

Cm saam | B 0@ \ Cu Bov\ Cu
where ©; X7y, Xp; Sa4m; CiMs PjBs p%) (i=1,23; j=1,2,4; T = @,V) are given by
Equations (1.8); (1.9); (2.13); (2.18); (6.8), (7.9); respectively. The coefficients {;ys,
Cm. Nams Kjm, P4Bs pr) (i=1,2,4; j=4,58,9; T = @, V; see Equation (7.7)) have the
forms

Civ = —pnCitm+0neCiom, i=1,2,4,
Crim = (cim + conr) camxi™ ™,

C3IM— 1 ZCZM-X]T;M
Ciom = [(c1m +com) c3m —2com) X" + e
2xM
Coim = — (cim+cam), Coom = com <1 - E) —CIM;

Caint = (cim+ com) (1 = c3m) 537,

Caomt = (crm — o) X" — [(can + cama) €ant — 2cam] xp X!,

Cm = (cim+cam) {(CIM —com) esmXsd" ! — [(cim +cam) cam — 2cam] X!

()]
oo (5 | R (2N o

&)}
sy = Cim Som (c1m — cam) 2+ c3m) <
BRI v e

(
("%
ksmr = Cinm San (e1m — com) (C )
(
(

2C2M (1 N CgM) Cam

XIN

nay = — 22 Camyom <1 [% <pn C4M>
Cm S4aM a(P Cm

n

+

0 () 20 () 103 () 3 (7))
Ko = Gom Cam (c1m — com €3m) (5:4)2
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RS -R )08
(7.18)

where vy, 9 (1=2,3,4; j=1,2,3) are given by Equations (2.22), (2.32), respectively.
The coefficients My, Kins Piss pl%) (i=1,2; T = @,v) are given by Equation (6.17),
respectively, where {;ys, Cpr in Equation (6.17) are given by Equation (7.18). The
normal stress p, is given by Equations (2.30) or (2.34)forN=1orN+1=1,2,...,
respectively. With regard to Equation (7.17) and [e(pM} vy = Pn Op 46,5 0B, the
coefficients Op7, ¢p in Equation (2.34) for N+1=1,2,... are derived as

1 B
om = T <C11M + w4 C“M) ;
M XIN
1 -
Op=5— <C12M+ Commxi '+ C“ZM) . (7.19)
Cum XIN

Conditions Cyys # 0, C3pr # 0, Capr # 0, Copy = 0. Consequently, with regard to
Equations (2.21), (2.27), (2.31)—(2.33), (7.5), (7.6), we ' get

RN

p 3M aM
EoM = Eom = — C—; <C1M+Cx3 +C——>,

J (pnCim 1 0 (puCim 1 9 (pnCam
EnoM = S44M OnoM = a(p <#§M ) + )72 gp ( CM +— af QM
1

_ o i pnClM li pnC?aM i pnC4M
SneM—S44MGn6M—®[av( T )+x,318 ( T +xnav Tt ,
OnMm =
P {clM (camt—cau) —

20sm (cim+2com)  28amcom }

Cm xr3z Xn
Opm = Oom =
v (Cim +2com 4MC1M
pn |:C]M(C]M_C2M) c ( 3 )+C :| ,
CM X5 Xn
3 4
v =Mim + N M+ n M,
n Xn

3M Kap | Kem | Ky Kiom

=K = 2OM
WM =K e x0 * x2 T X3 x Xt
n/21/2 | |
K K3
Wy = 4//[ lM - 3N)+M(3—3>+K4M(XM—XIN)
3 Ny Xy
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Ksm 1 1
+ K6M11'1 < N) T (.XM xIN) + Kiom (m — )E):| (l’([.)dV7
piaPnCiv 1 { ) 0 (pnC ) (v) 0 (pnClM>:|
Oy = — — — + _
b Cm S44M Pis Bop \ Cu Pis 3 Cm

v
P3pPulam | 1 { ) 0 (PnC3M> (v) O (Pn 3M>}
+ + = +ply) =
Cm S44M P3s a(P Cm P35 3y Cum

n P43PnC4MJr 1 { (¢) 9 <Pn§4M> +p(V)_ <p"C4M>}, (7.20)

