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Introduction

This book1 presents original mathematical models of thermal-stress-field inter-
actions in composite materials (see Chapters 3–7), along with mathematical models
of thermal-stress induced micro-/macro-strengthening (see Chapter 8) and thermal-
stress induced intercrystalline or transcrystalline crack formation (see Chapter 9).
The materials consist of an isotropic matrix with isotropic ellipsoidal inclusions.
These stresses originate during a cooling process, and are a consequence of different
thermal expansion coefficients of the matrix and ellipsoidal inclusions.

The mathematical models are determined for a suitable model system. The model
system is required to correspond to real isotropic matrix-inclusion composites. The
thermal stresses are derived within a suitable coordinate system. The coordinate sys-
tem is required to correspond to a shape of the ellipsoidal inclusions (see Chapter 1).

The mathematical determination results from mechanics of an isotropic elastic
continuum (see Section 2.1), and result in different mathematical solutions for the
thermal stresses (see Sections 3.1, 4.1, 5.1, 6.1, 7.1). Due to these different math-
ematical solutions, the principle of minimum elastic energy is considered (see Sec-
tion 2.4).

The mathematical models of the thermal-stress-field interactions, which are de-
termined by an iteration method (see Section 2.3.1), along with the mathematical
models of the thermal-stress induced micro-/macro-strengthening and crack forma-
tion (see Chapters 8, 9), include microstructural parameters of a real matrix-inclusion
composite, i.e., the inclusion dimensions a1, a2, a3, the inclusion volume fraction
vIN , as well as the inter-inclusion distance d = d (a1,a2,a3,vIN) (see Chapter 1).

The iteration method results from mathematical boundary conditions for the first
iteration and for the (N +1)-th iteration (N = 1,2,3, . . . )), as well as from such a math-
ematical procedure, when the (N +1)-th iteration considers mathematical results of
the N-th iteration, as well as mathematical results of the 1-st iteration (see Sec-
tion 2.3.1).

1This book was reviewed by the following reviewers:

Assoc. Prof. Ing. Robert Bidulský, PhD., visiting professor, Politecnico di Torino, Torino, Italy

Prof. Ing. Daniel Kottfer, PhD., Alexander Dub³cek University of Tren³cı́n, Faculty of Special Technology Department
of Mechanical Engineering, Tren³cı́n, Slovak Republic
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Consequently, the mathematical models are applicable to composites with ellip-
soidal inclusions of different morphology (see Chapter 1), i.e., a1 ≈ a2 ≈ a3 (dual-
phase steel), a1 � a2 ≈ a3 (martensitic steel).

In case of a real matrix-inclusion composite, such numerical values of the mi-
crostructural parameters can be determined, which result in maximum values of the
micro- and macro-strengthening (see Chapter 8), and which define limit states with
respect to the intercrystalline or transcrystalline crack formation in the matrix and
the ellipsoidal inclusion (see Chapter 9). This numerical determination is performed
by a programming language. The mathematical procedures in this book are analysed
in Appendix.

2



Chapter 1

Matrix-Inclusion Composite

Figure 1.1 shows a model system, corresponding to real matrix-inclusion com-
posites, which is considered within the mathematical models of the thermal stresses.
This model system consists of an infinite isotropic matrix and isotropic ellipsoidal
inclusions with the dimensions a1, a2, a3 and the inter-inclusion distance d along the
axes x1, x2, x3 of the Cartesian system (Ox1x2x3), respectively, where O represents a
centre of the ellipsoidal inclusion.

Figure 1.1: The matrix-inclusion system with an infinite isotropic matrix and
isotropic ellipsoidal inclusions with the dimensions a1, a2, a3 and the inter-inclusion
distance d along the axes x1, x2, x3 of the Cartesian system (Ox1x2x3), respectively,
where O represents a centre of the ellipsoidal inclusion.

As presented in [1]–[22], the thermal stresses are determined in the cubic cells
with the dimension d along the axes x1, x2, x3 and with central ellipsoidal inclusions
(see Figure 1.2). Due to the infinite matrix, the thermal stresses, which are deter-
mined for one of the cubic cells, are identical with those, which are determined for
any of the cubic cells [1]–[22]. With regard to the volumeVIN = 4πa1,a2 a3 [23] and
VC = d3 of the ellipsoidal inclusion and the cubic cell, the inter-inclusion distance d
as a function of the inclusion volume fraction vIN is derived as

3



vIN =
VIN

VC
=

4πa1 a2 a3

3d3 ∈
(
0,

π
6

)
, d =

(
4πa1 a2 a3

3vIN

)1/3

, (1.1)

where the value vINmax = π/6 results from the condition ai → d/2 (i = 1,2,3). Ac-
cordingly, the thermal stresses are functions of the material parameters a1, a2, a3,
vIN , d.

Figure 1.2: The cubic cells with the dimension d along the axes x1, x2, x3 of the
Cartesian system (Ox1x2x3) and with the plane x12x3, where O represents a centre of
the ellipsoidal inclusion, and (x12 ⊂ x1x2, x12x3 ⊥ x1x2. The thermal stresses in the
cell A and the neighbouring cells B are mutually affected.

Additionally, the thermal stresses in the cell A and the neighbouring cells B are
mutually affected. In contrast to [1]–[13], [15]–[22], this effect is explicitly de-
termnined [14].

Figure 1.3 shows the ellipse E with the dimensiions a, b along the axes x, y,
respectively. The ellipse E is described by the function

(x
a

)2
+
(y

b

)2
= 1. (1.2)

Any point P of the ellipse E is described by the coordinates [23]

x = acosα, y = bsinα, α ∈ 〈0,2π〉 , (1.3)

where the normal n of the ellipse E at the point P is derived [23]

4



Figure 1.3: The ellipse E with the dimensions a, b along the axes x, y of the Cartesian
system (Oxy), respectively, and the point P related to the angle α.

y =
xa tanα

b
−
(
a2−b2

)
sinα

b
. (1.4)

The thermal stresses are determined by the spherical coordinates (r,ϕν) (see Fig-
ure 1.4). The model system in Figures (1.1), (1.2) is symmetric, and then the thermal
stresses are determined within the intervals ϕ ∈ 〈0,π/2〉, ν ∈ 〈0,π/2〉 [1]–[22].

Figure 1.4 shows the ellipsoidal inclusion for ϕ,ν ∈ 〈0,π/2〉 with the centre O
and with the dimensions a1 = O1, a2 = O2, a3 = O3 along the axes x1, x2, x3 of
the Cartesian system (O,x1,x2,x3) (see Figures (1.1), (1.2)), respectively. Finally,(
P,xn,xϕ,xν

)
is a Cartesian system at the point P, where the axes xn and xν represents

a normal and a tangent of the ellipse E123 at the point P, respectively, x12x3 ⊥ x1x2,
x12 ⊂ x1x2, xϕ ⊥ x12. Figure 1.5 shows the cross section O567 of the cubic cell in
the plane x12x3 (see Figures 1.2, 1.4). The angle ν ∈ 〈0,π/2〉 defines a position of
the point P with the Cartesian system

(
P,xn,xϕ,xν

)
(see Figure 1.4) for ν = ν0 (see

Figure 1.5a), ν∈ 〈0,ν0) (see Figure 1.5b), ν∈ (ν0,π/2〉 (see Figure 1.5c). The points
P1, P2 represent intersections of the normal xn with O567.

With regard to Equations (1.2)–(1.4), the angle ν0 represents a root of the follow-
ing equation [24]

cosν0

a3

⎡
⎢⎣d

√
a2

1 cos2 ϕ+a2
2 sin2 ϕ

2 f (ϕ) sinν0
+a2

3−
(
a2

1 cos2 ϕ+a2
2 sin2 ϕ

)⎤⎥⎦− d
2

= 0,

f (ϕ) = cosϕ, ϕ ∈
〈
0,

π
4

〉
; f (ϕ) = sinϕ, ϕ ∈

〈π
4
,
π
2

〉
, (1.5)
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Figure 1.4: The inclusion with the centre O and with the dimensions a1 = O1,
a2 = O2, a3 = O3 along the axes x1, x2, x3 of the Cartesian system (O,x1,x2,x3),
respectively, where E12, E123 represent ellipses in the planes x1x2, x12x3, respec-
tively, and x12x3 ⊥ x1x2, (x12 ⊂ x1x2, xϕ ⊥ x12. The point P on the inclusion surface
is defined by ϕ,ν ∈ 〈0,π/2〉, ν ∈ 〈0,π/2〉, and

(
P,xn,xϕ,xν

)
is a Cartesian system at

the point P, where P ⊂ E123. The axes xn and xν represents a normal and a tangent
of the ellipse E123 at the point P, respectively.

and this root is determined by a numerical method. The angle θ = ∠(xn,x3) is de-
rived as [24]

cosθ =

√
a2

1 cos2 ϕ+a2
2 sin2 ϕ√

a2
1 cos2 ϕ+a2

2 sin2 ϕ+(a3 tanν)2
,

sinθ =
a3√(

a2
1 cos2 ϕ+a2

2 sin2 ϕ
)
cotν2 +a2

3

. (1.6)

Consequently, we get [23]

∂
∂θ

=

(
∂θ
∂ν

)−1 ∂
∂ϕ

= Θ
∂

∂ν
, (1.7)
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where the function Θ = Θ(ϕ) has the form [24]

Θ =

√
a2

1 cos2 ϕ+a2
2 sin2 ϕ

a3

[
(a3 sinν)2

a2
1 cos2 ϕ+a2

2 sin2 ϕ
+ cos2 ν

]
. (1.8)

a b

c

Figure 1.5: The angle ν ∈ 〈0,π/2〉
defines a position of the point P with the
Cartesian system

(
P,xn,xϕ,xν

)
(see Fig-

ure 1.4) for (a) ν = ν0, (b) ν ∈ 〈0,ν0),
(c) ν ∈ (ν0,π/2〉, where ν0 is given by
Equation (1.5). The points P1, P2 repre-
sent intersections of the normal xn with
O567, where O567 is a cross section of
the cubic cell in the plane x12x3 (see Fig-
ures 1.2, 1.4). The angle θ∠(xn,x3) is
given by Equation (1.5).

As analysed in [1]-[20], due to the symmetry of the model system, any point P on
the matrix-inclusion boundary exhibits the displacement un along xn. Consequently,
any point P of the normal xn exhibits un along xn, i.e., uϕ = uν = 0 [1]-[20], where
uϕ, uν are displacements along the axes xϕ, xν, respectively.

As presented in [1]–[22], the thermal stresses, which are determined along the
axes xn, xϕ, xθ of the Cartesian system

(
P,xn,xϕ,xθ

)
, represent function of the spher-

ical coordinates (xn,ϕ,θ) for ϕ,θ ∈ 〈0,π/2〉. The intervals xn ∈ 〈0,xIN〉 and xn ∈
7



〈xIN,xM〉 are related to the ellipsoidal inclusion and the cell matrix, where P = P1,
P ⊂ E123 and P = P2 for xn = 0, xn = xIN and xn = xM (see Figure 1.5), respectively.
Finally, we get [24]

xIN = P1P = a3

√(
a3 sinν

a12

)2

+ cos2 ν,

xM = PP2 =

√(
sinν
a12

)2(d cosν
2a3

−a2
3

)2

+

(
a12 cosν

a3

)2

(x122−a12)
2,

x122 =
d

2 f (ϕ) sinν
, a12 =

√
a2

1 cos2 ϕ+a2
2 sin2 ϕ. (1.9)

8



Chapter 2

Mechanics of Elastic Solid
Continuum

2.1 Fundamental Equations

As analysed in [1]-[20], any point P of the normal xn exhibits the displacement un

along xn. The thermal stresses are determined along the axes xn, xϕ, xθ of the Carte-
sian system

(
P,xn,xϕ,xθ

)
. Fundamental equations of mechanics of a solid continuum

are represented by Cauchy’s equations, the equilibrium equations and Hooke’s law.
Cauchy’s equations represent functions of strains and displacements. With respect
to the normal displacement un, Cauchy’s equations have the forms [1]-[20, 22]

εn =
∂un

∂xn
, (2.1)

εϕ = εθ =
un

xn
, (2.2)

εnϕ = εϕn =
1
xn

∂un

∂ϕ
, (2.3)

εnθ = εθn =
Θ
xn

∂un

∂ν
, (2.4)

where εn is a normal strain along the axis xn, and Θ is given by Equation (1.8).
Consequently, εϕ and εθ are tangential strains along the axes xϕ and xθ, respectively.
Finally, εnϕ, εnθ and εϕn, εθn represent shear strains along the axes xn and xϕ, xθ,
respectively. Due to uϕ = uν = 0, we get εϕν = ενϕ = 0 [1]–[22], where uϕ, uν
are displacements along the axes xϕ, xν, respectively, and εϕν is a shear strain. As
presented in [1]–[22], the equilibrium equations are derived as

2σn−σϕ −σν + xn
∂σn

∂xn
+

∂σnϕ

∂ϕ
+Θ

∂σnθ
∂ν

= 0, (2.5)

∂σϕ

∂ϕ
+3σnϕ + xn

∂σnϕ

∂xn
= 0, (2.6)

9



Θ
∂σθ
∂ν

+3σnθ + xn
∂σnθ
∂xn

= 0, (2.7)

where σn is a normal stess along the axis xn. Consequently, σϕ and σθ are tangen-
tial stresses along the axes xϕ and xθ, respectively. Finally, σnϕ, σnθ and σϕn, σθn

represent shear stresses along the axes xn and xϕ, xθ, respectively, where σnϕ = σϕn,
σnθ = σθn. Due to εϕν = ενϕ = 0, we get σϕν = σνϕ = 0 [1]–[22], where σϕν is a
shear stress. With regard to εϕθ = 0, σϕθ = 0, Hooke’s law has the form [1]–[20, 22]

εn = s11σn + s12
(
σϕ +σθ

)
, (2.8)

εϕ = s12 (σn +σθ)+ s11σϕ, (2.9)

εθ = s12
(
σn +σϕ

)
+ s11σθ, (2.10)

εnθ = s44σnθ, (2.11)

εnϕ = s44σnϕ, (2.12)

where s11, s12, s44 are derived as [25]

s11 =
1
E

, s12 =− μ
E

, s44 =
2(1+μ)

E
. (2.13)

Finally, E and μ are Young’s modulus and Poisson’s ratio, respectively. In case of
the ellipsoidal inclusion and the cell matrix, we get E = EIN , μ = μIN and E = EM,
μ = μM, respectively. With regard to Equations (2.1)–(2.4), (2.8)–(2.12), we get
[1]–[22]

σn = (c1 + c2)
∂un

∂xn
−2c2

un

xn
, (2.14)

σϕ = σθ =−c2
∂un

∂xn
+ c1

un

xn
, (2.15)

σnϕ =
1

s44xn

∂un

∂ϕ
, (2.16)

σnθ =
Θ

s44xn

∂un

∂ν
, (2.17)

where c1, c2, c3 (see Equation (2.24)) have the forms

10



c1 =
E

(1+μ)(1−2μ)
, c2 =− μE

(1+μ)(1−2μ)
, c3 =−4(1−μ) < 0, (2.18)

and c3 < 0 due to μ < 0.5 for real isotropic components [26]–[32].
Let a1i = cos [∠(x1,xi)] (i= n,ϕ,θ) represent a direction cosine of an angle formed

by the axes x1, xi (see Figures 1.4, 1.5). With regard to Figures 1.4, 1.5, the coefficient
a1i = cos [∠(x1,xi)] (i = n,ϕ,θ) is derived as

a1n = cosϕsinθ, a1ϕ = sinϕsinθ, a1θ = cosθ,

aϕ1 =−sinϕ, aθ1 =−cosϕcosθ, (2.19)

where cosθ, sinθ are given by Equation (1.6). The stress σ1 along the axis x1 has the
form

σ1 = a1n σn +a1ϕ σϕ +a1θ σθ +a1n
(
σnϕ +σnθ

)
+a1ϕσϕn +a1θσθn. (2.20)

With regard to Equations (2.14)-(2.17) and due to σnϕ = σϕn, σnθ = σθn [25], we
get

σ1 = γ1
∂un

∂xn
+ γ2

un

xn
+

1
s44 xn

(
γ3

∂un

∂ϕ
+ γ4

∂un

∂ν

)
, (2.21)

where γi (i = 1, . . . , 4) is derived as

γ1 = a1n (c1 + c2)−
(
a1ϕ +a1θ

)
c2, γ2 =

(
a1ϕ +a1θ

)
c1−2a1n c2,

γ3 = a1n +a1ϕ, γ4 = Θ(a1n +a1θ) , (2.22)

and Θ is given by Equation (1.8). As presented in Chapter 8, the analytical models of
the micro-strengthening σst = σst (x1) and the macro-strengthening σst result from
the stress σ1 (see Equations (2.21), (2.22)).

Let Equations (2.14)–(2.17) be substituted to Equation (2.18) and to [∂Eq.(2.6)/∂ϕ]
+ Θ [∂Eq.(2.7)/∂ν]. Consequently, Equations (2.5)–(2.7) are derived as

x2
n

∂2un

∂x2
n

+2xn
∂un

∂xn
−2un +

Un

s44 (c1 + c2)
= 0, (2.23)

xn
∂Un

∂xn
= c3Un, (2.24)

where Un is derived as

11



Un =
∂2un

∂ϕ2 +Θ2 ∂2un

∂ν2 . (2.25)

The system of the differential equations (2.23), (2.25) is solved by the mathemat-
ical procedures in Sections 3.1, 4.1, 5.1, 6.1, 7.1.

2.2 Elastic Energy

As analysed in [1]–[22] with respect to the different mathematical procedures (see
Sections 3.1, 4.1, 5.1, 6.1, 7.1), such a mathematical solution, which exhibits a min-
imum value of the elastic energy WC of the cubic cell, is considered, where WIN and
WM is elastic energy, which is accumulated in the volume VIN and VM of the ellip-
soidal inclusion and the cell matrix, respectively. The elastic energy density w is
derived as [25]

w =
1
2

(
εnσn + εϕσϕ + εθσθ

)
+ εnϕσnϕ + εnθσnθ, (2.26)

and WIN , WM and WC have the forms

WIN =
∫

VIN

wIN dVIN = 8

π/2∫
0

π/2∫
0

xIN∫
0

wIN x2
n dxn dϕ dν,

WM =
∫
VM

wM dVM = 8

π/2∫
0

π/2∫
0

xM∫
xIN

wM x2
n dxn dϕ dν,

WC =WIN +WM. (2.27)

2.3 Mathematical Boundary Conditions

The mathematical solutions of the system of the differential equations (2.23), (2.25)
include integration constants. As presented in [1]–[22], these constants are deter-
mined, using Cramer’s rule (see Chapter 8) [23], by the following mathematical
boundary conditions for the ellipsoidal inclusion and the cell matrix.

2.3.1 Cell Matrix. Iteration Method

The iteration method is performed by the following mathematical procedure. In case
of the first iteration, i.e., N = 1, the mathematical boundary conditions for the cell

12



matrix are derived as [1]–[22] [
σ(1)

nM

]
xn=xIN

=−p(1)
n , (2.28)

[
u(1)

nM

]
xn=xM

= 0. (2.29)

With regard to
[
ε(1)

ϕM

]
xn=xM

= −p(1)
n ρM,

[
ε(1)

ϕIN

]
xn=xIN

= −p(1)
n ρIN [1]–[22], the

normal stress p(1)
n on the matrix-inclusion boundary, i.e., for xn = P1P = xIN (see

Figure 1.5), which acts along the axis xn (see Figures (1.4), (1.5)), has the form
[1]–[22]

p(1)
n =

(αIN −αM)(Tr −T )

ρM +ρIN
, (2.30)

where Tr = (0.35−0.4)×Tm [26] and Tm is relaxation and melting temperature of
a real composite system, respectively, T is final temperature of a cooling process.
The coefficients ρM and ρIN are given by Equations (3.11), (4.11), (4.14), (4.17),
(5.10), (5.13), (5.16), (6.9), (6.12), (6.15), (7.10), (7.13), (7.16) and (3.14), (6.20),
respectively, with respect to a minimum value of the elastic energy WC (see Equa-
tion (2.27)). In case of the (N +1)-th iteration (N = 1,2,3, . . . ), the mathematical
boundary conditions are derived as[

σ(N+1)
nM

]
xn=xIN

=−p(N+1)
n , N = 1,2,3, . . . , (2.31)

[
σ(N+1)

nM

]
xn=xM

=−σ(N)
nB , N = 1,2,3, . . . , (2.32)

[
u(N+1)

nM

]
xn=xM

= 0, N = 1,2,3, . . . . (2.33)

Similarly, with regard to
[
ε(N+1)

ϕM

]
xn=xM

= −p(N+1)
n φM +σ(N)

nB φB,
[
ε(1)

ϕIN

]
xn=xIN

=

−p(1)
n ρIN [1]–[22], the normal stress p(N+1)

n on the matrix-inclusion boundary has
the form

p(N+1)
n =

(αIN −αM)(Tr −T )+σ(N)
nB φB

φM +ρIN
, N = 1,2,3, . . . , (2.34)

where φM, φB are given by Equations (4.20), (5.19), (6.18), (7.19), (7.22), (7.25).