Cm saam | 480 Cum Bov\ Cu
where ©; X7y, Xum: Saams CiMs PjBs ij (i=1,2,3; j=1,3,4; T = @,V) are given by
Equations (1.8); (1.9); (2.13); (2.18); (6.8), (7.9); respectively. The coefficients {;ys,
Cm. Mam, Kjm, P4, p‘(&; (i=1,34; j=4,589; k=1,2; T = @,Vv; see Equation (7.7))
have the forms

w/\

Civ = —pnCitm+0n8Ciom, i=1,3,4,

_ 2(cm+com) 2 (com camt2cm
Cum=——>35—"", Gou=— |5 ——5—),
Xm HIN \ Xy YN
2)CM
Caim = —(cim+cam), Csom = com (1 ——) —cim,
XIN
_ 3(cim+cam) e —cam | 2(cim+2com)
Cam=——5——, Caom= > 3 XM
M X XIN

ciM—Cm - Ccim+2cm  3cm
Cm = —2(c1m + cam) < o+ 3 5
‘M XIN XIN Xy

o= e (o) a6 (o) o (P ) o (P50
K1om = C3m Canr (i +2com) (5_;)2

1 |:i (pnC3M) i (pnC4M> 2 ) (png?)M) i <pn C4M>:|
+ +07 - -
Saam 0@\ Cm ) 09\ Cm Cu ) ov\ Cum

(7.21)

The coefficients My, Kipr (i=1,3) and M4y, Kapg, Ky are given by Equations

(6.17) and (7.18), respectively, where C jas (j=1,3,4), {p in Equations (6.17), (7.18)

are given by Equation (7.21). The normal stress p,, is given by Equations (2.30) or

234)for N=1or N+1=1,2,..., respectively. With regard to Equation (7.20)

and [E‘PM]xn:xM = —pnOp + Onp Op, the coefficients ¢py, 0p in Equation (2.34) for
N+1=1,2,... are derived as

Q'SIM + C_:41M> 7

]N XIN

om = th <C11M+
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Op=

(Cl o+ 22 C32M C42M> 722)

1
Cn

Conditions Cyys # 0, C3pr # 0, Cypy # 0, Ci1py = 0. Finally, with regard to Equa-
tions (2.21), (2.27), (2.31)—(2.33), (7.5), (7.6), we get

Pn 2C3um
e ==, (CchsMX“M h— §3 >,

Xn
_ _ D es—1 , 63 | Cam
€ =& = — — X 4+ == 4
oM oM CM (CZM n X,31 X, )

EnoM = S44M OnoM =

1 O PnC2M> 1 o (pnC3M) 10 <PnC4M)
cm—1_— +55e +—
g 8@( Cm x5 00\ 09\ Cu )’

€n0M = S44M OnoM =

solwrn () s () e ("))

Oni = — é)_;l {CZM [(ClM+CzM) 3 — 2 cop] x5!
_ 283m (cim +2com) _ 28am com
x3 Xn ’
Gom = Oom =

sm (cim +2com aM C1M
~ P l:CZM (c1m — camezm) ™" + o 3 ), ] ;
CM Xn Xn

cam—1 4 N3m TI4M

O1m =MN2m Xy 3 =+ T
n
2 K3M Kam o — Kiom
Wit = Kapgn c i o+ =,
X, )Cn Xn
n/2m/2
_ Kom 2oyl 2erl) , Kam (] 1
WM—4//|:ﬁ(xM XN )+T 3 73
00 c3m+ XN Xu

K7m cay—1 cay—1
+ Kanm (xpr —xv) + — <xﬁM — XN )
o —

Kopm ( cam+2 cw+2> 1
y K —— dodv
+ a2 Xy — XN + Kiom oy odv,

o2 (M) o %EMZMN
v

_p3palam 1 (m)j PnCam ol pnlam
p3B aq)
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Cm S4am
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 papalam 1 [p«p) (PnCLtM)w(V)i(M)], (7.23)

Cm saam | B oo\ Cm Bov\ Cu

where ©; xgn, Xum; Saanss Cims PjBs p%) (i=1,2,3; j=2,3,4; T = @,V) are given by
Equations (1.8); (1.9); (2.13); (2.18); (6.8), (7.9); respectively. The coefficients ;s
(i=2,3,4), L, K7pr have the forms

Cit = —puCitm +0n8C0m, 1=2,3,4,

 2(cim+com) 2 (cam cm+2cm
m=————5—"", bomv=—\(F5F 55— |:
Xy XIN \ Xy XIn
Caim = — (e +com) eamxd” ™,
cm—1 2C2MXL3M
Caomr = — S [(cim+com) cam —2com) Xy + 7)6”\/ ,

Carmr = (e + conr) 2+ cam) xd =3,

cay—1 [
)CH%M 2(C1M+2C2M) M

4om = [(c1m +com) cam — 2 com ;
g [(c1m + cam) 2cm) =5
X x3
M IN
1 c 3
cim +2com) camxp 24 c3m) comxpM
S =2(cim+com) {( x3) u ))C =
IN IN

3

[(c1m + com)ean — 2 com) xpr ™!
.XM ’

2
K7m = Cam Cam [2com (1 —¢apm) — cim) (CM)
1 0 0 0
4 [ <PnC2M> 9 (PnC3M> 0?2 (P;1C2M> 9 (PnC3M):| L (7.24)
saam 09\ Cm ) 00\ Cm ov\ Cm ) ov\ Cum

The coefficients My, Kipr (i=2,3); Nay, Kam» Koys Ki2om; are given by Equa-
tions (6.17); (7.18); (7.21), respectively, where (jy (j=1,3,4), {p in Equations
(6.17), (7.18), (7.21) are given by Equation (7.24). The normal stress p, is given by
Equations (2.30) or (2.34) for N =1or N+1=1,2,..., respectively. With regard

to Equation (7.23) and [e(pM]x oy = T Pn Oy + 6,5 OB, the coefficients ¢z, ¢p in
Equation (2.34) for N+ 1 =1,2,... are derived as

_ em—1 , G3m | Caim
¢M—g (ClexlN + o, + o )
1
0 =5 <§22 X 1+§3§M+§42M). (7.25)
Cm Xiy - MN
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Strengthening

The analytical model of the micro-strengthening G;; = Gy (x]) and the macro-
strengthening Gy, results from the following analysis [3, 4, 12, 13, 21]. Figures 8.1
and 8.2 shows the plane x5x} in the cubic cell (see Figure 1.2) for x; € (0,a;) and
x1 € (a1,d/2), respectively, where [x,x2,x3] are coordinates of the point P C xjx}.
The plane O’P P, with the ellipse E»3 (see Figure 8.2) represents a cross section
of the ellipsoid inclusion in the plane x5x5. With regard to Figures (8.1), (8.2), the
goniometric functions in Equations (1.8), (1.9) have the forms

x:| X3

° dn

Y

/ Po )

Eg 45

0 A\

\—

® ) 31/ *2
) 4
Py Py |/P3 Xy
/ X2

X1

Figure 8.1: The plane x,x} in the cubic cell (see Figure 1.2) for x; € (0,a;), where
[x1,x2,x3] are coordinates of the point P C x5x}. The plane O'PP, with the ellipse
E»;3 represents a cross section of the ellipsoid inclusion in the plane x5x} (see Fig-
ure 1.2).

X1 t © 1
—, tanp=—=—,
/x%—kx% cot xp
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. x%+x% X3
SINV =4 [ 5———"—, COSV= e, xn:—e,
X7 +x5+x3 /x%—&—x%-&—x% cos

aE! 8.1)

where cos0 is given by Equation (1.6). With regard to Equation (1.2), the parame-
ters by, b3 of the ellipse E»3 along the axes x’z, xg, respectively, are derived as (see

Figure 8.1)
a a% —x% a3 a% —x%
by=0'P=——— b3=0'P= , (8.2)
al ai
and then we get
as b% —x%
by = P4P5 = e (8.3)
5] %3
’ d/2
X1

AN

U/
d2
v P
O |
® X3 X2
e} y4
P Py X
/ X2

X1

Figure 8.2: The plane x)x} in the cubic cell (see Figure 1.2) for x; € (a1,d/2), where

[x1,X2,x3] are coordinates of the point P C x5x5.