The normal stress σnB = σ(N)
nB is determined by the following mathematical pro-

cedure. With regard to Figure 1.2, the stresses in the cells B affect those in the cell
A. Let P represent a point on the cell boundary with the coordinates (xM,ϕ,ν) and
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(xM,−ϕ,ν) for the cells A and B, respectively. Let
(
PxnAxϕAxθA

)
and

(
PxnBxϕBxθB

)
represent coordinate systems at P in the cells A and B (see Figure 1.4), respectively.

As presented in [14], the effect of the cell B is represented by the normal stress
σnB, which acts at the point P along the axis xnA. The stress σnB, which is a projection
of σnB, σϕB, σθB onto xnA at P (i.e., for xnB = xM), is derived as [14]

σnB = ϑ1 (σnM)xn=xM
+ϑ2

(
σϕM

)
xn=xM

+ϑ3 (σθM)xn=xM

+(ϑ1 +ϑ2)
(
σnϕM

)
xn=xM

+(ϑ1 +ϑ3)(σnθM)xn=xM
, (2.35)

where σnM, σϕM, σθM, σnϕM, σnθM are determined by the mathematical boundary
conditions (2.28), (2.29) (see Equations (2.14)–(2.17)), and ϑ i (i = 1,2,3) has the
form [14]

ϑ1 = 1−2sin2 ϕ sin2 ν, ϑ2 =
√

2 sin
(π

4
−ϕ

)
sinϕ sinν,

ϑ3 =
1
2

sin
(
2ϕ− π

2

)
sin2ν. (2.36)

2.3.2 Ellipsoidal Inclusion

In case of the ellipsoidal inclusion we get [1]–[22]

(un)xn=0 = 0, (2.37)

(σnIN)xn=xIN
=−p(N)

n , (2.38)

where xIN is given by Equation (1.9). Additionally, the conditions
(unIN)xn→0 /−→±∞, (εIN)xn−→0 /−→±∞, (σIN)r→0 /−→±∞ are required to be ful-

filled [1]–[22]. The normal stress p(N)
n (see Equations (2.30), (2.34)), which acts

along the axis xn (see Figure 1.4) on the matrix-inclusion boundary, is related to the
N-th iteration (see Section 2.3.1), where N = 1,2,3, . . . . .

2.4 Energy Analysis

The normal stress σnB = σ(N)
nB , which is a function of the radial stress pn = p(N)

n ,
is derived by 13 mathematical solutions (see Equations (3.9), (4.9), (4.12), (4.15),
(5.8), (5.11), (5.14), (6.7), (6.10), (6.13), (7.8), (7.11), (7.14)). If N = 1 or N +1 =

2,3,4, . . . , then pn = p(1)
n or pn = p(N+1)

n in Equations (3.9), (4.9), (4.12), (4.15),

14



(5.8), (5.11), (5.14), (6.7), (6.10), (6.13), (7.8), (7.11), (7.14) is given by Equa-
tion (2.30) or (2.34), respectively. Consequently, the mathematical boundary con-
ditions (2.31)–(2.33) for the cell matrix result in 6 mathematical solutions, which
are given by Equations (4.18), (5.17), (6.16), (7.17), (7.20), (7.23). Finally, two
mathematical solutions for the ellipsoidal inclusion are given by Equations (3.12),
(6.19).

As analysed in [1]–[15], WC represent the total potential energy WT [25], i.e.,
WC =WT . Consequently, with respect to 156 mathematical solutions, i.e., 13×6×2,
such a combination of the mathematical solutions is considered to result in a mini-
mum value of the elastic energy WC (see Equation (2.27)) [25]. Additionally, WC =
WC (N) is assumed to represent a decreasing discrete function of N = 1,2,3, . . . with a
minimum value for N = Nmax ⊂ {1,2,3, . . .} or N → ∞. If not, then we get Nmax = 2.
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Chapter 3

Mathematical Model 1

3.1 Mathematical Procedure

Let the mathematical procedure xn [∂Eq.(2.24)/∂xn] be performed, and then we
get [1]–[22]

x2
n

∂2Un

∂x2
n

+(1− c3)xn
∂Un

∂xn
= 0, (3.1)

where c3 < 0 and Un = Un (xn,ϕ,θ) are given by Equations (2.18) and (2.25), re-
spectively. Let Equation (2.24) be substituted to Equation (3.1), and then we get
[1]–[22]

x2
n

∂2Un

∂x2
n

+ c3 (1− c3)Un = 0. (3.2)

Let Un be assumed in the form Un = xλ
n , then we get [1]–[22]

Un =C1 xλ1
n +C2 xλ2

n , (3.3)

where C1, C2 are integration constants, which are determined by the mathematical
boundary conditions in Section 2.3, and λ1, λ2, with respect to μ < 0.5 for a real
isotropic material [26], have the forms [1]–[22]

λ1 =
1
2

[
1+

√
1+16(1−μ) [1+4(1−μ)]

]
> 3,

λ2 =
1
2

[
1−

√
1+16(1−μ) [1+4(1−μ)]

]
< −2. (3.4)

Let Equation (3.3) be substituted to Equation (2.23), and then we get [1]–[22]

x2
n

∂2un

∂x2
n

+2xn
∂un

∂xn
−2un =C1 xλ1

n +C2 xλ2
n . (3.5)

The mathematical solution of Equation (3.5), which is determined by Wron-
skian’s method [23], is derived as
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un =C1 xλ1
n +C2 xλ2

n . (3.6)

With regard to Equations (2.1)–(2.4), (2.14)–(2.17), (2.21), (2.26), (3.6), we get

εn =C1 λ1 xλ1−1
n +C2 λ2 xλ2−1

n ,

εϕ =C1 xλ1−1
n +C2 xλ2−1

n ,

εnϕ = s44 σnϕ =
∂C1

∂ϕ
xλ1−1
n +

∂C2

∂ϕ
xλ2−1
n ,

εnθ = s44 σnθ = Θ
(

∂C1

∂ν
xλ1−1
n +

∂C2

∂ν
xλ2−1
n

)
,

σn =C1 ξ1 xλ1−1
n +C2 ξ2 xλ2−1

n ,

σϕ = σθ =C1 ξ3 xλ1−1
n +C2 ξ4 xλ2−1

n , (3.7)

where Θ, s44 is given by Equations (1.8), (2.13), respectively. The coefficients ξ i,
ξ2+i, ξ5, (i = 1,2) are derived as

ξ i =
E [λi (1−μ)+2μ]
(1+μ)(1−2μ)

, ξ2+i =
E (1+λi μ)

(1+μ)(1−2μ)
, i = 1,2, (3.8)

where γi (i = 1, . . . , 4) is given by Equation (2.22).

3.2 Cell Matrix

Due to two integration constants, i.e., C1M, C2M in Equation (3.6), and two mathe-
matical boundary conditions (see Equations (2.28), (2.29)), the mathematical model
in Section 3.1 is suitable to determine the stress σnB. With regard to Equations (2.28),
(2.29), (2.35), (3.6), (3.7), we get

εnM =−pn

[
λ1M

ζ1M

(
xn

xM

)λ1M−1

+
λ2M

ζ2M

(
xn

xM

)λ2M−1
]

,

εϕM = εθM =−pn

[
1

ζ1M

(
xn

xM

)λ1M−1

+
1

ζ2M

(
xn

xM

)λ2M−1
]

,

εnϕM = s44M σnϕM =−xλ1M−1
n

∂
∂ϕ

(
pn

ζ1M xλ1M−1
M

)
− xλ2M−1

n
∂

∂ϕ

(
pn

ζ2M xλ2M−1
M

)
,

εnθM = s44M σnθM =−Θ

[
xλ1M−1
n

∂
∂ν

(
pn

ζ1M xλ1M−1
M

)
+ xλ2M−1

n
∂

∂ν

(
pn

ζ2M xλ2M−1
M

)]
,
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σnM =−pn

[
ξ1M

ζ1M

(
xn

xM

)λ1M−1

+
ξ2M

ζ2M

(
xn

xM

)λ2M−1
]

,

σϕM = σθM =−pn

[
ξ3M

ζ1M

(
xn

xM

)λ1M−1

+
ξ4M

ζ2M

(
xn

xM

)λ2M−1
]

,

σnB =−
[

ρB pn +
ρ(ϕ)

B +ρ(ν)
B

s44M

]
, (3.9)

where Θ, xIN , xM, s44M, λiM, ξ jM (i = 1,2; j = 1, . . . , 4) are given by Equations (1.8),

(1.9), (2.13), (3.4), (3.8), respectively. The coefficients ζ iM (i = 1,2), ρB, ρ(τ)
B (τ =

ϕ,ν) have the forms

ζ iM = ξ iM

(
xIN

xM

)λiM−1

−ξ3−iM

(
xIN

xM

)λ3−iM−1

,

ρB =
2

∑
i=1

ϑ1 ξ iM +(ϑ2 +ϑ3) ξ2+iM

ζ iM
,

ρ(ϕ)
B = (ϑ1 +ϑ2)

[
∂

∂ϕ

(
pn

ζ1M xλ1M−1
M

)
+

∂
∂ϕ

(
pn

ζ2M xλ2M−1
M

)]

ρ(ν)
B = Θ(ϑ1 +ϑ3)

[
∂

∂ν

(
pn

ζ1M xλ1M−1
M

)
+

∂
∂ν

(
pn

ζ2M xλ2M−1
M

)]
, i = 1,2, (3.10)

where γ iM, ϑ j (i = 1, . . . , 4; j = 1,2,3) are given by Equations (2.22), (2.32), respec-
tively. The normal stress pn is given by Equations (2.30) or (2.34) for N = 1 or

N + 1 = 1,2, . . . , respectively. With regard to Equation (3.9) and
[
ε(1)

ϕM

]
xn=xM

=

−p(1)
n ρM [1]–[22], the coefficient ρM in Equation (2.30) for N = 1 is derived as

ρM =
1

ζ1M

(
xIN

xM

)λ1M−1

+
1

ζ2M

(
xIN

xM

)λ2M−1

. (3.11)

3.3 Ellipsoidal Inclusion

In case of the ellipsoidal inclusion, we getC2IN = 0, otherwise we get (unIN)xn→0 −→
± ∞, (εIN)xn−→0 −→± ∞, (σIN)r→0 −→±∞ due to λ2 < −2 (see Equations (3.4),
(3.6)–(3.12)). With regard to Equations (2.37), (2.38), (3.6), (3.7), we get [1]–[22]

εnIN =− pn ρIN λ1IN

(
xn

xIN

)λ1IN−1

, εϕIN = εθIN =− pn ρIN

(
xn

xIN

)λ1IN−1

,
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εnϕ IN = s44IN σnϕ IN =−xλ1IN−1
n

∂
∂ϕ

(
pn ρIN

xλ1IN−1
IN

)
,

εnν IN = s44IN σrν IN =−Θ xλ1IN−1
n

∂
∂ν

(
pn ρIN

xλ1IN−1
IN

)
,

σnIN =−pn

(
xn

xIN

)λ1IN−1

, σϕIN = σνIN =− pn ρIN ξ3IN

(
xn

xIN

)λ1IN−1

,

σ1IN = η IN xλ1IN−1
n ,

wIN = κ IN x2(λ1IN−1)
n , WIN =

4
2λ1IN +1

π/2∫
0

π/2∫
0

κ IN x2λ1IN+1
IN dϕ dν, (3.12)

where Θ; xIN; s44IN; λ1IN; ξ1IN , ξ3IN are given by Equations (1.8); (1.9); (2.13);
(3.4); (3.8); respectively. The coefficients η IN , κ IN , ξ IN have the forms

η IN =− pn (λ1IN γ1IN + γ2IN)

ξ1IN xλ1IN−1
n

− γ3IN

s44IN

∂
∂ϕ

(
pn

ξ1IN xλ1IN−1
n

)

− γ4IN

s44IN

∂
∂ν

(
pn

ξ1IN xλ1IN−1
n

)
,

κ IN = ξ IN

(
pn

ξ1IN xλ1IN−1
IN

)2

+
1

s44IN

[
∂C1

∂ϕ

(
pn

ξ1IN xλ1IN−1
IN

)]2

+
Θ2

s44IN

[
∂C1

∂ν

(
pn

ξ1IN xλ1IN−1
IN

)]2

,

ξ IN =
EIN {λ1IN [λ1IN (1−μIN)+4μIN]+2}

2(1+μIN)(1−2μIN)
, (3.13)

where γ iIN (i = 1, . . . , 4) is given by Equation (2.22). The normal stress pn is given
by Equations (2.30) or (2.34) for N = 1 or N + 1 = 1,2, . . . , respectively. With
regard to Equation (3.12) and

(
εϕIN

)
xn=xIN

= −pn ρIN [1]–[22], the coefficient ρIN

in Equations (2.30), (2.34) is derived as (see Equation (3.8))

ρIN =
1

ξ1IN
=

(1+μIN)(1−2μIN)

EIN [λ1IN (1−μIN)+2μIN]
. (3.14)

20



Chapter 4

Mathematical Model 2

4.1 Mathematical Procedure

Let the mathematical procedure ∂2Eq.(2.24)/∂x2
n be performed, and then we get

[1]–[22]

xn
∂3Un

∂x3
n

+(2− c3)
∂2Un

∂x2
n

= 0, (4.1)

where c3 < 0 and Un =Un (xn,ϕ,ν) are given by Equations (2.18) and (2.25), respec-
tively. Let Ub be assumed in the form Un = xλ

n , and then we get

Un =C1 xn +C2 xc3
n +C3, (4.2)

where C1, C2, C3 are integration constants, which are determined by the mathemati-
cal boundary conditions in Section 2.3. Let Equation (2.36) be substituted to Equa-
tion (2.23), and then we get

x2
n

∂2un

∂x2
n

+2xn
∂un

∂xn
−2un =C1 xn +C2 xc3

n +C3 x2
n. (4.3)

The mathematical solution of Equation (4.3), which is determined by Wron-
skian’s method (see Chapter 10) [23], is derived as

un =C1 xn

(
1
3
− lnxn

)
+C2 xc3

n +C3. (4.4)

With regard to Equations (2.1)–(2.4), (2.14)–(2.17), (2.26), (4.4), we get

εn =−C1

(
2
3
+ lnxn

)
+C2 c3 xc3−1

n ,

εϕ = εθ =C1

(
1
3
− lnxn

)
+C2 xc3−1

n +
C3

xn
,

εnϕ = s44 σnϕ =

(
1
3
− lnxn

)
∂C1

∂ϕ
+ xc3−1

n
∂C2

∂ϕ
+

1
xn

∂C3

∂ϕ
,
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εnθ = s44 σnθ = Θ
[(

1
3
− lnxn

)
∂C1

∂ν
+ xc3−1

n
∂C2

∂ν
+

1
xn

∂C3

∂ν

]
,

σn =−C1

[
2(c1 +2c2)

3
+(c1− c2) lnxn

]
+C2 [(c1 + c2)c3−2c2]x

c3−1
n − 2C3 c2

xn
,

σϕ = σθ =C1

[
c1 +2c2

3
− (c1− c2) lnxn

]
+C2 (c1− c2 c3)x

c3−1
n +

C3 c1

xn
,

σ1 = η1 +η2 lnxn +η3 xc3−1
n +

η4

xn
,

w =C2
1 κ1 +C2

2 κ2 +C2
3 κ3 +C1C2 κ4 +C1C3 κ5 +C2C3 κ6

+
χ1

s44

[(
∂C1

∂ϕ

)2

+Θ2
(

∂C1

∂ν

)2
]
+

χ2

s44

[(
∂C2

∂ϕ

)2

+Θ2
(

∂C2

∂ν

)2
]

+
χ3

s44

[(
∂C3

∂ϕ

)2

+Θ2
(

∂C3

∂ν

)2
]
+

χ4

s44

(
∂C1

∂ϕ
∂C2

∂ϕ
+Θ2∂C1

∂ν
∂C2

∂ν

)

+
χ5

s44

(
∂C1

∂ϕ
∂C3

∂ϕ
+Θ2∂C1

∂ν
∂C3

∂ν

)
+

χ6

s44

(
∂C2

∂ϕ
∂C3

∂ϕ
+Θ2∂C2

∂ν
∂C3

∂ν

)
, (4.5)

where Θ, ci (i = 1,2,3), s44 are given by Equations (1.8), (2.18), (2.13), respectively.
The coefficients η j, κk, χk ( j = 1, . . . , 4; k = 1, . . . , 6) are derived as

η1 =
1
3

[
C1 (γ2−2γ1)+

1
s44

(
γ3

∂C1

∂ϕ
+ γ4

∂C1

∂ν

)]
,

η2 =−
[
C1 (γ1 + γ2)+

1
s44

(
γ3

∂C1

∂ϕ
+ γ4

∂C1

∂ν

)]
,

η3 =C2 (γ1 c3 + γ2)+
1

s44

(
γ3

∂C2

∂ϕ
+ γ4

∂C2

∂ν

)
,

η4 =C3 γ2 +
1

s44

(
γ3

∂C3

∂ϕ
+ γ4

∂C3

∂ν

)
,

κ1 =
c2− c1

2
ln2 xn +

2(c2− c1)

3
lnxn +

7c1 +2c2

9
,

κ2 =

[
c2
3 (c1 + c2)

2
+ c1 (1−2c3)

]
x2(c3−1)
n , κ3 =

c1

x2
n
,

κ4 = c3 (c1− c2)x
c3−1
n lnxn +2

[
c1 − c3 (2c1 + c2)

3

]
xc3−1
n ,

κ5 =
2c1

xn
, κ6 = 0,

χ1 = ln2 xn− 2
3

lnxn +
1
9
, χ2 = x2(c3−1)

n , χ3 =
1
x2
n
,

22



χ4 =
2
3

xc3−1
n −2xc3−1

n lnxn, χ5 =
2

3xn
− 2lnxn

xn
, χ6 = xc3−2

n , (4.6)

where γi (i = 1, . . . , 4) is given by Equation (2.22). The integrals ΦiM, ΨiM of the
κ jM = κ jM (xn), χ jM = χ jM (xn) (i = 1, . . . , 6), respectively, have the forms

ΦiM =

xM∫
xIN

κiM x2
n dxn, ΨiM =

xM∫
xIN

χiM x2
n dxn, i = 1, . . . ,6, (4.7)

where xIN , xM are given by Equation (1.9), respectively. The integrals are determined
by the formulae in Chapter 10 (see Equations (10.10)–(10.12)) and consequently, we
get

Φ1M =
c2M − c1M

6

{
x3
M

[(
lnxM − 1

3

)2

+
1
9

]
− x3

IN

[(
lnxIN − 1

3

)2

+
1
9

]}

+
2(c2M − c1M)

9

[
x3
M

(
lnxM − 1

3

)
− x3

IN

(
lnxIN − 1

3

)]

+
(7c1M +2c2M)

(
x3
M − x3

IN

)
27

,

Φ2M =
1

2c3M +1

[
c2
3M (c1M + c2M)

2
+ c1M (1−2c3M)

](
x2c3M+1
M − x2c3M+1

IN

)
,

Φ3M = c1M (xM − xIN) ,

Φ4M =
c3M (c1M − c2M)

c3M +2

[
xc3M+2
M

(
lnxM − 1

c3M +2

)
− xc3M+2

IN

(
lnxIN − 1

c3M +2

)]

+
2

c3M +2

[
c1M − c3M (2c1M + c2M)

3

](
xc3M+2
M − xc3M+2

IN

)
,

Φ5M = c1M

(
x2
M − x2

IN

)
, Φ6M = 0,

Ψ1M =
x3
M

3

[
(lnxM −1)

(
lnxM − 1

3

)
+

2
9

]
− x3

IN

3

[
(lnxIN −1)

(
lnxIN − 1

3

)
+

2
9

]
,

Ψ2M =
x2c3M+1
M − x2c3M+1

IN

2c3M +1
, Ψ3M = xM − xIN,

Ψ4M =
2

c3M +2

{
xc3M+2
M

[
c3M +5

3(c3M +2)
− lnxM

]
− xc3M+2

IN

[
c3M +5

3(c3M +2)
− lnxIN

]}
,

Ψ5M = x2
M

(
5
6
− lnxM

)
− x2

IN

(
5
6
− lnxIN

)
, Ψ6M =

xc3M+1
M − xc3M+1

IN

c3 +1
. (4.8)

In case of the ellipsoidal inclusion, we get (unIN)xn→0 −→ ± ∞, (εIN)xn−→0 −→
± ∞, (σIN)r→0 −→±∞ due to (lnxn)xn→0 −→ ± ∞ and (xc3

n )xn→0 −→ ± ∞ for
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c3 < 0 (see Equations (2.18), (4.4)). Accordingly, the mathematical solution (4.4) is
suitable for the matrix.

4.2 Cell Matrix

The stress σnB is determined by two mathematical boundary conditions, i.e., by
Equations (2.28), (2.29). With regard to three integration constants C1M, C2M, C3M

in Equation (4.4), the following conditions are considered to determine σnB, i.e.,
C1M �= 0, C2M �= 0, C3M = 0; C1M �= 0, C3M �= 0, C2M = 0; C2M �= 0, C3M �= 0,
C1M = 0. Consequently, the mathematical boundary conditions (2.31)–(2.33) are
applied in case of C1M �= 0, C2M �= 0, C3M �= 0.

Conditions C1M �= 0, C2M �= 0, C3M = 0. With regard to Equations (2.28), (2.29),
(2.35), (4.4), (4.5), we get

εnM =
pn

ζM

[
2
3
+ lnxn + c3M

(
1
3
− lnxM

)(
xn

xM

)c3M−1
]

,

εϕM = εθM =− pn

ζM

[
1
3
− lnxn−

(
1
3
− lnxM

)(
xn

xM

)c3M−1
]

,

εnϕM = s44M σnϕM =

(
lnxn− 1

3

)
∂

∂ϕ

(
pn

ζM

)

+ xc3M−1
n

∂
∂ϕ

[
pn

ζM xc3M−1
M

(
1
3
− lnxM

)]
,

εnθM = s44M σnθM = Θ
{(

lnxn− 1
3

)
∂

∂ν

(
pn

ζM

)

+ xc3M−1
n

∂
∂ν

[
pn

ζM xc3M−1
M

(
1
3
− lnxM

)]}
,

σnM =
pn

ζM

{
2(c1M +2c2M)

3
+(c1M − c2M) lnxn

+[(c1M + c2M)c3M −2c2M]

(
1
3
− lnxM

)(
xn

xM

)c3M−1
}

,

σϕM = σθM =− pn

ζM

[
c1M +2c2M

3
− (c1M − c2M) lnxn

−(c1M − c2M c3M)

(
1
3
− lnxM

)(
xn

xM

)c3M−1
]

,
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σnB =− ρ1B pn

ζM
− 1

s44M

[
ρ(ϕ)

1B
∂

∂ϕ

(
pn

ζM

)
+ρ(ν)

1B
∂

∂ν

(
pn

ζM

)]

+
ρ2B pn

ζM xc3M−1
M

(
1
3
− lnxM

)
+

ρ(ϕ)
2B

s44M

∂
∂ϕ

[
pn

ζM xc3M−1
M

(
1
3
− lnxM

)]

+
ρ(ν)

2B

s44M

∂
∂ν

[
pn

ζM xc3M−1
M

(
1
3
− lnxM

)]
, (4.9)

where Θ, xM, s44M, ciM, (i = 1,2,3) are given by Equations (1.8), (1.9), (2.13), (2.18),

respectively. The coefficients ζM, ζ iM, ρiB, ρ(τ)
iB (i = 1,2; τ = ϕ,ν) have the forms

ζM = ζ2M −ζ1M

(
1
3
− lnxM

)
, ζ1M = [(c1M + c2M)c3M −2c2M]

(
xIN

xM

)c3M−1

,

ζ2M =−
[
2(c1M +2c2M)

3
+(c1M − c2M) lnxIN

]
,

ρ1B =
c1M +2c2M

3
(ϑ2 +ϑ3−2ϑ1)+(c2M − c1M)(ϑ1 +ϑ2 +ϑ3) lnxM,

ρ2B =
{

ϑ1 [(c1M + c2M)c3M −2c2M]+ (ϑ2 +ϑ3)(c1M − c2M c3M)
}

xc3M−1
M ,

ρ(ϕ)
1B = (ϑ1 +ϑ2)

(
1
3
− lnxM

)
, ρ(ν)

1B = Θ(ϑ1 +ϑ3)

(
1
3
− lnxM

)
,

ρ(ϕ)
2B = (ϑ1 +ϑ2)x

c3M−1
M , ρ(ν)

2B = Θ(ϑ1 +ϑ3)x
c3M−1
M , (4.10)

where ϑ i (i = 1,2,3) is given by Equation (2.32). The normal stress pn is given by
Equations (2.30) or (2.34) for N = 1 or N + 1 = 1,2, . . . , respectively. With regard

to Equation (4.9) and
[
ε(1)

ϕM

]
xn=xM

= −p(1)
n ρM [1]–[22], the coefficient ρM in Equa-

tion (2.30) for N = 1 is derived as

ρM =
1

ζM

[
1
3
− lnxIN −

(
1
3
− lnxM

)(
xIN

xM

)c3M−1
]

. (4.11)

ConditionsC1M �= 0,C3M �= 0,C2M = 0. Similarly, with regard to Equations (2.28),
(2.29), (2.35), (4.4), (4.5), we get

εnM =
pn

ζM xM

(
2
3
+ lnxn

)
,

εϕM = εθM =− pn

ζM

[
1
xM

(
1
3
− lnxn

)
− 1

xn

(
1
3
− lnxM

)]
,
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εnϕM = s44M σnϕM =−
(

1
3
− lnxn

)
∂

∂ϕ

(
pn

ζM xM

)
+

1
xn

∂
∂ϕ

[
pn (1−3lnxM)

3ζM

]
,

εnθM = s44M σnθM =

−Θ
{(

1
3
− lnxn

)
∂

∂ϕ

(
pn

ζM xM

)
− 1

xn

∂
∂ϕ

[
pn (1−3lnxM)

3ζM

]}
,

σnM =
pn

ζM

{
1
xM

[
2(c1M +2c2M)

3
+(c1M − c2M) lnxn

]
− 2c2M

xn

(
1
3
− lnxM

)}
,

σϕM = σθM =

− pn

ζM

{
1
xM

[
c1M +2c2M

3
− (c1M − c2M) lnxn

]
− c1M

xn

(
1
3
− lnxM

)}
,

σnB =− ρ1B pn

ζM xM
− 1

s44M

[
ρ(ϕ)

1B
∂

∂ϕ

(
pn

ζM xM

)
+ρ(ν)

1B
∂

∂ν

(
pn

ζM xM

)]

+
ρ3B pn

ζM

(
1
3
− lnxM

)
+

ρ(ϕ)
3B

s44M

∂
∂ϕ

[
pn

ζM

(
1
3
− lnxM

)]

+
ρ(ν)

3B

s44M

∂
∂ν

[
pn

ζM

(
1
3
− lnxM

)]
, (4.12)

where Θ, xM, s44M, ciM and ρ1B, ρ(τ)
1B (i = 1,2,3; τ = ϕ,ν) are given by Equations (1.8),

(1.9), (2.13), (2.18) and (4.10), respectively. The coefficients ζM, ρ3B, ρ(τ)
3B (τ = ϕ,ν)

have the forms

ζM =
1
xM

[
2(c1M +2c2M)

3
+(c1M − c2M) lnxIN

]
+

2c2M

xIN

(
1
3
− lnxM

)
,

ρ3B =
1
xM

[
c1M (ϑ2 +ϑ3)−2c1Mϑ1

]
,

ρ(ϕ)
3B =

ϑ1 +ϑ2

xM
, ρ(ν)

3B =
Θ(ϑ1 +ϑ3)

xM
, (4.13)

where ϑi (i = 1,2,3) is given by Equations (2.32). The normal stress pn is given
by Equations (2.30) or (2.34) for N = 1 or N + 1 = 1,2, . . . , respectively. With

regard to Equation (4.12) and
[
ε(1)

ϕM

]
xn=xM

= −p(1)
n ρM [1]–[22], the coefficient ρM

in Equation (2.30) for N = 1 is derived as

ρM =
1

ζM

[
1
xM

(
1
3
− lnxIN

)
− 1

xIN

(
1
3
− lnxM

)]
. (4.14)

Conditions C2M �= 0, C3M �= 0, C1M = 0. Consequently, with regard to Equa-
tions (2.28), (2.29), (2.35), (4.4), (4.5), we get
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εnM =− pn c3M

ζM xM

(
xn

xM

)c3M−1

,

εϕM = εθM =
pn

ζM xn

[
1−

(
xn

xM

)c3M
]
,

εnϕM = s44M σnϕM =− 1
xn

[
xc3M
n

∂
∂ϕ

(
pn

ζM xc3M
M

)
− ∂

∂ϕ

(
pn

ζM

)]
,

εnθM = s44M σnθM =− Θ
xn

[
xc3M
n

∂
∂ν

(
pn

ζM xc3M
M

)
− ∂

∂ν

(
pn

ζM

)]
,

σnM =− pn

ζM

{
c3M (c1M + c2M)−2c2M

xM

(
xn

xM

)c3M−1

+
2c2M

xn

}
,

σϕM = σθM =− pn

ζM

[
c1M − c2M c3M

xM

(
xn

xM

)c3M−1

− c1M

xn

]
,

σnB =− ρ1B pn

ζM xc3M
M

− 1
s44M

[
ρ(ϕ)

1B
∂

∂ϕ

(
pn

ζM xc3M
M

)
+ρ(ν)

1B
∂

∂ν

(
pn

ζM xc3M
M

)]

+
ρ3B pn

ζM
+

1
s44M

[
ρ(ϕ)

3B
∂

∂ϕ

(
pn

ζM

)
+ρ(ν)

3B
∂

∂ν

(
pn

ζM

)]
, (4.15)

where Θ, xM, s44M, ciM (i = 1,2,3) and ρ jB, ρ(τ)
jB ( j = 2,3; τ = ϕ,ν) are given by Equa-

tions (1.8), (1.9), (2.13), (2.18) and (4.10), (4.13), respectively. The coefficient ζM

has the form

ζM =
1

xIN

{
[c3M (c1M + c2M)−2c2M]

(
xIN

xM

)c3M

+2c2M

}
. (4.16)

The normal stress pn is given by Equations (2.30) or (2.34) for N = 1 or N +1 =

1,2, . . . , respectively. With regard to Equation (4.15) and
[
ε(1)

ϕM

]
xn=xM

= −p(1)
n ρM

[1]–[22], the coefficient ρM in Equation (2.30) for N = 1 is derived as

ρM =
1

ζM

[(
xIN

xM

)c3M

−1

]
. (4.17)

Conditions C1M �= 0, C2M �= 0, C3M �= 0. Finally, with regard to Equations (2.21),
(2.27), (2.31)–(2.33), (4.4), (4.5), we get

εnM =− 1
ζM

[
ζ1M

(
2
3
+ lnxn

)
−ζ2M c3M xc3M−1

n

]
,

εϕM = εθM =
1

ζM

[
ζ1M

(
1
3
− lnxn

)
+ζ2M xc3M−1

n +
ζ3M

xn

]
,
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εnϕM = s44M σnϕM =

(
1
3
− lnxn

)
∂

∂ϕ

(
ζ1M

ζM

)
+ xc3−1

n
∂

∂ϕ

(
ζ2M

ζM

)

+
1
xn

∂
∂ϕ

(
ζ3M

ζM

)
,

εnθM = s44M σnθM = Θ
[(

1
3
− lnxn

)
∂

∂ν

(
ζ1M

ζM

)
+ xc3−1

n
∂

∂ν

(
ζ2M

ζM

)

+
1
xn

∂
∂ν

(
ζ3M

ζM

)]
,

σnM =− 1
ζM

{
ζ1M

[
2(c1M +2c2M)

3
+(c1M − c2M) lnxn

]

− ζ2M [(c1M + c2M)c3M −2c2M]xc3M−1
n +

2c2M ζ3M

xn

}
,

σϕM = σθM =
1

ζM

{
ζ1M

[
c1M +2c2M

3
− (c1M − c2M) lnxn

]

+ ζ2M (c1M − c2M c3M)xc3M−1
n +

c1M ζ3M

xn

}
,

σ1M = η1M +η2M lnxn +η3M xc3M−1
n +

η4M

xn
,

wM =

(
1

ζM

)2(
κ1M ζ2

1M +κ2M ζ2
2M +κ3M ζ2

3M

+ κ4M ζ1M ζ2M +κ5M ζ1M ζ3M +κ6M ζ2M ζ3M

)

+
χ1M

s44M

{[
∂

∂ϕ

(
ζ1M

ζM

)]2

+Θ2
[

∂
∂ν

(
ζ1M

ζM

)]2
}

+
χ2M

s44M

{[
∂

∂ϕ

(
ζ2M

ζM

)]2

+Θ2
[

∂
∂ν

(
ζ2M

ζM

)]2
}

+
χ3M

s44M

{[
∂

∂ϕ

(
ζ3M

ζM

)]2

+Θ2
[

∂
∂ν

(
ζ3M

ζM

)]2
}

+
χ4M

s44M

[
∂

∂ϕ

(
ζ1M

ζM

)
∂

∂ϕ

(
ζ2M

ζM

)
+Θ2 ∂

∂ν

(
ζ1M

ζM

)
∂

∂ν

(
ζ2M

ζM

)]

+
χ5M

s44M

[
∂

∂ϕ

(
ζ1M

ζM

)
∂

∂ϕ

(
ζ3M

ζM

)
+Θ2 ∂

∂ν

(
ζ1M

ζM

)
∂

∂ν

(
ζ3M

ζM

)]

+
χ6M

s44M

[
∂

∂ϕ

(
ζ2M

ζM

)
∂

∂ϕ

(
ζ3M

ζM

)
+Θ2 ∂

∂ν

(
ζ2M

ζM

)
∂

∂ν

(
ζ3M

ζM

)]
,
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WM = 4

π/2∫
0

π/2∫
0

(
1

ζM

)2(
Φ1M ζ2

1M +Φ2M ζ2
2M +Φ3M ζ2

3M +Φ4M ζ1M ζ2M

+ Φ5M ζ1M ζ3M +Φ6M ζ2M ζ3M

)
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

{[
∂

∂ϕ

(
ζ1M

ζM

)]2

+Θ2
[

∂
∂ν

(
ζ1M

ζM

)]2
}

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

{[
∂

∂ϕ

(
ζ2M

ζM

)]2

+Θ2
[

∂
∂ν

(
ζ2M

ζM

)]2
}

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M

{[
∂

∂ϕ

(
ζ3M

ζM

)]2

+Θ2
[

∂
∂ν

(
ζ3M

ζM

)]2
}

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ4M

[
∂

∂ϕ

(
ζ1M

ζM

)
∂

∂ϕ

(
ζ2M

ζM

)

+ Θ2 ∂
∂ν

(
ζ1M

ζM

)
∂

∂ν

(
ζ2M

ζM

)]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ5M

[
∂

∂ϕ

(
ζ1M

ζM

)
∂

∂ϕ

(
ζ3M

ζM

)

+ Θ2 ∂
∂ν

(
ζ1M

ζM

)
∂

∂ν

(
ζ3M

ζM

)]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ6M

[
∂

∂ϕ

(
ζ2M

ζM

)
∂

∂ϕ

(
ζ3M

ζM

)

+ Θ2 ∂
∂ν

(
ζ2M

ζM

)
∂

∂ν

(
ζ3M

ζM

)]
dϕ dν,

σnB =
3

∑
i=1

ρiB ζ iM

ζM
+

1
s44M

[
ρ(ϕ)

iB
∂

∂ϕ

(
ζ iM

ζM

)
+ρ(ν)

iB
∂

∂ν

(
ζ iM

ζM

)]
, (4.18)

where Θ, xM, s44M, ciM; κ jM, χ jM; Φ jM, Ψ jM; ρiB, ρ(τ)
iB (i = 1,2,3; j = 1, . . . , 6; τ =

ϕ,ν); are given by Equations (1.8), ( (1.9), (2.13), (2.18); (4.6); (4.8); (4.11), (4.15);
respectively. The coefficients ζiM, ζM, η jM (i = 1,2,3; j = 1, . . . , 4) have the forms

ζ iM =−pn ζ i1M +σnB ζ i2M, i = 1,2,3,

ζ11M = (c1M + c2M)c3M xc3M−1
M ,
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ζ12M = [(c1M + c2M)c3M −2c2M]xc3M−1
IN +

2c2M xc3M
M

xIN
,

ζ21M = (c1M + c2M)

(
2
3
+ lnxM

)
,

ζ22M =
2(c1M +2c2M)

3
+(c1M − c2M) lnxIN − 2c2M xM

xIN

(
1
3
− lnxM

)
,

ζ31M =−(c1M + c2M)

[
2+ c3M

3
+(1+ c3M) lnxM

]
xc3M
M ,

ζ32M =−
[
2(c1M +2c2M)

3
+(c1M − c2M) lnxIN

]
xc3M
M

− [(c1M + c2M)c3M −2c2M]

(
1
3
− lnxM

)
xM xc3M−1

IN ,

ζM = (c1M + c2M)

×
{
−
[
2(c1M +2c2M)

3
+(c1M − c2M) lnxIN

]
c3M xc3M−1

M

+[(c1M + c2M)c3M −2c2M]

(
2
3
+ lnxM

)
xc3M−1
IN

+

[
2+ c3M

3
+(1− c3M) lnxM

]
2c2M xc3M

M

xIN

}
,

η1M =
ζ1M (γ2M −2γ1M)

3ζM
+

1
3s44M

[
γ3M

∂
∂ϕ

(
ζ1M

ζM

)
+ γ4M

∂
∂ν

(
ζ1M

ζM

)]
,

η2M =− ζ1M (γ1M + γ2M)

ζM
− 1

s44M

[
γ3M

∂
∂ϕ

(
ζ1M

ζM

)
+ γ4M

∂
∂ν

(
ζ1M

ζM

)]
,

η3M =
ζ2M (γ1M c3 + γ2M)

ζM
+

1
s44M

[
γ3M

∂
∂ϕ

(
ζ2M

ζM

)
+ γ4M

∂
∂ν

(
ζ2M

ζM

)]
,

η4M =
ζ3Mγ2M

ζM
+

1
s44M

[
γ3M

∂
∂ϕ

(
ζ3M

ζM

)
+ γ4M

∂
∂ν

(
ζ3M

ζM

)]
, (4.19)

where γ iM (i = 1, . . . , 4) is given by Equation (2.22). The normal stress pn is given by
Equations (2.30) or (2.34) for N = 1 or N + 1 = 1,2, . . . , respectively. With regard
to Equation (4.18) and

[
εϕM

]
xn=xM

= −pn φM + σnB φB, the coefficients φM, φB in
Equation (2.34) for N +1 = 1,2, . . . are derived as

φM =
1

ζM

[
ζ11M

(
1
3
− lnxIN

)
+ζ21M xc3M−1

IN +
ζ31M

xIN

]
,

φB =
1

ζM

[
ζ12M

(
1
3
− lnxIN

)
+ζ22M xc3M−1

IN +
ζ32M

xIN

]
. (4.20)
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Chapter 5

Mathematical Model 3

5.1 Mathematical Procedure

Let the mathematical procedure ∂2Eq.(2.23)/∂x2
n be performed, and then we get

[1]–[22]

r
∂3un

∂x3
n

+4x2
n

∂2un

∂x2
n

+
xn

s44 (c1 + c2)

∂Un

∂xn
= 0, (5.1)

where s44, ci (i = 1,2,3) and Un = Un (r,ϕ,ν) are given by Equations (2.13), (2.18)
and (2.25), respectively. With regard to Equations (2.24), (4.2), we get

xn
∂Un

∂xn
= c3 (C1 xn +C2 xc3

n +C3) , (5.2)

where C1, C2, C3 are integration constants, which are determined by the mathemat-
ical boundary conditions in Section 2.3. Let Equation (5.2) be substituted to Equa-
tion (5.1), and then we get

x3
n

∂3un

∂x3
n

+4x2
n

∂2un

∂x2
n

=C1 x3
n +C2 xc3

n +C3. (5.3)

The mathematical solution of Equation (5.3), which is determined by Wron-
skian’s method (see Chapter 10) [23], is derived as

un =C1 xn

(
4
3
− lnxn

)
+C2 xc3

n +C3

(
1
2
+ lnxn

)
. (5.4)