The micro-strengthening G5, = G (x ) represents a stress along the axis x;, which
is homogeneous at each point of the plane x}x; with the area S = d? /4, ie., Gy #

f(x2,x3).
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If x; € (0,ay), then the elastic energy surface density W, which is induced by G
and accumulated within the area S;y = b, b3 /4 of the plane O’P; P, and within the
area Sy = (d/2)* — Syy of the plane xx} (see Figure 8.1), has the form

Wy = 007, (8.4)

where Gy is related to x1 € (0,a;). The coefficient ® is derived as

1 1 1 d?
0= |ntbhby| — — — — 8.5
e (- L)1, .
where E7y and Ej is Young’s modulus for the ellipsoidal inclusion and the ma-
trix, respectively. The elastic energy surface density Wis, which is induced by the

stresses 617y = Oy (x1) (see Equations (3.12), (6.19)) and Gy = O (x1) (see
Equations (4.18), (5.17), (6.16), (7.17), (7.20), (7.23)), has the form

W L (Wins | Wims
s=z(—7— )
2\ Emn Eu
by by
Wins = / / G%IN dxz | dxy,
0 0
by [ d)2 dj2/ dpe
Wims = / / G%M dxz | dxpy + / / G%M dxs | xo,
0 ba by 0
x1 € (0,a1). (8.6)

The micro-strengthening G5 = G (x1) for x| € (0,a;), which results from the
condition Wy, = W [3, 4, 12, 13, 21], is derived as

1 W, W,
GmZ\/ (ﬂ+ “‘”>, x1 € (0,a1). (8.7)

20\ Eiy  Ey

If x; € (a1,d/2), then the elastic energy surface density Wy, which is induced by
o5 and accumulated within the area Sy, = d> /4 of the plane x’zx’3 (see Figure 8.2),
has the form

2 2
_ Oost d

Wy = 8.8
st 8 EM ) ( )

where Gy is related to x; € (a;,d/2). Similarly, we get
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v a2 dn .,
Wzs:ﬂ;, WZMS:/ /G%dezdx3, x16<a17—>. 8.9)

2FE 2
0 0
With regard to the condition Wy, = Whs [3, 4, 12, 13, 21], we get
2/Ws
Coy = = 5. (8.10)

Finally, the macro-strengthening Gy, is derived as [3, 4, 12, 13, 21]

ar dj2

G_Slzg / Ol dx) + / Oosrdxy | . (8.11)
0 aj

If oyny < oy or oyy > oy, the strengthening exhibits a resistive effect against
compressive or tensile mechanical loading, respectively.

The macro-strengthening Gy = Gy (v,@1,a2,a3) is a function of the inclusion vol-
ume fraction vyy and the dimensions aj, aj, a3 of the ellipsoidal inclusion. In case
of a real inclusion-matrix composite, such values of the microstructural parameters
VIN, 41, a2, a3 can be numerically determined to result in a maximum value of |Gy]|.
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Chapter 9

Crack Formation

The analytical model of the crack formation in the matrix results from the fol-
lowing analysis [3, 4, 5, 19]-[22]. Figures 9.1, 9.3 show the ellipse E123 in the plane
x12x3 of the cubic cell (see Figures (1.4), (1.5)), where ajp = 04, x122 = OS5 are given
by Equations (1.9), and a3 = O3.

With regard to the plane x1,x3 for @ € (0,7/2) (see Figures 1.4, 1.5), the elastic
energy density wo = wo (x,,¢,v) (Q = IN, INB, M, MB; see Equations (3.10), (3.14),
(4.10), (4.13), (4.16), (4.19), (5.9), (5.12), (5.15), (5.18), (6.8), (6.11), (6.14), (6.17),
(??), (7.9), (7.12), (7.15), (7.18), (7.21), (7.24)) is determined as a function of the
coordinates x,, v € (0,1/2).

The elastic energy density wg = wo (x12,9,X3,a1,a2,a3,viy) (Q=IN, INB, M,
MB) as a function of the coordinates x|, x3 is determined by the following transfor-
mations

X . X12 X 1 X12
Xy = B osinv=——2__ cosv=— tanv=— — —, 9.1

cos®’ /2 2’ 2 2’ cotv  x3
X{p X3 X{p + X3

where cos 6 is given by Equation (1.6).

Cell Matrix. The curve integral Wy of way = wyy (x12,9,x3,a1,a2,a3,viy) along
the abscissa P P> (see Figure 9.1) in the plane x>x3 of the matrix (see Figures 1.4,
1.5) has the form

dj2
WcM = / WwWpm dX3 = / WMdX3. (92)
PP, 0
Let fion = fiom (x12,0,a1,az,a3,viy) represent a decreasing function of the vari-
able x5 € {(aj2,x0m), which describe a shape of the matrix crack in the plane xj,x3

(see Figure 1.4), where ¢ € (0,1/2), aj, az, as, vy are parameters of this decreasing
function. As presented in [3, 4, 5, 19]-[22], we get

afle _ \/ WCZIW - ‘6121/1 9.3)

ox12 Oy ’
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X3
P,
X12
Ei2;
3
X12
O 4 Py 5

Figure 9.1: The ellipse E23 and the abscissa P| P, in the plane xj,x3 of the cubic cell
(see Figures (1.4), (1.5)), where aj» = O4, x120 = OS5 are given by Equation (1.9),
and a3 = O3.