With regard to Equations (2.1)–(2.4), (2.14)–(2.17), (2.26), (5.4), we get

εn =C1

(
1
3
− lnxn

)
+C2 c3 xc3−1

n +
C3

xn
,

εϕ = εθ =C1

(
4
3
− lnxn

)
+C2 xc3−1

n +
C3

xn

(
1
2
+ lnxn

)
,

εnϕ = s44 σnϕ =

(
4
3
− lnxn

)
∂C1

∂ϕ
+ xc3−1

n
∂C2

∂ϕ
+

1
xn

(
1
2
+ lnxn

)
∂C3

∂ϕ
,

εnθ = s44 σnθ = Θ
[(

4
3
− lnxn

)
∂C1

∂ν
+ xc3−1

n
∂C2

∂ν
+

1
xn

(
1
2
+ lnxn

)
∂C3

∂ν

]
,
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σn =C1

[
c1−7c2

3
− (c1− c2) lnxn

]
+C2 [(c1 + c2)c3−2c2]x

c3−1
n

+
C3

xn
(c1−2c2 lnxn) ,

σϕ = σθ =C1

[
4c1− c2

3
− (c1− c2) lnxn

]
+C2 (c1− c2 c3)x

c3−1
n

+
C3

xn

(
c1−2c2

2
+ c1 lnxn

)
,

σ1 = η1 +η2 lnxn +η3 xc3−1
n +

η4 +η5 lnxn

xn
,

w =C2
1 κ1 +C2

2 κ2 +C2
3 κ3 +C1C2 κ4 +C1C3 κ5 +C2C3 κ6

+
χ1

s44

[(
∂C1

∂ϕ

)2

+Θ2
(

∂C1

∂ν

)2
]
+

χ2

s44

[(
∂C2

∂ϕ

)2

+Θ2
(

∂C2

∂ν

)2
]

+
χ3

s44

[(
∂C3

∂ϕ

)2

+Θ2
(

∂C3

∂ν

)2
]
+

χ4

s44

(
∂C1

∂ϕ
∂C2

∂ϕ
+Θ2∂C1

∂ν
∂C2

∂ν

)

+
χ5

s44

(
∂C1

∂ϕ
∂C3

∂ϕ
+Θ2∂C1

∂ν
∂C3

∂ν

)
+

χ6

s44

(
∂C2

∂ϕ
∂C3

∂ϕ
+Θ2∂C2

∂ν
∂C3

∂ν

)
, (5.5)

where Θ is given by Equation (1.8). The coefficients ηi κ j, χ j (i = 1, . . . , 4; j = 1, . . . , 6)
are derived as

η1 =
1
3

[
C1 (γ1 +4γ2)+

4
s44

(
γ3

∂C1

∂ϕ
+ γ4

∂C1

∂ν

)]
,

η2 =−
[
C1 (γ1 + γ2)+

1
s44

(
γ3

∂C1

∂ϕ
+ γ4

∂C1

∂ν

)]
,

η3 =C2 (γ1 c3 + γ2)+
1

s44

(
γ3

∂C2

∂ϕ
+ γ4

∂C2

∂ν

)
,

η4 =C3

(
γ1 +

γ2

2

)
+

1
2s44

(
γ3

∂C3

∂ϕ
+ γ4

∂C3

∂ν

)
,

η5 =C3 γ2 +
1

s44

(
γ3

∂C3

∂ϕ
+ γ4

∂C3

∂ν

)
,

κ1 =
c2− c1

2
ln2 xn +

c1− c2

3
lnxn +

17c1 + c2

18
,

κ2 =

[
c2
3 (c1 + c2)

2
+ c1 (1−2c3)

]
x2(c3−1)
n ,

κ3 =
c1 ln2 xn

x2
n

− c1 lnxn

x2
n

+
c2−2c1

4x2
n

,
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κ4 = c3 (c1− c2) xc3−1
n lnxn +

[
2c1 +

c3 (c2−7c1)

3

]
xc3−1
n ,

κ5 = (3c1− c2)
lnxn

xn
− 4c1− c2

3xn
,

κ6 = 2c1 (1− c3) xc3−2
n lnxn +(c2 c3− c1) xc3−2

n ,

χ1 = ln2 xn− 8
3

lnxn +
16
9

, χ2 = x2(c3−1)
n ,

χ3 =
ln2 xn

x2
n

+
lnxn

x2
n

+
1

4x2
n
, χ4 =

8
3

xc3−1
n −2xc3−1

n lnxn,

χ5 =
4

3xn
+

5lnxn

3xn
− 2ln2 xn

xn
, χ6 = 2xc3−2

n lnxn + xc3−2
n , (5.6)

where γi (i = 1, . . . , 4) is given by Equation (2.22). With regard to Equations (4.7),
(5.6), we get

Φ1M =
c2M − c1M

6

{
x3
M

[(
lnxM − 1

3

)2

+
1
9

]
− x3

IN

[(
lnxIN − 1

3

)2

+
1
9

]}

+
c1M − c2M

9

[
x3
M

(
lnxM − 1

3

)
− x3

IN

(
lnxIN − 1

3

)]
+

17c1M + c2M

54

(
x3
M − x3

IN

)
,

Φ2M =
1

2c3M +1

[
c2
3M (c1M + c2M)

2
+ c1M (1−2c3M)

](
x2c3M+1
M − x2c3M+1

IN

)
,

Φ3M = c1M

[
xM

(
ln2 xM −2lnxM +2

)
− xIN

(
ln2 xIN −2lnxIN +2

)]
− c1M [xM (lnxM −1)− xIN (lnxIN −1)]+

c2M −2c1M

4
(xM − xIN) ,

Φ4M =
c3M (c1M − c2M)

c3M +2

×
[
xc3M+2
M

(
lnxM − 1

c3M +2

)
− xc3M+2

IN

(
lnxIN − 1

c3M +2

)]

+
1

c3M +2

[
2c1M +

c3M (c2M −7c1M)

3

](
xc3M+2
M − xc3M+2

IN

)
,

Φ5M =
3c1M − c2M

2

[
x2
M

(
lnxM − 1

2

)
− x2

IN

(
lnxIN − 1

2

)]

− 4c1M − c2M

6

(
x2
M − x2

IN

)
,

Φ6M =
2c1M (1− c3M)

c3M +1

[
xc3M+1
M

(
lnxM − 1

c3M +1

)
− xc3M+1

IN

(
lnxIN − 1

c3M +1

)]

+
c2M c3M − c1M

c3M +1

(
xc3M+1
M − xc3M+1

IN

)
,

33



Ψ1M =
x3
M

3

[
(lnxM −3)

(
lnxM − 1

3

)
+

17
9

]

− x3
IN

3

[
(lnxIN −3)

(
lnxIN − 1

3

)
+

17
9

]
,

Ψ2M =
x2c3M+1
M − x2c3M+1

IN

2c3M +1
,

Ψ3M = xM lnxM (lnxM −1)− xIN lnxIN (lnxIN −1)+
5(xM − xIN)

4
,

Ψ4M =
2

c3M +2

{
xc3M+2
M

[
4c3M +11
3(c3M +2)

− lnxM

]
− xc3M+2

IN

[
4c3M +11
3(c3M +2)

− lnxIN

]}
,

Ψ5M =
2
(
x2
M − x2

IN

)
3

+
5
6

[
x2
M

(
lnxM − 1

2

)
− x2

IN

(
lnxIN − 1

2

)]

− x2
M

(
ln2 xM − lnxM +

1
2

)
+ x2

IN

(
ln2 xIN − lnxIN +

1
2

)
,

Ψ6M =
2

c3M +1

[
xc3M+1
M

(
lnxM − 1

c3M +1

)
− xc3M+1

IN

(
lnxIN − 1

c3M +1

)]

+
1

c3M +1

(
xc3M+1
M − xc3M+1

IN

)
, (5.7)

where xIN , xM are given by Equation (1.9), respectively. The integrals (4.14), which
consider Equation (5.7), are determined by the formulae in Chapter 10 (see Equa-
tions (10.10)–(10.12)).

In case of the ellipsoidal inclusion, we get (unIN)xn→0 −→ ± ∞, (εIN)xn−→0 −→
± ∞, (σIN)r→0 −→±∞ due to (lnxn)xn→0 −→ ± ∞ and (xc3

n )xn→0 −→ ± ∞ for
c3 < 0 (see Equations (2.18), (5.4)). Accordingly, the mathematical solutions (5.4)
are suitable for the matrix.

5.2 Cell Matrix

The stress σnB is determined by two mathematical boundary conditions, i.e., by
Equations (2.28), (2.29). With regard to three integration constants C1M, C2M, C3M

in Equation (5.4), the following conditions are considered to determine σnB, i.e.,
C1M �= 0, C2M �= 0, C3M = 0; C1M �= 0, C3M �= 0, C2M = 0; C2M �= 0, C3M �= 0,
C1M = 0. Consequently, the mathematical boundary conditions (2.31)–(2.33) are
applied in case of C1M �= 0, C2M �= 0, C3M �= 0.
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Conditions C1M �= 0, C2M �= 0, C3M = 0. With regard to Equations (2.28), (2.29),
(2.35), (5.4), (5.5), we get

εnM =− pn

ζM

[
1
3
− lnxn− c3M

(
4
3
− lnxM

)(
xn

xM

)c3M−1
]

,

εϕM = εθM =− pn

ζM

[
4
3
− lnxn−

(
4
3
− lnxM

)(
xn

xM

)c3M−1
]

,

εnϕM = s44M σnϕM =

(
lnxn− 4

3

)
∂

∂ϕ

(
pn

ζM

)

+ xc3M−1
n

∂
∂ϕ

[
pn

ζM xc3M−1
M

(
4
3
− lnxM

)]
,

εnθM = s44M σnθM = Θ
{(

lnxn− 4
3

)
∂

∂ϕ

(
pn

ζM

)

+ xc3M−1
n

∂
∂ϕ

[
pn

ζM xc3M−1
M

(
4
3
− lnxM

)]}
,

σnM =
pn

ζM

{
7c2M − c1M

3
+(c1M − c2M) lnxn

+[(c1M + c2M)c3M −2c2M]

(
4
3
− lnxM

)(
xn

xM

)c3M−1
}

,

σϕM = σθM =
pn

ζM

[
c2M −4c1M

3
+(c1M − c2M) lnxn

+(c1M − c2M c3M)

(
4
3
− lnxM

)(
xn

xM

)c3M−1
]

,

σnB =− ρ1B pn

ζM
− 1

s44M

[
ρ(ϕ)

1B
∂

∂ϕ

(
pn

ζM

)
+ρ(ν)

1B
∂

∂ν

(
pn

ζM

)]

+
ρ2B pn

ζM xc3M−1
M

(
4
3
− lnxM

)
+

ρ(ϕ)
2B

s44M

∂
∂ϕ

[
pn

ζM xc3M−1
M

(
4
3
− lnxM

)]

+
ρ(ν)

2B

s44M

∂
∂ν

[
pn

ζM xc3M−1
M

(
4
3
− lnxM

)]
, (5.8)

where Θ, xM, s44M, ciM(i = 1,2,3) are given by Equations (1.8), (1.9), (2.13), (2.18),

respectively. The coefficients ζM, ζ iM, ρiB, ρ(τ)
iB (i = 1,2; τ = ϕ,ν) have the forms

ζM = ζ2M −ζ1M

(
4
3
− lnxM

)
,

35



ζ1M = ζ1MB

(
xIN

xM

)c3M−1

, ζ2M =
c1M −7c2M

3
− (c1M − c2M) lnxIN,

ζ1MB = (c1M + c2M)c3M −2c2M, ζ2MB =
c1M −7c2M

3
− (c1M − c2M) lnxM,

ρ1B =
1
3

{
γ1M (c1M −7c2M)+(γ2M + γ3M)(4c1M − c2M)

}
+(c2M − c1M)(γ1M + γ2M + γ3M) lnxM,

ρ2B =
{

γ1M [(c1M + c2M)c3M −2c2M]+ (γ2M + γ3M)(c1M − c2M c3M)
}

xc3M−1
M ,

ρ(ϕ)
1B = (γ1M + γ2M)

(
4
3
− lnxM

)
, ρ(ν)

1B = Θ(γ1M + γ3M)

(
4
3
− lnxM

)
,

ρ(ϕ)
2B = (γ1M + γ2M)xc3M−1

M , ρ(ν)
2B = Θ(γ1M + γ3M)xc3M−1

M , (5.9)

where γ iM, ϑ j (i = 1, . . . , 4; j = 1,2,3) are given by Equations (2.22), (2.32), respec-
tively. The normal stress pn is given by Equations (2.30) or (2.34) for N = 1 or

N + 1 = 1,2, . . . , respectively. With regard to Equation (5.8) and
[
ε(1)

ϕM

]
xn=xM

=

−p(1)
n ρM [1]–[22], the coefficient ρM in Equation (2.30) for N = 1 is derived as

ρM =
1

ζM

[
4
3
− lnxIN −

(
4
3
− lnxM

)(
xIN

xM

)c3M−1
]

, Q = M,MB. (5.10)

Conditions C1M �= 0, C3M �= 0, C2M = 0. With regard to Equations (2.28), (2.29),
(2.35), (5.4), (5.5), we get

εnM =− pn

ζM

[(
1
2
+ lnxM

)(
1
3
− lnxn

)
− xM

xn

(
4
3
− lnxM

)]
,

εϕM = εθM =− pn

ζM

[(
1
2
+ lnxM

)(
4
3
− lnxn

)
− xM

xn

(
4
3
− lnxM

)(
1
2
+ lnxn

)]
,

εnϕM = s44M σnϕM =

(
lnxn− 4

3

)
∂

∂ϕ

[
pn

ζM

(
1
2
+ lnxM

)]

+
1
xn

(
1
2
+ lnxn

)
∂

∂ϕ

[
pn xM

ζM

(
lnxM − 4

3

)]
,

εnνM = s44M σnϕM = Θ
{(

lnxn− 4
3

)
∂

∂ϕ

[
pn

ζM

(
1
2
+ lnxM

)]

+
1
xn

(
1
2
+ lnxn

)
∂

∂ϕ

[
pn xM

ζM

(
lnxM − 4

3

)]}
,
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σnM =
pn

ζM

{(
1
2
+ lnxM

)[
c1M −7c2M

3
− (c1M − c2M) lnxn

]

+
xM

xn

(
4
3
− lnxM

)
(c1M −2c2M lnxn)

}
,

σϕM = σθM =
pn

ζM

{(
1
2
+ lnxM

)[
4c1M − c2M

3
− (c1M − c2M) lnxn

]

+
xM

xn

(
4
3
− lnxM

)(
c1M − c2M

2
+ c3M lnxn

)}
,

σnB =− ρ1B pn

ζM

(
1
2
+ lnxM

)
− ρ3B pn xM

ζM

(
4
3
− lnxM

)

− 1
s44M

{
ρ(ϕ)

1B
∂

∂ϕ

[
pn

ζM

(
1
2
+ lnxM

)]
+ρ(ν)

3B
∂

∂ν

[
pn

ζM

(
1
2
+ lnxM

)]}

− 1
s44M

{
ρ(ϕ)

3B
∂

∂ϕ

[
pn xM

ζM

(
4
3
− lnxM

)]
+ρ(ν)

3B
∂

∂ν

[
pn xM

ζM

(
4
3
− lnxM

)]}
,

(5.11)

where Θ, xM, s44M, ciM; ρ1B, ρ(τ)
1B (i = 1,2,3 τ = ϕ,ν) are given by Equations (1.8),

(1.9), (2.13), (2.18); (5.9), respectively. The coefficients ζM, ζ iM, ρ3B, ρ(τ)
3B (i = 1,2;

τ = ϕ,ν) have the forms

ζM =
ζ2M

xM

(
1
2
+ lnxM

)
−ζ1M

(
4
3
− lnxM

)
,

ζ1M =
xM

xIN
(c1M −2c2M lnxIN) , ζ2M = xM

[
c1M −7c2M

3
− (c1M − c2M) lnxIN

]
,

ζ1MB = c1M −2c2M lnxM, ζ2MB = xM

[
c1M −7c2M

3
− (c1M − c2M) lnxM

]
,

ρ3B =
1
xM

{
c1Mγ1M +

(c1M −2c2M)(γ2M + γ3M)

2

+ [c1M (γ2M + γ3M)−2c2Mγ1M] lnxM

}
,

ρ(ϕ)
3B =

(γ1M + γ2M)

xM

(
1
2
+ lnxM

)
, ρ(ν)

3B =
Θ(γ1M + γ3M)

xM

(
1
2
+ lnxM

)
, (5.12)

where γ iM, ϑ j (i = 1, . . . , 4; j = 1,2,3) are given by Equations (2.22), (2.32), respec-
tively. The normal stress pn is given by Equations (2.30) or (2.34) for N = 1 or

N + 1 = 1,2, . . . , respectively. With regard to Equation (5.11) and
[
ε(1)

ϕM

]
xn=xM

=
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−p(1)
n ρM [1]–[22], the coefficient ρM in Equation (2.30) for N = 1 is derived as

ρM =
1

ζM

[(
1
2
+ lnxM

)(
4
3
− lnxIN

)
− xM

xIN

(
4
3
− lnxM

)(
1
2
+ lnxIN

)]
. (5.13)

Conditions C2M �= 0, C3M �= 0, C1M = 0. With regard to Equations (2.28), (2.29),
(2.35), (5.4), (5.5), we get

εnM =− pn

ζM

[
c3M

(
1
2
+ lnxM

)
xc3M−1
n − xc3M

M

xn

]
,

εϕM = εθM =− pn

ζM

[(
1
2
+ lnxM

)
xc3M−1
n − xc3M

M

xn

(
1
2
+ lnxn

)]
,

εnϕM = s44M σnϕM =
1
xn

(
1
2
+ lnxn

)
∂

∂ϕ

(
pn xc3M

M

ζM

)

− xc3M−1
n

∂
∂ϕ

[
pn

ζM

(
1
2
+ lnxM

)]
,

εnνM = s44M σnνM = Θ
{

1
xn

(
1
2
+ lnxn

)
∂

∂ν

(
pn xc3M

M

ζM

)

− xc3M−1
n

∂
∂ν

[
pn

ζM

(
1
2
+ lnxM

)]}
,

σnM =− pn xc3M−1
n

ζM

×
{
[c3M (c1M + c2M)−2c2M]

(
1
2
+ lnxM

)
− xM

xn
(c1M −2c2M lnxn)

}
,

σϕM = σθM =

− pn xc3M−1
n

ζM

[
(c1M − c2M c3M)

(
1
2
+ lnxM

)
− xM

xn

(
c1M −2c2M

2
+ c1M lnxn

)]
,

σnB =− ρ1B pn

ζM

(
1
2
+ lnxM

)
+

ρ3B pn xc3M
M

ζM

− 1
s44M

{
ρ(ϕ)

1B
∂

∂ϕ

[
pn

ζM

(
1
2
+ lnxM

)]
+ρ(ν)

3B
∂

∂ν

[
pn

ζM

(
1
2
+ lnxM

)]}

+
1

s44M

[
ρ(ϕ)

3B
∂

∂ϕ

(
pn xc3M

M

ζM

)
+ρ(ν)

3B
∂

∂ν

(
pn xc3M

M

ζM

)]
, (5.14)

where Θ, xM, s44M, ciM (i = 1,2,3); ρ jB, ρ(τ)
jB ( j = 2,3; τ = ϕ,ν) are given by Equa-

tions (1.8), (1.9), (2.13), (2.18); (5.9), (5.12), respectively. The coefficients ζM, ζ iM
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(i = 1,2) have the forms

ζM =
ζ2M

xM

(
1
2
+ lnxM

)
−ζ1M xc3M−1

M ,

ζ1M =
xM

xIN
(c1M −2c2M lnxIN) , ζ2M = xM [c3M (c1M + c2M)−2c2M]xc3M−1

IN ,

ζ1MB = c1M −2c2M lnxM, ζ2MB = [c3M (c1M + c2M)−2c2M]xc3M
M , (5.15)

where γ iM (i = 1, . . . , 4) is given by Equation (2.22). The normal stress pn is given
by Equations (2.30) or (2.34) for N = 1 or N + 1 = 1,2, . . . , respectively. With

regard to Equation (5.14) and
[
ε(1)

ϕM

]
xn=xM

= −p(1)
n ρM [1]–[22], the coefficient ρM

in Equation (2.30) for N = 1 is derived as

ρM =
1

ζM

[(
1
2
+ lnxM

)
xc3M−1
IN − xc3M

M

xIN

(
1
2
+ lnxIN

)]
. (5.16)