X3
Eis;
3
flom
XoM
X12
O 4 6 5

Figure 9.2: The decreasing function fioy = fiom (x12, 9, a1,a2,a3,vin) of the vari-

able x12 € (a2,x0m), which describes a shape of the matrix crack in the plane x1,x3

(see Figure 1.4) for ajp > aglzﬁ,), or aypp > agf,,) (see Equations (9.8), (9.9)), where

Xom = Xop (@) defnes a position of the crack tip in the matrix, and ¢ € (0,7/2), aj,
ay, az, viy are parameters of this decreasing function.

where 0y is energy per unit length in the matrix. In case of intercrystalline crack
formation, we get
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K2
Oy = —<H, 9.4
E
M
where Kjcys is fracture toughness of the matrix. In case of transcrystalline crack
formation, we get

Oy = Ogpy, 9.5

where the energy U, per unit length is related to the inter-atomic bonding of
boundaries of crystalline grain in the matrix.
As presented in [3, 4, 5, 19]-[22], the condition

(WCM)xlzzalz - ﬁM - 07 (96)

is a transcendental equation with the variable a;, and the parameters @ € (0,7/2),

ai, ar, az, viy (see Figure 1.4.
IC IC TC TC)
The roots a521\/)1 = “521\/)1 (9,a1,az2,as3,viy) and aEZM) = aizM (9,a1,a2,a3,viy) (see

Equation (1.7)) of Equation (9.3) for ¥y, which is given by Equations (9.4) and (9.5),
represents such a dimension of the ellipsoidal inclusion along the axis x1» C x1x (see
Figures 1.4, 1.5), which is critical with respect to the intercrystalline and transcrys-

talline crack formation in the plane x1 x>, respectively. Accordingly, if aglzﬁ,)l > agﬂc,,)

Ic TC . : . . .
or agz 11/)1 < agz M) , then the intercrystalline or transcrystalline matrix crack is formed
in the plane xx,, respectively.

Let the function a%}w = 0(1)2(1)1/1 (¢,a1,a2,a3,viy) (X=IC,TC) of the variable ¢ €

X)

(0,m/2) exhibit the minimum a®) for 0= (p,(:;iM. The critical dimension a,;,, =

minM
a,(jg,)lM (a1,a2,a3,viy) (X=IC,TC) along the axis xj» C xjx (see Figures 1.4, 1.5)
defnes a limit state with respect to the formation of the intercrystalline matrix crack
(X=IC) and the transcrystalline matrix crack (X=7C) in the plane xjx; at the mi-
crostructural parameters ay, a», as, viy (see Equation (1.1)). Accordingly, if ajp >

ag}W (X=IC,TC), the condition [3, 4, 5, 19]-[22]

Wert — Oy =0, ap>als,, X=IC,TC 9.7)

represents a transcendental equation with the variable x> and with the root xgp; =
xom (@,a2,a3,vin), which defnes a position of the crack tip in the matrix (see Fig-
ure 9.2). Consequently, the decreasing function fiop = fiom (x12,9,a1,a2,a3,vin)
with the variable x> € (aj2,x0p) and with the parameters ¢ € (0,m/2), aj, az, as,
vin (see Figures 1.4, 1.5), which describes a shape of the matrix crack in the plane

x12x3 for ajp > a(l}z(l)w (X=IC,TC)), has the form [3, 4, 5, 19]-[22]
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. 1 '
SJiom = o {CM/ < w3, 19121,1) dle] , X12 € (a12,Xom) , 9.8
where Cyy = Cy (@, a1,a2,a3,vin) is derived as [3, 4, 5, 19]-[22]
Cyu = [ / (« JW3, — 1‘}%4) dxlz] . 9.9)
X12=XoMm