Conditions C1M �= 0, C2M �= 0, C3M �= 0. Finally, with regard to Equations (2.21),
(2.27), (2.31)–(2.33), (5.4), (5.5), we get

εnM =− pn

ζM

[
ζ1M

(
1
3
− lnxn

)
+ζ2M c3M xc3M−1

n +
ζ3M

xn

]
,

εϕM = εθM =− pn

ζM

[
ζ1M

(
4
3
− lnxn

)
+ζ2M xc3M−1

n +
ζ3M

xn

(
1
2
+ lnxn

)]
,

εnϕM = s44M σnϕM =−
[(

4
3
− lnxn

)
∂

∂ϕ

(
pn ζ1M

ζM

)
+ xc3M−1

n
∂

∂ϕ

(
pn ζ2M

ζM

)

+
1
xn

(
1
2
+ lnxn

)
∂

∂ϕ

(
pn ζ3M

ζM

)]
,

εnνM = s44M σnϕM =−Θ
[(

4
3
− lnxn

)
∂

∂ϕ

(
pn ζ1M

ζM

)
+ xc3M−1

n
∂

∂ν

(
pn ζ2M

ζM

)

+
1
xn

(
1
2
+ lnxn

)
∂

∂ν

(
pn ζ3M

ζM

)]
,

σnM =− pn

ζM

{
ζ1M

[
c1M −7c2M

3
− (c1M − c2M) lnxn

]

+ ζ2M [(c1M + c2M)c3M −2c2M]xc3M−1
n +

ζ3M (c1M −2c2M lnxn)

xn

}
,

σϕM = σθM =− pn

ζM

{
ζ1M

[
4c1M − c2M

3
− (c1M − c2M) lnxn

]
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+ ζ2M (c1M − c2M c3M)xc3M−1
n +ζ3M

(
c1M −2c2M

2
+ c1M lnxn

)}
,

σ1M = η1M +η2M lnxn +η3M xc3M−1
n +

η4M +η5M lnxn

xn
,

wM =

(
pn

ζM

)2(
κ1M ζ2

1M +κ2M ζ2
2M +κ3M ζ2

3M

+ κ4M ζ1M ζ2M +κ5M ζ1M ζ3M +κ6M ζ2M ζ3M

)

+
χ1M

s44M

{[
∂

∂ϕ

(
pn ζ1M

ζM

)]2

+Θ2
[

∂
∂ν

(
pn ζ1M

ζM

)]2
}

+
χ2M

s44M

{[
∂

∂ϕ

(
pn ζ2M

ζM

)]2

+Θ2
[

∂
∂ν

(
pn ζ2M

ζM

)]2
}

+
χ3M

s44M

{[
∂

∂ϕ

(
pn ζ3M

ζM

)]2

+Θ2
[

∂
∂ν

(
pn ζ3M

ζM

)]2
}

+
χ4M

s44M

[
∂

∂ϕ

(
pn ζ1M

ζM

)
∂

∂ϕ

(
pn ζ2M

ζM

)
+Θ2 ∂

∂ν

(
pn ζ1M

ζM

)
∂

∂ν

(
pn ζ2M

ζM

)]

+
χ5M

s44M

[
∂

∂ϕ

(
pn ζ1M

ζM

)
∂

∂ϕ

(
pn ζ3M

ζM

)
+Θ2 ∂

∂ν

(
pn ζ1M

ζM

)
∂

∂ν

(
pn ζ3M

ζM

)]

+
χ6M

s44M

[
∂

∂ϕ

(
pn ζ2M

ζM

)
∂

∂ϕ

(
pn ζ3M

ζM

)
+Θ2 ∂

∂ν

(
pn ζ2M

ζM

)
∂

∂ν

(
pn ζ3M

ζM

)]
,

WM = 4

π/2∫
0

π/2∫
0

(
pn

ζM

)2(
Φ1M ζ2

1M +Φ2M ζ2
2M +Φ3M ζ2

3M +Φ4M ζ1M ζ2M

+ Φ5M ζ1MM ζ3M +Φ6M ζ2M ζ3M

)
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

{[
∂

∂ϕ

(
pn ζ1M

ζM

)]2

+Θ2
[

∂
∂ν

(
pn ζ1M

ζM

)]2
}

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

{[
∂

∂ϕ

(
pn ζ2M

ζM

)]2

+Θ2
[

∂
∂ν

(
pn ζ2M

ζM

)]2
}

dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M

{[
∂

∂ϕ

(
pn ζ3M

ζM

)]2

+Θ2
[

∂
∂ν

(
pn ζ3M

ζM

)]2
}

dϕ dν
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+
4

s44M

π/2∫
0

π/2∫
0

Ψ4M

[
∂

∂ϕ

(
pn ζ1M

ζM

)
∂

∂ϕ

(
pn ζ2M

ζM

)

+ Θ2 ∂
∂ν

(
pn ζ1M

ζM

)
∂

∂ν

(
pn ζ2M

ζM

)]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ5M

[
∂

∂ϕ

(
pn ζ1M

ζM

)
∂

∂ϕ

(
pn ζ3M

ζM

)

+ Θ2 ∂
∂ν

(
pn ζ1M

ζM

)
∂

∂ν

(
pn ζ3M

ζM

)]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ6M

[
∂

∂ϕ

(
pn ζ2M

ζM

)
∂

∂ϕ

(
pn ζ3M

ζM

)

+ Θ2 ∂
∂ν

(
pn ζ2M

ζM

)
∂

∂ν

(
pn ζ3M

ζM

)]
dϕ dν,

σnB =−
3

∑
i=1

ρiB pn ζ iM

ζM
+

1
s44M

[
ρ(ϕ)

iB
∂

∂ϕ

(
pn ζ iM

ζM

)
+ρ(ν)

iB
∂

∂ν

(
pn ζ iM

ζM

)]
, (5.17)

where Θ, xM, s44M, ciM; κ jM, χ jM; Φ jM, Ψ jM; ρiB, ρ(τ)
iB (i = 1,2,3; j = 1, . . . , 6;

τ = ϕ,ν); are given by Equations (1.8), ( (1.9), (2.13), (2.18); (5.6); (5.7); (5.10),
(5.13); respectively. The coefficients ζiM, ζM, η jM (i = 1,2,3; j = 1, . . . , 4; see Equa-
tion (5.6)) have the forms

ζ iM =−pn ζ i1M +σnB ζ i2M, i = 1,2,3,

ζ11M = (c1M + c2M)

[
c3M

(
1
2
+ lnxM

)
−1

]
xc3M−1
M ,

ζ12M = [(c1M + c2M)c3M −2c2M]

(
1
2
+ lnxM

)
xc3M−1
IN − (c1M − c2M lnxIN)xc3M

M

xIN
,

ζ21M = (c1M + c2M)

(
7−5lnxM

6
+ ln2 xM

)
,

ζ22M = (c1M −2c2M lnxIN)

(
4
3
− lnxM

)
xM

xIN

−
[
c1M −7c2M

3
− (c1M − c2M) lnxIN

](
1
2
+ lnxM

)
,

ζ31M = (c1M + c2M)

[
1−4c3M

3
+(c3M −1) lnxM

]
xc3M
M ,

ζ32M =

[
c1M −7c2M

3
− (c1M − c2M) lnxIN

]
xc3M
M ,
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− [(c1M + c2M)c3M −2c2M]

(
4
3
− lnxM

)
xM xc3M−1

IN ,

ζM = (c1M + c2M)

×
{[

c1M −7c2M

3
− (c1M − c2M) lnxM

][
c3M

(
1
2
+ lnxM

)
−1

]
xc3M−1
M

+[(c1M + c2M)c3M −2c2M]
[
7(c1M + c2M)−5lnxM +6ln2 xM

] xc3M−1
IN

6

+(c1M −2c2M lnxIN)

[
1−4c3M

3
+(c3M −1) lnxM

]
xc3M
M

xIN

}
,

η1M =− pn ζ1M (γ1M +4γ2M)

3ζM

− 4
3s44M

[
γ3M

∂
∂ϕ

(
pn ζ1M

ζM

)
+ γ4M

∂
∂ν

(
pn ζ1M

ζM

)]
,

η2M =
pn ζ1M (γ1M + γ2M)

ζM

+
1

s44M

[
γ3M

∂
∂ϕ

(
pn ζ1M

ζM

)
+ γ4M

∂
∂ν

(
pn ζ1M

ζM

)]
,

η3M =− pn ζ2M (γ1M c3M + γ2M)

ζM

− 1
s44M

[
γ3M

∂
∂ϕ

(
pn ζ2M

ζM

)
+ γ4M

∂
∂ν

(
pn ζ2M

ζM

)]
,

η4M =− pn ζ3M (2γ1M + γ2M)

2ζM

− 1
2s44M

[
γ3M

∂
∂ϕ

(
pn ζ3M

ζM

)
+ γ4M

∂
∂ν

(
pn ζ3M

ζM

)]
,

η5M =− pn ζ3M γ2M

ζM

1
s44M

[
γ3M

∂
∂ϕ

(
pn ζ3M

ζM

)
+ γ4M

∂
∂ν

(
pn ζ3M

ζM

)]
, (5.18)

where γ iM (i = 1, . . . , 4) is given by Equation (2.22). The normal stress pn is given by
Equations (2.30) or (2.34) for N = 1 or N + 1 = 1,2, . . . , respectively. With regard
to Equation (5.17) and

[
εϕM

]
xn=xM

= −pn φM + σnB φB, the coefficients φM, φB in
Equation (2.34) for N +1 = 1,2, . . . are derived as

φM =
1

ζM

[
ζ11M

(
4
3
− lnxIN

)
+ζ21M xc3M−1

IN +
ζ31M

xIN

(
1
2
+ lnxIN

)]
,

φB =
1

ζM

[
ζ12M

(
4
3
− lnxIN

)
+ζ22M xc3M−1

IN +
ζ32M

xIN

(
1
2
+ lnxIN

)]
. (5.19)
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Chapter 6

Mathematical Model 4

6.1 Mathematical Procedure

The differential equation (2.23) is transformed to the form

Un =−s44 (c1 + c2)

(
x2
n

∂2un

∂x2
n

+2xn
∂un

∂xn
−2un

)
, (6.1)

where s44, ci (i = 1,2) and Un =Un (xn,ϕ,ν) are given by Equations (2.13), (2.18) and
(2.25), respectively. Let xn [∂Eq.(6.1)/∂xn] be performed, and then we get

xn
∂Un

∂xn
=−s44 (c1 + c2)

(
x3
n

∂3un

∂x3
n

+4x2
n

∂2un

∂x2
n

)
. (6.2)

Let Equations (6.1), (6.2 be substituted to Equation (2.24, and then we get

x3
n

∂3un

∂x3
n

+(4− c3)x
2
n

∂2un

∂x2
n
−2c3xn

∂un

∂xn
+2c3un = 0. (6.3)

Let un be assumed in the form un = xλ
n , then we get [1]–[22]

un =C1 xn +C2 xc3
n +

C3

x2
n
, (6.4)

where c3 < 0 is given by Equation (2.18), and C1, C2, C3 are integration constants,
which are determined by the mathematical boundary conditions in Section 2.3. With
regard to Equations (2.1)–(2.4), (2.14)–(2.17), (2.26), (6.6), we get

εn =C1 +C2 c3 xc3−1
n − 2C3

x3
n

,

εϕ = εθ =C1 +C2 xc3−1
n +

C3

x3
n
,

εnϕ = s44 σnϕ =
∂C1

∂ϕ
+ xc3−1

n
∂C2

∂ϕ
+

1
x3
n

∂C3

∂ϕ
,

εnθ = s44 σnθ = Θ
[

∂C1

∂ν
+ xc3−1

n
∂C2

∂ν
+

1
x3
n

∂C3

∂ν

]
,
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σn =C1 (c1− c2)+C2 [(c1 + c2)c3−2c2]x
c3−1
n − 2C3 (c1 +2c2)

x3
n

,

σϕ = σθ =C1 (c1− c2)+C2 (c1− c2 c3)x
c3−1
n +

C3 (c1 +2c2)

x3
n

,

σ1 = η1 +η2 xc3−1
n +

η3

x3
n
,

w = κ1 +κ2 x2(c3−1)
n +

κ3

x6
n
+κ4 xc3−1

n +
κ5

x3
n
+κ6 xc3−4

n , (6.5)

where Θ is given by Equation (1.8). The coefficients η, κ j (i = 1,2,3; j = 1, . . . , 6) are
derived as

η1 =C1 (γ1 + γ2)+
1

s44

(
γ3

∂C1

∂ϕ
+ γ4

∂C1

∂ν

)
,

η2 =C2 (γ1c3 + γ2)+
1

s44

(
γ3

∂C2

∂ϕ
+ γ4

∂C2

∂ν

)
,

η3 =C3 (γ2−2γ1)+
1

s44

(
γ3

∂C3

∂ϕ
+ γ4

∂C3

∂ν

)
,

κ1 =
3(c1− c2)C2

1

2
+

1
s44

[(
∂C1

∂ϕ

)2

+Θ2
(

∂C1

∂ν

)2
]

,

κ2 =

[
(c1 + c2)c2

3

2
+ c1−2c2 c3

]
C2

2 +
1

s44

[(
∂C2

∂ϕ

)2

+Θ2
(

∂C2

∂ν

)2
]

,

κ3 = 3(c1 +2c2)C
2
3 +

1
s44

[(
∂C3

∂ϕ

)2

+Θ2
(

∂C3

∂ν

)2
]

,

κ4 = (c1− c2)(2+ c3)C1C2 +
2

s44

(
∂C1

∂ϕ
∂C2

∂ϕ
+Θ2 ∂C1

∂ν
∂C2

∂ν

)
,

κ5 =
2

s44

(
∂C1

∂ϕ
∂C3

∂ϕ
+Θ2 ∂C1

∂ν
∂C3

∂ν

)
,

κ6 = [2c2 (1− c3)− c1]C2C3 +
2

s44

(
∂C2

∂ϕ
∂C3

∂ϕ
+Θ2 ∂C2

∂ν
∂C3

∂ν

)
, (6.6)

where γi (i = 1, . . . , 4) is given by Equation (2.22). In case of the ellipsoidal inclusion,
we get (unIN)xn→0 −→ ± ∞, (εIN)xn−→0 −→ ± ∞, (σIN)r→0 −→ ±∞ due to
(lnxn)xn→0 −→ ± ∞ and (xc3

n )xn→0 −→ ± ∞ for c3 < 0 (see Equations (2.18),
(6.4)). Accordingly, the mathematical solution (6.4) is suitable for the matrix.
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6.2 Cell Matrix

The stress σnB is determined by two mathematical boundary conditions, i.e., by
Equations (2.28), (2.29). With regard to three integration constants C1M, C2M, C3M

in Equation (6.4), the following conditions are considered to determine σnB, i.e.,
C1M �= 0, C2M �= 0, C3M = 0; C1M �= 0, C3M �= 0, C2M = 0; C2M �= 0, C3M �= 0,
C1M = 0. Consequently, the mathematical boundary conditions (2.31)–(2.33) are
applied in case of C1M �= 0, C2M �= 0, C3M �= 0.

Conditions C1M �= 0, C2M �= 0, C3M = 0. With regard to Equations (2.28), (2.29),
(2.35), (6.4), (6.5), we get

εnM =− pn

ζM

[
1− c3M

(
xn

xM

)c3M−1
]

,

εϕM = εθM =− pn

ζM

[
1−

(
xn

xM

)c3M−1
]

,

ε′nϕM = s44M σnϕM =−
[

∂
∂ϕ

(
pn

ζM

)
− xc3M−1

n
∂

∂ϕ

(
pn

ζM xc3M−1
M

)]
,

ε′nθM = s44M σnθM =−Θ

[
∂

∂ν

(
pn

ζM

)
− xc3M−1

n
∂

∂ν

(
pn

ζM xc3M−1
M

)]
,

σnM =− pn

ζM

{
c1M − c2M − [c3M (c1M + c2M)−2c2M]

(
xn

xM

)c3M−1
}

,

σϕM = σθM =− pn

ζM

[
c1M − c2M − (c1M − c2Mc3M)

(
xn

xM

)c3M−1
]

,

σnB =− ρ1B pn

ζM
− 1

s44M

[
ρ(ϕ)

1B
∂

∂ϕ

(
pn

ζM

)
+ρ(ν)

1B
∂

∂ν

(
pn

ζM

)]

+
ρ2B pn

ζM xc3M−1
M

+
1

s44M

[
ρ(ϕ)

2B
∂

∂ϕ

(
pn

ζM xc3M−1
M

)
+ρ(ν)

2B
∂

∂ν

(
pn

ζM xc3M−1
M

)]
,

(6.7)

where Θ, xM, s44M, ciM (i = 1,2,3) are given by Equations (1.8), (1.9), (2.13), (2.18),

respectively. The coefficients ζM, ρiB, ρ(τ)
iB (i = 1,2; τ = ϕ,ν) have the forms

ζM = c1M − c2M − [c3M (c1M + c2M)−2c2M]

(
xIN

xM

)c3M−1

,
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ρ1B = (ϑ1 +ϑ2 +ϑ3)(c1M − c2M) ,

ρ2B =
{

ϑ1 [(c1M + c2M)c3M −2c2M]+ (ϑ2 +ϑ3)(c1M − c2M c3M)
}

xc3M−1
M ,

ρ(ϕ)
1B = ϑ1 +ϑ2, ρ(ν)

1B = Θ(ϑ1 +ϑ3) ,

ρ(ϕ)
2B = (ϑ1 +ϑ2)x

c3M−1
M , ρ(ν)

2B = Θ(ϑ1 +ϑ3)x
c3M−1
M , (6.8)

where γ iM, ϑ j (i = 1, . . . , 4; j = 1,2,3) are given by Equations (2.22), (2.32), respec-
tively. The normal stress pn is given by Equations (2.30) or (2.34) for N = 1 or

N + 1 = 1,2, . . . , respectively. With regard to Equation (6.7) and
[
ε(1)

ϕM

]
xn=xM

=

−p(1)
n ρM [1]–[22], the coefficient ρM in Equation (2.30) for N = 1 is derived as

ρM =
1

ζM

[
1−

(
xIN

xM

)c3M−1
]

. (6.9)

Conditions C1M �= 0, C3M �= 0, C2M = 0. With regard to Equations (2.28), (2.29),
(2.35), (6.4), (6.5), we get

εnM =− pn

ζM

[
1− c3M

(
xM

xn

)3
]

,

εϕM = εθM =− pn

ζM

[
1−

(
xM

xn

)3
]

,

εnϕM = s44M σnϕM =−
[

∂
∂ϕ

(
pn

ζM

)
− 1

x3
n

∂
∂ϕ

(
pn x3

M

ζM

)]
,

εnθM = s44M σnθM =−Θ
[

∂
∂ν

(
pn

ζM

)
− 1

x3
n

∂
∂ν

(
pn x3

M

ζM

)]
,

σnM =− pn

ζM

[
c1M − c2M +2(c1M +2c2M)

(
xM

xn

)3
]

,

σϕM = σθM =− pn

ζM

[
c1M − c2M − (c1M +2c2M)

(
xM

xn

)3
]

,

σnB =− ρ1B pn

ζM
− 1

s44M

[
ρ(ϕ)

1B
∂

∂ϕ

(
pn

ζM

)
+ρ(ν)

1B
∂

∂ν

(
pn

ζM

)]

+
ρ3B pn x3

M

ζM
+

1
s44M

[
ρ(ϕ)

3B
∂

∂ϕ

(
pn x3

M

ζM

)
+ρ(ν)

3B
∂

∂ν

(
pn x3

M

ζM

)]
, (6.10)

where Θ, xM, s44M, ciM; ρ1B, ρ(τ)
1B (i = 1,2,3; τ = ϕ,ν) are given by Equations (1.8),
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(1.9), (2.13), (2.18); (6.8), respectively. The coefficients ζM, ρ3B, ρ(τ)
3B (τ = ϕ,ν)

have the forms

ζM = c1M − c2M +2(c1M +2c2M)

(
xM

xIN

)3

, ζMB = 3(c1M + c2M) ,

ρ3B =
(ϑ2 +ϑ3−2ϑ1)(c1M +2c2M)

x3
M

,

ρ(ϕ)
3B =

ϑ1 +ϑ2

x3
M

, ρ(ν)
3B =

Θ(ϑ1 +ϑ3)

x3
M

, (6.11)

where γ iM, ϑ j (i = 1, . . . , 4; j = 1,2,3) are given by Equations (2.22), (2.32), respec-
tively. The normal stress pn is given by Equations (2.30) or (2.34) for N = 1 or

N + 1 = 1,2, . . . , respectively. With regard to Equation (6.10) and
[
ε(1)

ϕM

]
xn=xM

=

−p(1)
n ρM [1]–[22], the coefficient ρM in Equation (2.30) for N = 1 is derived as

ρM =
1

ζM

[
1−

(
xM

xIN

)−3
]

. (6.12)

Conditions C2M �= 0, C3M �= 0, C1M = 0. With regard to Equations (2.28), (2.29),
(2.35), (6.4), (6.5), we get

εnM =− pn

ζM

[
c3M

(
xn

xM

)c3M−1

−2

(
xM

xn

)3
]

,

εϕM = εθM =− pn

ζM

[(
xn

xM

)c3M−1

−
(

xM

xn

)3
]

,

εnϕM = s44M σnϕM =−
[

∂
∂ϕ

(
pn

ζM xc3M−1
M

)
xc3M−1
n − 1

x3
n

∂
∂ϕ

(
pn x3

M

ζM

)]
,

εnθM = s44M σnθM =−Θ

[
∂

∂ν

(
pn

ζM xc3M−1
M

)
xc3M−1
n − 1

x3
n

∂
∂ν

(
pn x3

M

ζM

)]
,

σnM =− pn

ζM

{
[c3M (c1M + c2M)−2c2M]

(
xn

xM

)c3M−1

−2(c1M +2c2M)

(
xM

xn

)3
}

,

σϕM = σθM =− pn

ζM

[
(c1M − c2Mc3M)

(
xn

xM

)c3M−1

+(c1M +2c2M)

(
xM

xn

)3
]

,

σnB =− ρ1B pn

ζM

(
1
2
+ lnxM

)
+

ρ3B pn xc3M
M

ζM
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− 1
s44M

{
ρ(ϕ)

1B
∂

∂ϕ

[
pn

ζM

(
1
2
+ lnxM

)]
+ρ(ν)

3B
∂

∂ν

[
pn

ζM

(
1
2
+ lnxM

)]}

+
1

s44M

[
ρ(ϕ)

3B
∂

∂ϕ

(
pn xc3M

M

ζM

)
+ρ(ν)

3B
∂

∂ν

(
pn xc3M

M

ζM

)]
, Q = M,MB, (6.13)

where Θ, xM, s44M, ciM; ρ jB, ρ(τ)
jB (i = 1,2,3; j = 1,3; τ = ϕ,ν) are given by Equa-

tions (1.8), (1.9), (2.13), (2.18); (6.9), (6.12), respectively. The coefficient ζM has
the form

ζM =

{
[c3M (c1M + c2M)−2c2M]

(
xIN

xM

)c3M+2

+2(c1M +2c2M)

}(
xM

xIN

)3

.

(6.14)

The normal stress pn is given by Equations (2.30) or (2.34) for N = 1 or N +1 =

1,2, . . . , respectively. With regard to Equation (6.13) and
[
ε(1)

ϕM

]
xn=xM

= −p(1)
n ρM

[1]–[22], the coefficient ρM in Equation (2.30) for N = 1 is derived as

ρM =
1

ζM

[(
xIN

xM

)c3M−1

−
(

xM

xIN

)3
]

. (6.15)

Conditions C1M �= 0, C2M �= 0, C3M �= 0. Finally, with regard to Equations (2.21),
(2.27), (2.31)–(2.33), (6.4), (6.5), we get

εnM =− 1
ζM

(
ζ1M +ζ2M c3M xc3M−1

n − 2ζ3M

x3
n

)
,

εϕM = εθM =− 1
ζM

(
ζ1M +ζ2M xc3M−1

n +
ζ3M

x3
n

)
,

εnϕM = s44M σnϕM =
∂

∂ϕ

(
ζ1M

ζM

)
+ xc3M−1

n
∂

∂ϕ

(
ζ2M

ζM

)
+

1
x3
n

∂
∂ϕ

(
ζ1M

ζM

)
,

εnθM = s44M σnθM = Θ
[

∂
∂ν

(
ζ1M

ζM

)
+ xc3M−1

n
∂

∂ν

(
ζ2M

ζM

)
+

1
x3
n

∂
∂ν

(
ζ3M

ζM

)]
,

σnM =− 1
ζM

{
ζ1M (c1M − c2M)+ζ2M [(c1M + c2M)c3M −2c2M]xc3M−1

n

− 2ζ3M (c1M +2c2M)

x3
n

}
,

σϕM = σθM =− 1
ζM

[
ζ1M (c1M − c2M)+ζ2M (c1M − c2M c3M)xc3M−1

n
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+
ζ3M (c1M +2c2M)

x3
n

]
,

σ1M = η1M +η2M xc3M−1
n +

η3M

x3
n

,

wM = κ1M +κ2M x2(c3M−1)
n +

κ3M

x6
n

+κ4M xc3M−1
n +

κ5M

x3
n

+κ6M xc3M−4
n ,

WM = 4

π/2∫
0

π/2∫
0

[
κ1M

3

(
x3
M − x3

IN

)
+

κ2M

2c3M +1

(
x2c3M+1
M − x2c3M+1

IN

)

+
κ3M

3

(
1

x3
IN

− 1

x3
M

)
+

κ4M

c3M +2

(
xc3M+2
M − xc3M+2

IN

)

+ κ5M ln

(
xM

xIN

)
+

κ6M

c3M −1

(
xc3M−1
M − xc3M−1

IN

)]
dϕdν,

σnB =− ρ1B ζ1M

ζM
− 1

s44M

[
ρ(ϕ)

1B
∂

∂ϕ

(
ζ1M

ζM

)
+ρ(ν)

1B
∂

∂ν

(
ζ1M

ζM

)]

+
ρ2B ζ2M

ζM
+

1
s44M

[
ρ(ϕ)

2B
∂

∂ϕ

(
ζ2M

ζM

)
+ρ(ν)

2B
∂

∂ν

(
ζ2M

ζM

)]
, (6.16)

where Θ; xIN; xM; s44M; ciM; ρiB, ρ(τ)
iB (i = 1,2,3; τ = ϕ,ν) are given by Equa-

tions (1.8); (1.9); (2.13); (2.18); (6.8), (6.11), respectively. The coefficients ζ iM,
ζM, ηiM, κ jM (i = 1,2,3; j = 2 . . . , 6; Equation (6.6)) have the forms

ζ iM =−pn ζ i1M +σnB ζ i2M, i = 1,2,3,

ζ11M = (c1M + c2M)(2+ c3M)xc3M−3
M ,

ζ12M =
[(c1M + c2M)c3M −2c2M]xc3M−1

IN

x2
M

+
2(c1M +2c2M)xc3M

M

x3
IN

,

ζ21M =− 3(c1M + c2M)

x2
M

, ζ22M =
c2M − c1M

x2
M

− 2(c1M +2c2M)xM

x3
IN

,

ζ31M = (c1M + c2M)(1− c3M)x3
M,

ζ32M = xM

{
(c1M − c2M)xc3M−1

M − [(c1M + c2M)c3M −2c2M]xc3M−1
IN

}
,

ζM = (c1M + c2M)

×
{

(c1M − c2M)(2+ c3M)xc3M−3
M − 3 [(c1M + c2M)c3M −2c2M]xc3M−1

IN

x2
M

−2(c1M +2c2M)(1− c3M)xc3M
M

x3
IN

}
,

η1M =− ζ1M (γ1M + γ2M)

ζM
− 1

s44M

[
γ3M

∂
∂ϕ

(
ζ1M

ζM

)
+ γ4M

∂
∂ν

(
ζ1M

ζM

)]
,
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η2M =− ζ2M (γ1M c3M + γ2M)

ζM

− 1
s44M

[
γ3M

∂
∂ϕ

(
ζ2M

ζM

)
+ γ4M

∂
∂ν

(
ζ2M

ζM

)]
,

η3M =− ζ3M (γ2M −2γ1M)

ζM
− 1

s44M

[
γ3M

∂
∂ϕ

(
ζ3M

ζM

)
+ γ4M

∂
∂ν

(
ζ3M

ζM

)]
,

κ1M =
3(c1M − c2M)

2

(
ζ1M

ζM

)2

+
1

s44M

{[
∂

∂ϕ

(
ζ1M

ζM

)]2

+Θ2
[

∂
∂ν

(
ζ1M

ζM

)]2
}

,

κ2M =

[
(c1M + c2M)c2

3M

2
+ c1M −2c2M c3M

](
ζ2M

ζM

)2

+
1

s44M

{[
∂

∂ϕ

(
ζ1M

ζM

)]2

+Θ2
(

∂
∂ν

(
ζ1M

ζM

)]2
}

,

κ3M = 3(c1M +2c2M)

(
ζ3M

ζM

)2

+
1

s44M

{[
∂

∂ϕ

(
ζ3M

ζM

)]2

+Θ2
[

∂
∂ν

(
ζ3M

ζM

)]2
}

,

κ4M = ζ1M ζ2M (c1M − c2M)(2+ c3M)

(
1

ζM

)2

+
2

s44M

[
∂

∂ϕ

(
ζ1M

ζM

)
∂

∂ϕ

(
ζ2M

ζM

)
+Θ2 ∂

∂ν

(
ζ1M

ζM

)
∂

∂ν

(
ζ2M

ζM

)]
,

κ5M =
2

s44M

[
∂

∂ϕ

(
ζ1M

ζM

)
∂

∂ϕ

(
ζ3M

ζM

)
+Θ2 ∂

∂ν

(
ζ1M

ζM

)
∂

∂ν

(
ζ3M

ζM

)]
,

κ6M = ζ2M ζ3M [2c2M (1− c3M)− c1M]

(
1

ζM

)2

+
2

s44M

[
∂

∂ϕ

(
ζ2M

ζM

)
∂

∂ϕ

(
ζ3M

ζM

)
+Θ2 ∂

∂ν

(
ζ2M

ζM

)
∂

∂ν

(
ζ3M

ζM

)]
, (6.17)

where γ iM (i = 1, . . . , 4) is given by Equation (2.22). The normal stress pn is given by
Equations (2.30) or (2.34) for N = 1 or N + 1 = 1,2, . . . , respectively. With regard
to Equation (6.16) and

[
εϕM

]
xn=xM

= −pn φM + σnB φB, the coefficients φM, φB in
Equation (2.34) for N +1 = 1,2, . . . are derived as

φM =
1

ζM

(
ζ11M +ζ21M xc3M−1

IN +
ζ31M

x3
IN

)
,
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φB =
1

ζM

(
ζ12M +ζ22M xc3M−1

IN +
ζ32M

x3
IN

)
. (6.18)

6.3 Ellipsoidal Inclusion

In case of the ellipsoidal inclusion, we get C2IN = C3IN = 0, otherwise we get
(unIN)xn→0 −→ ± ∞, (εIN)xn−→0 −→ ± ∞, (σIN)r→0 −→ ±∞ due to c3 < 0 (see
Equations (2.18), (6.4), (6.5)). With regard to Equations (2.37), (2.38), (6.4), (6.5),
we get [1]–[22]

εnM = εϕM = εθM =−pn ρM,

εnϕM = s44IN σnϕM =−ρM
∂pn

∂ϕ
,

εnθM = s44IN σnθM =−Θ ρM
∂pn

∂ν
,

σnM = σϕM = σθM =−pn,

σ1M =− ρM

[
pn (γ1IN + γ2IN)+

1
s44IN

(
γ3IN

∂pn

∂ϕ
+ γ4IN

∂pn

∂ν

)]
,

wIN = ρ2
M

{
3p2

n

2ρM
+

2
s44IN

[(
∂pn

∂ϕ

)2

+

(
∂pn

∂ν

)2
]}

,

WIN =
4ρ2

M

3

π/2∫
0

π/2∫
0

x3
IN

{
3p2

n

2ρM
+

2
s44IN

[(
∂pn

∂ϕ

)2

+

(
∂pn

∂ν

)2
]}

dϕdν, (6.19)

where Θ, s44IN , γ iIN (i = 1, . . . , 4) are given by Equations (1.8), (2.13), (2.22), re-
spectively. The normal stress pn is given by Equations (2.30) or (2.34) for N = 1
or N +1 = 1,2, . . . , respectively. With regard to Equation (6.19) and

(
εϕIN

)
xn=xIN

=
−pn ρIN [1]–[22], the coefficient ρIN in Equations (2.30), (2.34) is derived as

ρIN =
1−2μIN

EIN
. (6.20)
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Chapter 7

Mathematical Model 5

7.1 Mathematical Procedure

Let the mathematical procedures ∂Eq.(2.24)/∂r, Eq.(6.2)/r be performed, and
then we get

xn
∂2Un

∂x2
n

+(1− c3)
∂Un

∂xn
= 0, (7.1)

∂Un

∂xn
=−s44 (c1 + c2)

(
x2
n

∂3un

∂x3
n

+4xn
∂2un

∂x2
n

)
, (7.2)

where s44 and c1, c2, c3 < 0 are given by Equations (2.13) and (2.18), respectively.
Let the mathematical procedure ∂Eq.(7.2)/∂r be performed, and then we get

∂2Un

∂x2
n

=−s44 (c1 + c2)

(
x2
n

∂4un

∂x4
n

+6xn
∂3un

∂x3
n

+4
∂2un

∂x2
n

)
. (7.3)

Let Equations (6.2), (6.3) be substituted to (7.1), and then we get

x2
n

∂4un

∂x4
n

+(7− c3)xn
∂3un

∂x3
n

+4(2− c3)
∂2un

∂x2
n

= 0. (7.4)

Let un be assumed in the form un = xλ
n, then we get

un =C1 xn +C2 xc3
n +

C3

x2
n
+C4, (7.5)

whereC1 . . . ,C4 are integration constants, which are determined by the mathematical
boundary conditions in Section 2.3. With regard to Equations (2.1)–(2.4), (2.14)–
(2.17), (2.26), (7.6), we get

εn =C1 +C2 c3 xc3−1
n − 2C3

x3
n

,

εϕ = εθ =C1 +C2 xc3−1
n +

C3

x3
n
+

C4

xn
,
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εnϕ = s44 σnϕ =
∂C1

∂ϕ
+ xc3−1

n
∂C2

∂ϕ
+

1
x3
n

∂C3

∂ϕ
+

1
xn

∂C4

∂ϕ
,

εnθ = s44 σnθ = Θ
[

∂C1

∂ν
+ xc3−1

n
∂C2

∂ν
+

1
x3
n

∂C3

∂ν
+

1
xn

∂C4

∂ν

]
,

σn =C1 (c1− c2)+C2 [(c1 + c2)c3−2c2]x
c3−1
n − 2C3 (c1 +2c2)

x3
n

− 2c2C4

xn
,

σϕ = σθ =C1 (c1− c2)+C2 (c1− c2 c3)x
c3−1
n +

C3 (c1 +2c2)

x3
n

+
c1C4

xn
,

σ1 = η1 +η2 xc3−1
n +

η3

x3
n
+

η4

xn
,

w = κ1 +κ2 x2(c3−1)
n +

κ3

x6
n
+

κ4

x2
n
+(κ5 +κ9)x

c3−1
n

+
κ6

x3
n
+κ7 xc3−4

n +
κ8

xn
+

κ10

x4
n

, (7.6)

where Θ and ηi, κi (i = 1,2,3) (i = 1,2,3) are given by Equations (1.8) and (6.6), re-
spectively. The coefficients η4, κ j (i = 4, . . . , 6) are derived as

η4 =C4 γ2 +
1

s44

(
γ3

∂C4

∂ϕ
+ γ4

∂C4

∂ν

)
,

κ4 = c1C2
4 +

1
s44

[(
∂C4

∂ϕ

)2

+Θ2
(

∂C4

∂ν

)2
]

,

κ5 = (c1− c2)(2+ c3)C1C2 +
2

s44

(
∂C1

∂ϕ
∂C2

∂ϕ
+Θ2 ∂C1

∂ν
∂C2

∂ν

)
,

κ6 =
2

s44

(
∂C1

∂ϕ
∂C3

∂ϕ
+Θ2 ∂C1

∂ν
∂C3

∂ν

)
,

κ7 = [2c2 (1− c3)− c1]C2C3 +
2

s44

(
∂C2

∂ϕ
∂C3

∂ϕ
+Θ2 ∂C2

∂ν
∂C3

∂ν

)
,

κ8 = (c1− c2)C1C4 +
1

s44

(
∂C1

∂ϕ
∂C4

∂ϕ
+Θ2 ∂C1

∂ν
∂C4

∂ν

)
,

κ9 = (c1− c2 c3)C2C4 +
1

s44

(
∂C2

∂ϕ
∂C4

∂ϕ
+Θ2 ∂C2

∂ν
∂C4

∂ν

)
,

κ10 = (c1 +2c2)C3C4 +
1

s44

(
∂C3

∂ϕ
∂C4

∂ϕ
+Θ2 ∂C3

∂ν
∂C4

∂ν

)
, (7.7)

where γi (i = 1, . . . , 4) is given by Equation (2.22). In case of the ellipsoidal in-
clusion, we get C2IN = C3IN = C4IN = 0, otherwise we get (unIN)xn→0 −→ ± ∞,
(εIN)xn−→0 −→± ∞, (σIN)r→0 −→±∞ due to c3 < 0 (see Equations (2.18), (6.4)–
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(6.10)). In case of C1IN �= 0 (see Equations (6.4), (7.5)), the mathematical solutions
for the ellipsoidal inclusion is presented in Section 6.3.

7.2 Cell Matrix

The stress σnB is determined by two mathematical boundary conditions, i.e., by
Equations (2.28), (2.29). With regard to Equations (6.4), (7.5), the conditionCiM �= 0,
C4M �= 0, CjM =CkM = 0 (i, j,k = 1,2,3; i �= j �= k) is considered in Section 7.2, where
the condition CiM �= 0, CjM �= 0, CkM = 0 is analysed in Section 6.2. Consequently,
the mathematical boundary conditions (2.31)–(2.33) are applied in case of CiM �= 0,
CjM �= 0, C4M �= 0, CkM = 0 (i, j,k = 1,2,3; i �= j �= k), where the condition C1M �= 0,
C2M �= 0, C3M �= 0 is analysed in Section 6.2.