Ellipsoidal Inclusion. The curve integral We;y of wo =wg (X12,9,x3,a1,a2,a3,vin)
(Q = IN,INB) along the abscissa Py P, (see Figure 9.3) in the plane xj,x3 of the ellip-
soidal inclusion (see Figures 1.4, 1.5) has the form

X3

Py

X12

3
[P Eix

X12

o) P, 4 5

Figure 9.3: The ellipse Ej23 and the abscissa P; PP, in the plane xjox3 of the cubic
cell (see Figures (1.4), (1.5)), where ajo = 04, x122 = OS5 are given by Equation (1.9),
and a3z = O3.

by dj2

Wein = / WIN dX3+/wM dx; = / win dxz + / wy dx3, (9.10)
PP PP, 0 by

where ajp = 04 (see Equation (1.7)), a3 = O3, and b is derived as (see Equa-

tion (1.2))
asy/ aiy =31
by=PP=—"——— xp€ (0,a12>. 9.11)

ap
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With regard to the intercrystalline and transcrystalline inclusion cracks (see Fig-
ure 9.4), the sign ’-’ and the subscript M in Equations (9.3) and (9.3)—(9.7) are re-
placed by the sign ’+’ and the subscript IN, respectively.

X3
Ei2;
3
flomw
XomN
X12
O 6 5

Figure 9.4: The increasing function fio;v = fiaiv (x12,9,a1,az2,a3,viy) of the vari-
able x1» € {aj2,x07n), Which describes a shape of the inclusion crack in the plane
x12x3 (see Figure 1.4) for ajp > aglzil)v or-ap > agglcl\), (see Equations (9.8), (9.9)),
where xo;v = xoiv (@) defnes a position of the crack tip in the inclusion, and
¢ € (0,7/2) is a parameter of this increasing function.

Consequently, the increasing function fioy = fion (X12,9,a1,a2,a3,viy) with
the variable x17 € (aj2,xo;n) and with the parameters ¢ € (0,7t/2), a1, az, as, viy
(see Figures 1.4, 1.5), which describes a shape of the inclusion crack in the plane

x1ox3 for ajp > aglzc;l)v orap > aglcl\),, has the form [3, 4, 5, 19]-[22]

1
frain = . U <\/W}21Nﬁ%1v) dxin CIN] . X12 € (a12,x0n) (9.12)

where C[N = C]N ((p,al,ag,a3,v1N) is derived as [3, 4, 5, 19]—[22]

Ciy = { / < WL?,N—ﬁ%N> dm} : (9.13)

X12=X0IN
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Chapter 10
Appendix

Cramer’s Rule. The system of n linear algebraic equations is derived as

ayjpxi+apxy+ ... +ax, = by,
ajxy+apxy+ ... +ayx, = b,

ani X1+ apxo+ ... +auyx, = by. (10.1)

The root x; (i=1,...,n) is determined by Cramer’s rule [23]
p\"
e B
x‘*D(n)’ i=1,...,n, (10.2)

where the determinant D with n rows and n columns has the form

all’ alz’ ... aln
D(”) | @2150-a422, ... d2p
apl, ap2, ... dpp
< 14 (n-1) < 14 (n—1)
=3 (-1)"auDl =Y (-1 ayDy . (10.3)
i=1 i=1
The subdeterminant Dgn) is created from D("), i.e., the i-th column of D™ ig
replaced by
by
by
71 TOWS. (10.4)
by

Similarly, the subdeterminant Dg’fl) (i,j=1,...,n) with (n—1) rows and (n — 1)
columns is created from D(”), i.e., the i-th row and the j-th column of D™ are omit-
ted. If n = 2, then we get
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2 ait, dape
D = =ajjax —apal. (10.5)
azi, axn
Consequently, if n = 3, then we get
aii, ap, aips
DW= ay, an, ax
asl, a4z, as3
an, a azy, a ax, a
—qy, | ©> @3 21, a23 21, a2 (10.6)
asz, asz asy, asz asy, az

Integrals. The derivatives of the functions f = X, f = Inx and the constant C are
derived as [23]

/ 1
(ﬁ) AL (Inx) = -, =0, (10.7)
X

The indefinite integrals of f = X, f = Inx and the constant C have the forms [23]

A
1 d
/xxdx: );:1 L AE L /;x — Inx, /Cdx:Cr. (10.8)

In case of the product f g of the functions f = f (x), g = g (x), we get [23]

(fo) =rf's+r1s' (10.9)
and then the integral of f g has the form [23]
/f’gdx:fg—/fg'dx. (10.10)
With regard to Equation (10.17), the following integrals are derived as [23]
A1 S| A
/xhlnxdx:;f+1lnx— ;—Hx;dx ;+1lnx 1/ Mdx

M 1
=X+l<]nx—k—+1>, 7\,#—17

' 1
/lnxdx:/lxlnxdx:xlnxf/xx ;dx:xlnxf/lxdx:x(lnxfl),

/xklnzxdx: L P lnzx—2/x7‘lnxdx
. A1
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x?Hr 1

Tl

, AL (10.11)

<lnx— ! >2+ !
A1) (A1)

Let F = F (x) be a primitive function of f = f(x) in the interval x € (a,b), i.e.,

b

f = dF/dx. The definite integral [ fdx is defined by Newton-Leibniz’s formula
a

[23], which has the form

b

/fdx:F(b)—F(a). (10.12)

a

Wronskian’s Method. The differential equation (4.3) with a non-zero right-hand
side [23] is derived as

QP u, 2 ou, 2uy, 3 s
= T et (10.13)

n i=1
where the integration constants C1, C,, C3 are determined by the mathematical bound-
ary conditions in Section 2.3. If g = 0, we get

%u, 290u, 2u,
% T 10.14
ox2 Xy Ox, X3 ( )

Ifu,= x*, then the solutions Ui, U, of Equation (10.24) have the forms

1
Ulp = Xn, Uy = —. (10.15)
xn

The solution u,, of Equation (10.22) is derived as [23]

2 W_(Z)
Uy = izziaiuim a; :/den7 i=1,2. (10.16)
Wronskian’s determinants W(2), Wi(z) (i=1,2) with 2 rows and 2 columns are
have the forms [23]

2) Uln, Uzn @) 0, uzy @) uyp, O
W= uiy  dugy |» W7 = dury |+ Wo = duy, . (10.17)
0xy° Oxp > Oxp oxy’

The determinant Wi(z) (i=1,2) is created from W(z), i.e., the i-th column of w®)
is replaced by the following one [23]
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g } 2 rows. (10.18)

Let f1, ..., f, represent n solutions of a differential equation of the n-th rank with
zero right-hand side. Let the functions fi, ..., f; of the variable x exhibit continuous
derivatives to the (n — 1)-th degree. The solution of this differential equation with a
non-zero right-hand side (i.e., g # 0) is derived as [23]

f:i:z{a,-f,-, a,:/m dx. (10.19)
With respect to f1, ..., fu, Wronskian’s determinant w® (i=1,...,n) with nrows
and n columns have the form [23]

S S e Jn
9N of 9fn
W —| X deto T k) (10.20)
rlh Ih " fy
oxt—1> -l gyn—1
where Wi(") (i=1,...,n) with n rows and n columns is created from W(">, i.e., the
i-th column of W) is replaced by the following one [23]
0
0
71 TOWS. (10.21)
8

Numerical Determination. Numerical values of the thermal stresses in a real ma-
trix-inclusion composite include integrals and derivatives, which are determined by a
programming language. If f = f(x), then a numerical value of the derivative df/dx
is determined by [23]

of _flx+Ax)—f(x)
ox Ax '
In case of the angles @, v (see Figure 1.4), the step Ax = A@ = Av = 107 [deg]
is sufficient [3, 4, 5, 19]-[22].
Let F represent a definite integral of the function f = f (@,v) with the variables
@,v € (0,/2). Let n, m be integral parts of the real numbers ©/ (2A), ©/ (2Av)

(10.22)
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[3,4, 5, 19]-[22], respectively. Numerical values of the definite integral F are deter-
mined by the following formula [23], [3, 4, 5, 19]-[22]

m

n(2 /2 "
F= / / Flov)dodv~Y <Zf(ixA(p;ijv)A(p> Av,  (1023)
0 0

j=0 \ i=0

where the steps A¢p = Av = 0.1 [deg] are sufficient. Finally, the average numerical
value f of the function f = f(¢,v) with the variables @,v € (0,7/2) is determined
by the following formula [23]

n/2 m/2

B 2 2 A o) 2 m n

7=(2) [ [ revaoav=(2) ]zo<i20f<ixA(p;ijv>A<p>Av.
0 0 B a

(10.24)
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