Conditions C1M �= 0, C4M �= 0, C2M = C3M = 0. With regard to Equations (2.28),
(2.29), (2.35), (7.5), (7.6), we get

εnM =− pn

ζM
,

εϕM = εθM =− pn

ζM

(
1− 1

xn

)
,

εnϕM = s44M σnϕM =−
(

1− 1
xn

)
∂

∂ϕ

(
pn

ζM

)
,

εnθM = s44M σnθM =−Θ
(

1− 1
xn

)
∂

∂ν

(
pn

ζM

)
,

σnM =− pn

ζM

(
c1M − c2M +

2cMm

xn

)
,

σϕM = σθM =− pn

ζM

(
c1M − c2M − c1M

xn

)
,

σnB =− ρ1B pn

ζM
− 1

s44M

[
ρ(ϕ)

1B
∂

∂ϕ

(
pn

ζM

)
+ρ(ν)

1B
∂

∂ν

(
pn

ζM

)]

+
ρ4B pn

ζM
+

1
s44M

[
ρ(ϕ)

4B
∂

∂ϕ

(
pn

ζM

)
+ρ(ν)

4B
∂

∂ν

(
pn

ζM

)]
, (7.8)

where Θ; xIN , xM; s44M; ciM; ρ1B, ρ(τ)
1B (i = 1,2; τ = ϕ,ν) are given by Equations (1.8),

(1.9), (2.13), (2.18); (6.8), respectively. The coefficients ζM, ρ(τ)
4B (τ = ϕ,ν) have the

forms
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ζM = c1M − c2M +
2c2M xM

xIN
,

ρ4B =
(ϑ2 +ϑ3)c1M −2ϑ1 c2M

xM
, ρ(ϕ)

4B =
ϑ1 +ϑ2

xM
, ρ(ν)

4B =
Θ(ϑ1 +ϑ3)

xM
, (7.9)

where ϑi (i = 1,2,3) is given by Equation (2.32). The normal stress pn is given by
Equations (2.30) or (2.34) for N = 1 or N + 1 = 1,2, . . . , respectively. With regard

to Equation (7.8) and
[
ε(1)

ϕM

]
xn=xM

= −p(1)
n ρM [1]–[22], the coefficient ρM in Equa-

tion (2.30) for N = 1 is derived as

ρM =
1

ζM

(
1− 1

xIN

)
. (7.10)

Conditions C2M �= 0, C4M �= 0, C1M = C3M = 0. With regard to Equations (2.28),
(2.29), (2.35), (7.5), (7.6), we get

εnM =− pn c3M

ζM

(
xn

xM

)c3M−1

,

εϕM = εθM =− pn

ζM

[(
xn

xM

)c3M−1

− 1
xn

]
,

εnϕM = s44M σnϕM =−
[

∂
∂ϕ

(
pn

ζM xc3M−1
M

)
− ∂

∂ϕ

(
pn

ζM

)]
,

εnθM = s44M σnθM =−Θ

[
∂

∂ν

(
pn

ζM xc3M−1
M

)
− ∂

∂ν

(
pn

ζM

)]
,

σnM =− pn

ζM

{
[c3M (c1M + c2M)−2c2M]

(
xn

xM

)c3M−1

+
2c2M

xn

}
,

σϕM = σθM =− pn

ζM

[
(c1M − c2Mc3M)

(
xn

xM

)c3M−1

− c1M

xn

]
,

σnB =− ρ2B pn

ζM xc3M−1
M

− 1
s44M

[
ρ(ϕ)

2B
∂

∂ϕ

(
pn

ζM xc3M−1
M

)
+ρ(ν)

2B
∂

∂ν

(
pn

ζM xc3M−1
M

)]

+
ρ4B pn

ζM
+

1
s44M

[
ρ(ϕ)

4B
∂

∂ϕ

(
pn

ζM

)
+ρ(ν)

4B
∂

∂ν

(
pn

ζM

)]
, (7.11)

56



where Θ; xIN , xM; s44M; ciM; ρ jB, ρ(τ)
jB (i = 1,2; j = 2,4; τ = ϕ,ν) are given by Equa-

tions (1.8); (1.9); (2.13); (2.18); (6.8), (7.9), respectively, and ζM has the form

ζM = [c3M (c1M + c2M)−2c2M]

(
xIN

xM

)c3M−1

+
2c2M xM

xIN
. (7.12)

The normal stress pn is given by Equations (2.30) or (2.34) for N = 1 or N +1 =

1,2, . . . , respectively. With regard to Equation (7.11) and
[
ε(1)

ϕM

]
xn=xM

= −p(1)
n ρM

[1]–[22], the coefficient ρM in Equation (2.30) for N = 1 is derived as

ρM =
1

ζM

[(
xIN

xM

)c3M−1

− 1
xIN

]
, Q = M,MB. (7.13)

Conditions C3M �= 0, C4M �= 0, C1M = C2M = 0. With regard to Equations (2.28),
(2.29), (2.35), (7.5), (7.6), we get

εnM =
2pn

ζM

(
xIN

xn

)3

,

εϕM = εθM =− pn

ζM

[(
xIN

xn

)3

− 1
xn

]
,

εnϕM = s44M σnϕM =−
[(

xIN

xn

)3

− 1
xn

]
∂

∂ϕ

(
pn

ζM

)
,

εnθM = s44M σnθM =−
[(

xIN

xn

)3

− 1
xn

]
∂

∂ν

(
pn

ζM

)
,

σnM =
2pn

ζM

[
(c1M +2c2M)

(
xIN

xn

)3

− c2M

xn

]
,

σϕM = σθM =− pn

ζM

[
(c1M −2c2M)

(
xIN

xn

)3

− c1M

xn

]
,

σnB =− ρ3B pn

ζM x3
M

− 1
s44M

[
ρ(ϕ)

3B
∂

∂ϕ

(
pn

ζM x3
M

)
+ρ(ν)

3B
∂

∂ν

(
pn

ζM x3
M

)]

+
ρ4B pn

ζM
+

1
s44M

[
ρ(ϕ)

4B
∂

∂ϕ

(
pn

ζM

)
+ρ(ν)

4B
∂

∂ν

(
pn

ζM

)]
, (7.14)

where Θ; xIN , xM; s44M; ciM; ρ jB, ρ(τ)
jB (i = 1,2; j = 3,4; τ = ϕ,ν) are given by Equa-

tions (1.8); (1.9); (2.13); (2.18); (6.11), (7.9), respectively, and ζM has the form
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ζM =−
[
2(c1M +2c2M)+2c2M

(
xIN

xM

)2
]

. (7.15)

The normal stress pn is given by Equations (2.30) or (2.34) for N = 1 or N +1 =

1,2, . . . , respectively. With regard to Equation (7.14) and
[
ε(1)

ϕM

]
xn=xM

= −p(1)
n ρM

[1]–[22], the coefficient ρM in Equation (2.30) for N = 1 is derived as

ρM =
xIN −1
ζM xIN

. (7.16)

Conditions C1M �= 0, C2M �= 0, C4M �= 0, C3M = 0. Finally, with regard to Equa-
tions (2.21), (2.27), (2.31)–(2.33), (7.5), (7.6), we get

εnM =− pn

ζM

(
ζ1M +ζ2M c3M xc3M−1

n

)
,

εϕM = εθM =− pn

ζM

(
ζ1M +ζ2M xc3M−1

n +
ζ4M

xn

)
,

εnϕM = s44M σnϕM =
∂

∂ϕ

(
pn ζ1M

ζM

)
+ xc3M−1

n
∂

∂ϕ

(
pn ζ2M

ζM

)
+

1
xn

∂
∂ϕ

(
pn ζ4M

ζM

)
,

εnθM = s44M σnθM =

Θ
[

∂
∂ν

(
pn ζ1M

ζM

)
+ xc3M−1

n
∂

∂ν

(
pn ζ2M

ζM

)
+

1
xn

∂
∂ν

(
pn ζ4M

ζM

)]
,

σnM =

− pn

ζM

{
ζ1M (c1M − c2M)+ζ2M [(c1M + c2M)c3M −2c2M]xc3M−1

n − 2ζ4M c2M

xn

}
,

σϕM = σθM =

− pn

ζM

[
ζ1M (c1M − c2M)+ζ2M (c1M − c2M c3M)xc3M−1

n +
ζ4M c1M

xn

]
,

σ1M = η1M +η2M xc3M−1
n +

η4M

xn
,

wM = κ1M +κ2M x2(c3M−1)
n +

κ4M

x2
n

+(κ5M +κ9M)xc3M−1
n +

κ8M

xn
,

WM = 4

π/2∫
0

π/2∫
0

[
κ1M

3

(
x3
M − x3

IN

)
+

κ2M

2c3M +1

(
x2c3M+1
M − x2c3M+1

IN

)

+ κ4M (xM − xIN)+
κ5M +κ9M

c3M +2

(
xc3M+2
M − xc3M+2

IN

)
+

κ8M

2

(
x2
M − x2

IN

)]
dϕdν,
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σnB =− ρ1B pn ζ1M

ζM
− 1

s44M

[
ρ(ϕ)

1B
∂

∂ϕ

(
pn ζ1M

ζM

)
+ρ(ν)

1B
∂

∂ν

(
pn ζ1M

ζM

)]

− ρ2B pn ζ2M

ζM
− 1

s44M

[
ρ(ϕ)

2B
∂

∂ϕ

(
pn ζ2M

ζM

)
+ρ(ν)

2B
∂

∂ν

(
pn ζ2M

ζM

)]

− ρ4B pn ζ4M

ζM
− 1

s44M

[
ρ(ϕ)

4B
∂

∂ϕ

(
pn ζ4M

ζM

)
+ρ(ν)

4B
∂

∂ν

(
pn ζ4M

ζM

)]
, (7.17)

where Θ; xIN , xM; s44M; ciM; ρ jB, ρ(τ)
jB (i = 1,2,3; j = 1,2,4; τ = ϕ,ν) are given by

Equations (1.8); (1.9); (2.13); (2.18); (6.8), (7.9); respectively. The coefficients ζ iM,

ζM, η4M, κ jM, ρ4B, ρ(τ)
4B (i = 1,2,4; j = 4,5,8,9; τ = ϕ,ν; see Equation (7.7)) have the

forms

ζ iM =−pn ζ i1M +σnB ζ i2M, i = 1,2,4,

ζ11M = (c1M + c2M)c3M xc3M−1
M ,

ζ12M = [(c1M + c2M)c3M −2c2M]xc3M−1
IN +

2c2M xc3M
M

xIN
,

ζ21M =−(c1M + c2M) , ζ22M = c2M

(
1− 2xM

xIN

)
− c1M,

ζ41M = (c1M + c2M)(1− c3M)xc3M
M ,

ζ42M = (c1M − c2M)xc3M
M − [(c1M + c2M)c3M −2c2M]xM xc3M−1

IN ,

ζM = (c1M + c2M)
{
(c1M − c2M)c3M xc3M−1

M − [(c1M + c2M)c3M −2c2M]xc3M−1
IN

− 2c2M (1− c3M)xc3M
M

xIN

}
,

η4M =− pn ζ4M γ2M

ζM
− 1

s44M

[
γ3M

∂
∂ϕ

(
pn ζ4M

ζM

)
+ γ4M

∂
∂ν

(
pn ζ4M

ζM

)]
,

κ4M = c1M

(
pn ζ4M

ζM

)2

+
1

s44M

{[
∂

∂ϕ

(
pn ζ4M

ζM

)]2

+ Θ2
[

∂
∂ν

(
pn ζ4M

ζM

)]2
}

,

κ5M = ζ1M ζ2M (c1M − c2M)(2+ c3M)

(
pn

ζM

)2

+
2

s44M

[
∂

∂ϕ

(
pn ζ1M

ζM

)
∂

∂ϕ

(
pn ζ2M

ζM

)
+Θ2 ∂

∂ν

(
pn ζ1M

ζM

)
∂

∂ν

(
pn ζ2M

ζM

)]
,

κ8M = ζ1M ζ4M (c1M − c2M)

(
pn

ζM

)2

+
2

s44M

[
∂

∂ϕ

(
pn ζ1M

ζM

)
∂

∂ϕ

(
pn ζ4M

ζM

)
+Θ2 ∂

∂ν

(
pn ζ1M

ζM

)
∂

∂ν

(
pn ζ4M

ζM

)]
,

κ9M = ζ2M ζ4M (c1M − c2M c3M)

(
pn

ζM

)2
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+
2

s44M

[
∂

∂ϕ

(
pn ζ2M

ζM

)
∂

∂ϕ

(
pn ζ4M

ζM

)
+Θ2 ∂

∂ν

(
pn ζ2M

ζM

)
∂

∂ν

(
pn ζ4M

ζM

)]
,

(7.18)

where γ iM, ϑ j (i = 2,3,4; j = 1,2,3) are given by Equations (2.22), (2.32), respectively.

The coefficients ηiM, κiM ρiB, ρ(τ)
iB (i = 1,2; τ = ϕ,ν) are given by Equation (6.17),

respectively, where ζ iM, ζM in Equation (6.17) are given by Equation (7.18). The
normal stress pn is given by Equations (2.30) or (2.34) for N = 1 or N +1 = 1,2, . . . ,
respectively. With regard to Equation (7.17) and

[
εϕM

]
xn=xM

=−pn φM +σnB φB, the
coefficients φM, φB in Equation (2.34) for N +1 = 1,2, . . . are derived as

φM =
1

ζM

(
ζ11M +ζ21M xc3M−1

IN +
ζ41M

xIN

)
,

φB =
1

ζM

(
ζ12M +ζ22M xc3M−1

IN +
ζ42M

xIN

)
. (7.19)

Conditions C1M �= 0, C3M �= 0, C4M �= 0, C2M = 0. Consequently, with regard to
Equations (2.21), (2.27), (2.31)–(2.33), (7.5), (7.6), we get

εnM =− pn

ζM

(
ζ1M − 2ζ3M

x3
n

)
,

εϕM = εθM =− pn

ζM

(
ζ1M +

ζ3M

x3
n

+
ζ4M

xn

)
,

εnϕM = s44M σnϕM =
∂

∂ϕ

(
pn ζ1M

ζM

)
+

1
x3
n

∂
∂ϕ

(
pn ζ3M

ζM

)
+

1
xn

∂
∂ϕ

(
pn ζ4M

ζM

)
,

εnθM = s44M σnθM = Θ
[

∂
∂ν

(
pn ζ1M

ζM

)
+

1
x3
n

∂
∂ν

(
pn ζ3M

ζM

)
+

1
xn

∂
∂ν

(
pn ζ4M

ζM

)]
,

σnM =

− pn

ζM

{
ζ1M (c1M − c2M)− 2ζ3M (c1M +2c2M)

x3
n

− 2ζ4M c2M

xn

}
,

σϕM = σθM =

− pn

ζM

[
ζ1M (c1M − c2M)+

ζ3M (c1M +2c2M)

x3
n

+
ζ4M c1M

xn

]
,

σ1M = η1M +
η3M

x3
n

+
η4M

xn
,

wM = κ1M +
κ3M

x6
n

+
κ4M

x2
n

+
κ6M

x3
n

+
κ8M

xn
+

κ10M

x4
n

,

WM = 4

π/2∫
0

π/2∫
0

[
κ1M

3

(
x3
M − x3

IN

)
+

κ3M

3

(
1

x3
IN

− 1

x3
M

)
+κ4M (xM − xIN)
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+ κ6M ln

(
xM

xIN

)
+

κ8M

2

(
x2
M − x2

IN

)
+κ10M

(
1

xIN
− 1

xM

)]
dϕdν,

σnB =− ρ1B pn ζ1M

ζM
− 1

s44M

[
ρ(ϕ)

1B
∂

∂ϕ

(
pn ζ1M

ζM

)
+ρ(ν)

1B
∂

∂ν

(
pn ζ1M

ζM

)]

+
ρ3B pn ζ3M

ζM
+

1
s44M

[
ρ(ϕ)

3B
∂

∂ϕ

(
pn ζ3M

ζM

)
+ρ(ν)

3B
∂

∂ν

(
pn ζ3M

ζM

)]

+
ρ4B pn ζ4M

ζM
+

1
s44M

[
ρ(ϕ)

4B
∂

∂ϕ

(
pn ζ4M

ζM

)
+ρ(ν)

4B
∂

∂ν

(
pn ζ4M

ζM

)]
, (7.20)

where Θ; xIN , xM; s44M; ciM; ρ jB, ρ(τ)
jB (i = 1,2,3; j = 1,3,4; τ = ϕ,ν) are given by

Equations (1.8); (1.9); (2.13); (2.18); (6.8), (7.9); respectively. The coefficients ζ iM,

ζM, η4M, κ jM, ρ4B, ρ(τ)
4B (i = 1,3,4; j = 4,5,8,9; k = 1,2; τ = ϕ,ν; see Equation (7.7))

have the forms

ζ iM =−pn ζ i1M +σnB ζ i2M, i = 1,3,4,

ζ11M =− 2(c1M + c2M)

x3
M

, ζ12M =
2

xIN

(
c2M

x2
M

− c1M +2c2M

x2
IN

)
,

ζ31M =−(c1M + c2M) , ζ32M = c2M

(
1− 2xM

xIN

)
− c1M,

ζ41M =
3(c1M + c2M)

x2
M

, ζ42M =

[
c1M − c2M

x3
M

+
2(c1M +2c2M)

x3
IN

]
xM

ζM =−2(c1M + c2M)

(
c1M − c2M

x3
M

+
c1M +2c2M

x3
IN

+
3c2M

xIN x2
M

)
,

κ6M =
2

s44M

[
∂

∂ϕ

(
pn ζ1M

ζM

)
∂

∂ϕ

(
pn ζ3M

ζM

)
+Θ2 ∂

∂ν

(
pn ζ1M

ζM

)
∂

∂ν

(
pn ζ3M

ζM

)]
,

κ10M = ζ3M ζ4M (c1M +2c2M)

(
pn

ζM

)2

+
1

s44M

[
∂

∂ϕ

(
pn ζ3M

ζM

)
∂

∂ϕ

(
pn ζ4M

ζM

)
+Θ2 ∂

∂ν

(
pn ζ3M

ζM

)
∂

∂ν

(
pn ζ4M

ζM

)]
.

(7.21)
The coefficients ηiM, κiM (i = 1,3) and η4M, κ4M, κ8M are given by Equations

(6.17) and (7.18), respectively, where ζ jM ( j = 1,3,4), ζM in Equations (6.17), (7.18)
are given by Equation (7.21). The normal stress pn is given by Equations (2.30) or
(2.34) for N = 1 or N + 1 = 1,2, . . . , respectively. With regard to Equation (7.20)
and

[
εϕM

]
xn=xM

= −pn φM + σnB φB, the coefficients φM, φB in Equation (2.34) for
N +1 = 1,2, . . . are derived as

φM =
1

ζM

(
ζ11M +

ζ31M

x3
IN

+
ζ41M

xIN

)
,
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φB =
1

ζM

(
ζ12M +

ζ32M

x3
IN

+
ζ42M

xIN

)
. (7.22)

Conditions C2M �= 0, C3M �= 0, C4M �= 0, C1M = 0. Finally, with regard to Equa-
tions (2.21), (2.27), (2.31)–(2.33), (7.5), (7.6), we get

εnM =− pn

ζM

(
ζ2M c3M xc3M−1

n − 2ζ3M

x3
n

)
,

εϕM = εθM =− pn

ζM

(
ζ2M xc3M−1

n +
ζ3M

x3
n

+
ζ4M

xn

)
,

εnϕM = s44M σnϕM =

xc3M−1
n

∂
∂ϕ

(
pn ζ2M

ζM

)
+

1
x3
n

∂
∂ϕ

(
pn ζ3M

ζM

)
+

1
xn

∂
∂ϕ

(
pn ζ4M

ζM

)
,

εnθM = s44M σnθM =

− Θ
[
xc3M−1
n

∂
∂ν

(
pn ζ2M

ζM

)
+

1
x3
n

∂
∂ν

(
pn ζ3M

ζM

)
+

1
xn

∂
∂ν

(
pn ζ4M

ζM

)]
,

σnM =− pn

ζM

{
ζ2M [(c1M + c2M)c3M −2c2M]xc3M−1

n

− 2ζ3M (c1M +2c2M)

x3
n

− 2ζ4M c2M

xn

}
,

σϕM = σθM =

− pn

ζM

[
ζ2M (c1M − c2M c3M)xc3M−1

n +
ζ3M (c1M +2c2M)

x3
n

+
ζ4M c1M

xn

]
,

σ1M = η2M xc3M−1
n +

η3M

x3
n

+
η4M

xn
,

wM = κ2M x2(c3M−1)
n +

κ3M

x6
n

+
κ4M

x2
n

+κ7M xc3M−4
n +κ9Mxc3M−1

n +
κ10M

x4
n

,

WM = 4

π/2∫
0

π/2∫
0

[
κ2M

2c3M +1

(
x2c3M+1
M − x2c3M+1

IN

)
+

κ3M

3

(
1

x3
IN

− 1

x3
M

)

+ κ4M (xM − xIN)+
κ7M

c3M −1

(
xc3M−1
M − xc3M−1

IN

)
+

κ9M

c3M +2

(
xc3M+2
M − xc3M+2

IN

)
+κ10M

(
1

xIN
− 1

xM

)]
dϕdν,

σnB =− ρ2B pn ζ2M

ζM
− 1

s44M

[
ρ(ϕ)

2B
∂

∂ϕ

(
pn ζ2M

ζM

)
+ρ(ν)

2B
∂

∂ν

(
pn ζ2M

ζM

)]

− ρ3B pn ζ3M

ζM
− 1

s44M

[
ρ(ϕ)

3B
∂

∂ϕ

(
pn ζ3M

ζM

)
+ρ(ν)

3B
∂

∂ν

(
pn ζ3M

ζM

)]

62



− ρ4B pn ζ4M

ζM
− 1

s44M

[
ρ(ϕ)

4B
∂

∂ϕ

(
pn ζ4M

ζM

)
+ρ(ν)

4B
∂

∂ν

(
pn ζ4M

ζM

)]
, (7.23)

where Θ; xIN , xM; s44M; ciM; ρ jB, ρ(τ)
jB (i = 1,2,3; j = 2,3,4; τ = ϕ,ν) are given by

Equations (1.8); (1.9); (2.13); (2.18); (6.8), (7.9); respectively. The coefficients ζ iM

(i = 2,3,4), ζM, κ7M have the forms

ζ iM =−pn ζ i1M +σnB ζ i2M, i = 2,3,4,

ζ21M =− 2(c1M + c2M)

x3
M

, ζ22M =
2

xIN

(
c2M

x2
M

− c1M +2c2M

x2
IN

)
,

ζ31M =−(c1M + c2M)c3M xc3M−1
M ,

ζ32M =−
{
[(c1M + c2M)c3M −2c2M]xc3M−1

IN +
2c2M xc3M

M

xIN

}
,

ζ41M = (c1M + c2M)(2+ c3M)xc3M−3
M ,

ζ42M = [(c1M + c2M)c3M −2c2M]
xc3M−1
IN

x2
M

+
2(c1M +2c2M)xc3M

M

x3
IN

,

ζM = 2(c1M + c2M)

{
(c1M +2c2M)c3M xc3M−1

M

x3
IN

− (2+ c3M)c2M xc3M−3
M

xIN

−[(c1M + c2M)c3M −2c2M]xc3M−1
IN

x3
M

}
,

κ7M = ζ2M ζ3M [2c2M (1− c3M)− c1M]

(
pn

ζM

)2

+
1

s44M

[
∂

∂ϕ

(
pn ζ2M

ζM

)
∂

∂ϕ

(
pn ζ3M

ζM

)
Θ2 ∂

∂ν

(
pn ζ2M

ζM

)
∂

∂ν

(
pn ζ3M

ζM

)]
. (7.24)

The coefficients ηiM, κiM (i = 2,3); η4M, κ4M, κ9M; κ120M; are given by Equa-
tions (6.17); (7.18); (7.21), respectively, where ζ jM ( j = 1,3,4), ζM in Equations
(6.17), (7.18), (7.21) are given by Equation (7.24). The normal stress pn is given by
Equations (2.30) or (2.34) for N = 1 or N + 1 = 1,2, . . . , respectively. With regard
to Equation (7.23) and

[
εϕM

]
xn=xM

= −pn φM + σnB φB, the coefficients φM, φB in
Equation (2.34) for N +1 = 1,2, . . . are derived as

φM =
1

ζM

(
ζ21M xc3M−1

IN +
ζ31M

x3
IN

+
ζ41M

xIN

)
,

φB =
1

ζM

(
ζ22M xc3M−1

IN +
ζ32M

x3
IN

+
ζ42M

xIN

)
. (7.25)
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Chapter 8

Strengthening

The analytical model of the micro-strengthening σst = σst (x1) and the macro-
strengthening σst results from the following analysis [3, 4, 12, 13, 21]. Figures 8.1
and 8.2 shows the plane x′2x

′
3 in the cubic cell (see Figure 1.2) for x1 ∈ 〈0,a1〉 and

x1 ∈ 〈a1,d/2〉, respectively, where [x1,x2,x3] are coordinates of the point P ⊂ x′2x
′
3.

The plane O ′P1P2 with the ellipse E23 (see Figure 8.2) represents a cross section
of the ellipsoid inclusion in the plane x′2x

′
3. With regard to Figures (8.1), (8.2), the

goniometric functions in Equations (1.8), (1.9) have the forms

Figure 8.1: The plane x′2x
′
3 in the cubic cell (see Figure 1.2) for x1 ∈ 〈0,a1〉, where

[x1,x2,x3] are coordinates of the point P ⊂ x′2x
′
3. The plane O ′P1P2 with the ellipse

E23 represents a cross section of the ellipsoid inclusion in the plane x′2x
′
3 (see Fig-

ure 1.2).

sinϕ =
x2√

x2
1 + x2

2

, cosϕ =
x1√

x2
1 + x2

2

, tanϕ =
1

cot
=

x2

x1
,
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sinν =

√
x2
1 + x2

2

x2
1 + x2

2 + x2
3

, cosν =
x3√

x2
1 + x2

2 + x2
3

, xn =
x3

cosθ
, (8.1)

where cosθ is given by Equation (1.6). With regard to Equation (1.2), the parame-
ters b2, b3 of the ellipse E23 along the axes x′2, x′3, respectively, are derived as (see
Figure 8.1)

b2 = O ′P1 =
a2

√
a2

1− x2
1

a1
, b3 = O ′P2 =

a3

√
a2

1− x2
1

a1
, (8.2)

and then we get

b4 = P4P5 =
a3

√
b2

2− x2
2

a2
. (8.3)

Figure 8.2: The plane x′2x
′
3 in the cubic cell (see Figure 1.2) for x1 ∈ 〈a1,d/2〉, where

[x1,x2,x3] are coordinates of the point P ⊂ x′2x
′
3.

The micro-strengthening σst = σst (x1) represents a stress along the axis x1, which
is homogeneous at each point of the plane x′2x

′
3 with the area S = d2/4, i.e., σst �=

f (x2,x3).
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If x1 ∈ 〈0,a1〉, then the elastic energy surface density Wst , which is induced by σst

and accumulated within the area SIN = πb2 b3/4 of the plane O ′P1P2 and within the
area SM = (d/2)2−SIN of the plane x′2x

′
3 (see Figure 8.1), has the form

Wst = ωσ2
1st , (8.4)

where σ1st is related to x1 ∈ 〈0,a1〉. The coefficient ω is derived as

ω =
1
8

[
πb2 b3

(
1

EIN
− 1

EM

)
+

d2

EM

]
, (8.5)

where EIN and EM is Young’s modulus for the ellipsoidal inclusion and the ma-
trix, respectively. The elastic energy surface density W1S, which is induced by the
stresses σ1IN = σ1IN (x1) (see Equations (3.12), (6.19)) and σ1M = σ1M (x1) (see
Equations (4.18), (5.17), (6.16), (7.17), (7.20), (7.23)), has the form

W1S =
1
2

(
WINS

EIN
+

W1MS

EM

)
,

WINS =

b2∫
0

⎛
⎝ b4∫

0

σ2
1IN dx3

⎞
⎠dx2,

W1MS =

b2∫
0

⎛
⎝ d/2∫

b4

σ2
1M dx3

⎞
⎠dx2 +

d/2∫
b2

⎛
⎝ d/2∫

0

σ2
1M dx3

⎞
⎠x2,

x1 ∈ 〈0,a1〉 . (8.6)

The micro-strengthening σ1st = σ1st (x1) for x1 ∈ 〈0,a1〉, which results from the
condition Wst =W1S [3, 4, 12, 13, 21], is derived as

σ1st =

√
1

2ω

(
WINS

EIN
+

W1MS

EM

)
, x1 ∈ 〈0,a1〉 . (8.7)

If x1 ∈ 〈a1,d/2〉, then the elastic energy surface density Wst , which is induced by
σst and accumulated within the area SM = d2/4 of the plane x′2x

′
3 (see Figure 8.2),

has the form

Wst =
σ2

2st d
2

8 EM
, (8.8)

where σ2st is related to x1 ∈ 〈a1,d/2〉. Similarly, we get
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W2S =
W2MS

2EM
, W2MS =

d/2∫
0

d/2∫
0

σ2
1M dx2 dx3, x1 ∈

〈
a1,

d
2

〉
. (8.9)

With regard to the condition Wst =W2S [3, 4, 12, 13, 21], we get

σ2st =
2
√

W2S

d
. (8.10)

Finally, the macro-strengthening σst is derived as [3, 4, 12, 13, 21]

σst =
2
d

⎛
⎝ a1∫

0

σ1st dx1 +

d/2∫
a1

σ2st dx1

⎞
⎠ . (8.11)

If αIN < αM or αIN > αM, the strengthening exhibits a resistive effect against
compressive or tensile mechanical loading, respectively.

The macro-strengthening σst = σst (v,a1,a2,a3) is a function of the inclusion vol-
ume fraction vIN and the dimensions a1, a2, a3 of the ellipsoidal inclusion. In case
of a real inclusion-matrix composite, such values of the microstructural parameters
vIN , a1, a2, a3 can be numerically determined to result in a maximum value of |σst |.

68



Chapter 9

Crack Formation

The analytical model of the crack formation in the matrix results from the fol-
lowing analysis [3, 4, 5, 19]–[22]. Figures 9.1, 9.3 show the ellipse E123 in the plane
x12x3 of the cubic cell (see Figures (1.4), (1.5)), where a12 = O4, x122 = O5 are given
by Equations (1.9), and a3 = O3.

With regard to the plane x12x3 for ϕ ∈ 〈0,π/2〉 (see Figures 1.4, 1.5), the elastic
energy density wQ = wQ (xn,ϕ,ν) (Q = IN, INB, M, MB; see Equations (3.10), (3.14),
(4.10), (4.13), (4.16), (4.19), (5.9), (5.12), (5.15), (5.18), (6.8), (6.11), (6.14), (6.17),
(??), (7.9), (7.12), (7.15), (7.18), (7.21), (7.24)) is determined as a function of the
coordinates xn, ν ∈ 〈0,π/2〉.

The elastic energy density wQ = wQ (x12,ϕ,x3,a1,a2,a3,vIN) (Q = IN, INB, M,
MB) as a function of the coordinates x12, x3 is determined by the following transfor-
mations

xn =
x3

cosθ
, sinν =

x12√
x2
12 + x2

3

, cosν =
x3√

x2
12 + x2

3

, tanν =
1

cotν
=

x12

x3
, (9.1)

where cosθ is given by Equation (1.6).

Cell Matrix. The curve integral WcM of wM = wM (x12,ϕ,x3,a1,a2,a3,vIN) along
the abscissa P1P2 (see Figure 9.1) in the plane x12x3 of the matrix (see Figures 1.4,
1.5) has the form

WcM =
∫

P1P2

wM dx3 =

d/2∫
0

wM dx3. (9.2)

Let f12M = f12M (x12,ϕ,a1,a2,a3,vIN) represent a decreasing function of the vari-
able x12 ∈ 〈a12,x0M〉, which describe a shape of the matrix crack in the plane x12x3

(see Figure 1.4), where ϕ ∈ 〈0,π/2〉, a1, a2, a3, vIN are parameters of this decreasing
function. As presented in [3, 4, 5, 19]–[22], we get

∂ f12M

∂x12
=−

√
W 2

cM −ϑ2
M

ϑM
, (9.3)
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Figure 9.1: The ellipse E123 and the abscissa P1P2 in the plane x12x3 of the cubic cell
(see Figures (1.4), (1.5)), where a12 = O4, x122 = O5 are given by Equation (1.9),
and a3 = O3.

Figure 9.2: The decreasing function f12M = f12M (x12,ϕ,a1,a2,a3,vIN) of the vari-
able x12 ∈ 〈a12,x0M〉, which describes a shape of the matrix crack in the plane x12x3

(see Figure 1.4) for a12 > a(IC)
12M or a12 > a(TC)

12M (see Equations (9.8), (9.9)), where
x0M = x0M (ϕ) defnes a position of the crack tip in the matrix, and ϕ ∈ 〈0,π/2〉, a1,
a2, a3, vIN are parameters of this decreasing function.

where ϑM is energy per unit length in the matrix. In case of intercrystalline crack
formation, we get
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ϑM =
K2

ICM

EM
, (9.4)

where KICM is fracture toughness of the matrix. In case of transcrystalline crack
formation, we get

ϑM = ϑgbM, (9.5)

where the energy ϑgbM per unit length is related to the inter-atomic bonding of
boundaries of crystalline grain in the matrix.

As presented in [3, 4, 5, 19]–[22], the condition

(WcM)x12=a12
−ϑM = 0, (9.6)

is a transcendental equation with the variable a12 and the parameters ϕ ∈ 〈0,π/2〉,
a1, a2, a3, vIN (see Figure 1.4.

The roots a(IC)
12M = a(IC)

12M (ϕ,a1,a2,a3,vIN) and a(TC)
12M = a(TC)

12M (ϕ,a1,a2,a3,vIN) (see
Equation (1.7)) of Equation (9.3) for ϑM, which is given by Equations (9.4) and (9.5),
represents such a dimension of the ellipsoidal inclusion along the axis x12 ⊂ x1x2 (see
Figures 1.4, 1.5), which is critical with respect to the intercrystalline and transcrys-

talline crack formation in the plane x1x2, respectively. Accordingly, if a(IC)
12M > a(TC)

12M

or a(IC)
12M < a(TC)

12M , then the intercrystalline or transcrystalline matrix crack is formed
in the plane x1x2, respectively.

Let the function a(X)
12M = a(X)

12M (ϕ,a1,a2,a3,vIN) (X=IC,TC) of the variable ϕ ∈
〈0,π/2〉 exhibit the minimum a(X)

minM for ϕ = ϕ(X)
minM. The critical dimension a(X)

minM =

a(X)
minM (a1,a2,a3,vIN) (X=IC,TC) along the axis x12 ⊂ x1x2 (see Figures 1.4, 1.5)

defnes a limit state with respect to the formation of the intercrystalline matrix crack
(X=IC) and the transcrystalline matrix crack (X=TC) in the plane x1x2 at the mi-
crostructural parameters a1, a2, a3, vIN (see Equation (1.1)). Accordingly, if a12 >

a(X)
12M (X=IC,TC), the condition [3, 4, 5, 19]–[22]

WcM −ϑM = 0, a12 > a(X)
12M, X = IC,TC (9.7)

represents a transcendental equation with the variable x12 and with the root x0M =
x0M (ϕ,a2,a3,vIN), which defnes a position of the crack tip in the matrix (see Fig-
ure 9.2). Consequently, the decreasing function f12M = f12M (x12,ϕ,a1,a2,a3,vIN)
with the variable x12 ∈ 〈a12,x0M〉 and with the parameters ϕ ∈ 〈0,π/2〉, a1, a2, a3,
vIN (see Figures 1.4, 1.5), which describes a shape of the matrix crack in the plane

x12x3 for a12 > a(X)
12M ((X=IC,TC)), has the form [3, 4, 5, 19]–[22]
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f12M =
1

ϑM

[
CM −

∫ (√
W 2

cM −ϑ2
M

)
dx12

]
, x12 ∈ 〈a12,x0M〉 , (9.8)

where CM =CM (ϕ,a1,a2,a3,vIN) is derived as [3, 4, 5, 19]–[22]

CM =

[∫ (√
W 2

cM −ϑ2
M

)
dx12

]
x12=x0M

. (9.9)

Ellipsoidal Inclusion. The curve integralWcIN of wQ =wQ (x12,ϕ,x3,a1,a2,a3,vIN)
(Q = IN,INB) along the abscissa P1P2 (see Figure 9.3) in the plane x12x3 of the ellip-
soidal inclusion (see Figures 1.4, 1.5) has the form

Figure 9.3: The ellipse E123 and the abscissa P1PP2 in the plane x12x3 of the cubic
cell (see Figures (1.4), (1.5)), where a12 =O4, x122 =O5 are given by Equation (1.9),
and a3 = O3.

WcIN =
∫

P1P

wIN dx3 +
∫

PP2

wM dx3 =

b1∫
0

wIN dx3 +

d/2∫
b1

wM dx3, (9.10)

where a12 = O4 (see Equation (1.7)), a3 = O3, and b1 is derived as (see Equa-
tion (1.2))

b1 = P1P =
a3

√
a2

12− x2
12

a12
, x12 ∈ 〈0,a12〉 . (9.11)
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With regard to the intercrystalline and transcrystalline inclusion cracks (see Fig-
ure 9.4), the sign ’-’ and the subscript M in Equations (9.3) and (9.3)–(9.7) are re-
placed by the sign ’+’ and the subscript IN, respectively.

Figure 9.4: The increasing function f12IN = f12IN (x12,ϕ,a1,a2,a3,vIN) of the vari-
able x12 ∈ 〈a12,x0IN〉, which describes a shape of the inclusion crack in the plane

x12x3 (see Figure 1.4) for a12 > a(IC)
12IN or a12 > a(TC)

12IN (see Equations (9.8), (9.9)),
where x0IN = x0IN (ϕ) defnes a position of the crack tip in the inclusion, and
ϕ ∈ 〈0,π/2〉 is a parameter of this increasing function.

Consequently, the increasing function f12IN = f12IN (x12,ϕ,a1,a2,a3,vIN) with
the variable x12 ∈ 〈a12,x0IN〉 and with the parameters ϕ ∈ 〈0,π/2〉, a1, a2, a3, vIN

(see Figures 1.4, 1.5), which describes a shape of the inclusion crack in the plane

x12x3 for a12 > a(IC)
12IN or a12 > a(TC)

12IN , has the form [3, 4, 5, 19]–[22]

f12IN =
1

ϑIN

[∫ (√
W 2

cIN −ϑ2
IN

)
dx12−CIN

]
, x12 ∈ 〈a12,x0IN〉 , (9.12)

where CIN =CIN (ϕ,a1,a2,a3,vIN) is derived as [3, 4, 5, 19]–[22]

CIN =

[∫ (√
W 2

cIN −ϑ2
IN

)
dx12

]
x12=x0IN

. (9.13)
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Chapter 10

Appendix

Cramer’s Rule. The system of n linear algebraic equations is derived as

a11 x1 +a12 x2 + . . . +a1n xn = b1,

a11 x1 +a12 x2 + . . . +a1n xn = b2,
... ... ... ...

an1 x1 +an2 x2 + . . . +ann xn = bn. (10.1)

The root xi (i = 1, . . . , n) is determined by Cramer’s rule [23]

xi =
D(n)

i

D(n)
, i = 1, . . . , n, (10.2)

where the determinant D(n) with n rows and n columns has the form

D(n) =

∣∣∣∣∣∣∣∣
a11, a12, . . . a1n

a21, a22, . . . a2n
... ... ... ...

an1, an2, . . . ann

∣∣∣∣∣∣∣∣
=

n

∑
i=1

(−1)1+i a1iD
(n−1)
1i =

n

∑
i=1

(−1)1+i ai1D
(n−1)
i1 . (10.3)

The subdeterminant D(n)
i is created from D(n), i.e., the i-th column of D(n) is

replaced by

b1

b2
...

bn

⎫⎪⎪⎬
⎪⎪⎭ n rows. (10.4)

Similarly, the subdeterminant D(n−1)
i j (i, j = 1, . . . , n) with (n−1) rows and (n−1)

columns is created from D(n), i.e., the i-th row and the j-th column of D(n) are omit-
ted. If n = 2, then we get
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D(2) =

∣∣∣∣ a11, a12

a21, a22

∣∣∣∣= a11a22−a12a21. (10.5)

Consequently, if n = 3, then we get

D(4) =

∣∣∣∣∣∣
a11, a12, a13

a21, a22, a23

a31, a32, a33

∣∣∣∣∣∣
= a11

∣∣∣∣ a22, a23

a32, a33

∣∣∣∣−a12

∣∣∣∣ a21, a23

a31, a33

∣∣∣∣+ a13

∣∣∣∣ a21, a22

a31, a32

∣∣∣∣ . (10.6)

Integrals. The derivatives of the functions f = xλ, f = lnx and the constant C are
derived as [23]

(
xλ
)′

= λxλ−1, (lnx)′ =
1
x
, C′ = 0, (10.7)

The indefinite integrals of f = xλ, f = lnx and the constant C have the forms [23]

∫
xλ dx =

xλ +1
λ+1

, λ �=−1;
∫

dx
x

= lnx,
∫

Cdx =Cr. (10.8)

In case of the product f g of the functions f = f (x), g = g(x), we get [23]

( f g)′ = f ′g+ f g ′. (10.9)

and then the integral of f g has the form [23]∫
f ′gdx = f g−

∫
f g′dx. (10.10)

With regard to Equation (10.17), the following integrals are derived as [23]

∫
xλ lnxdx =

xλ+1

λ+1
lnx−

∫
xλ+1

λ+1
× 1

x
dx =

xλ+1

λ+1
lnx− 1

λ+1

∫
xλ dx

=
xλ+1

λ+1

(
lnx− 1

λ+1

)
, λ �=−1,∫

lnxdx =
∫

1× lnxdx = x lnx−
∫

x× 1
x

dx = x lnx−
∫

1×dx = x(lnx−1) ,∫
xλ ln2 xdx =

1
λ+1

[
xλ+1 ln2 x−2

∫
xλ lnxdx

]
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=
xλ+1

λ+1

[(
lnx− 1

λ+1

)2

+
1

(λ+1)2

]
, λ �=−1. (10.11)

Let F = F (x) be a primitive function of f = f (x) in the interval x ∈ 〈a,b〉, i.e.,

f = dF/dx. The definite integral
b∫
a

f dx is defined by Newton-Leibniz’s formula

[23], which has the form

b∫
a

f dx = F (b)−F (a) . (10.12)

Wronskian’s Method. The differential equation (4.3) with a non-zero right-hand
side [23] is derived as

∂2un

∂x2 +
2
xn

∂un

∂xn
− 2un

x2
n

= g, g =
3

∑
i=1

Ci x
κi−2, (10.13)

where the integration constantsC1,C2,C3 are determined by the mathematical bound-
ary conditions in Section 2.3. If g = 0, we get

∂2un

∂x2 +
2
xn

∂un

∂xn
− 2un

x2
n

= 0. (10.14)

If un = xλ, then the solutions u1n, u2n of Equation (10.24) have the forms

u1n = xn, u2n =
1
x2
n
. (10.15)

The solution un of Equation (10.22) is derived as [23]

un =
2

∑
i=1

ai uin, ai =
∫ W (2)

i

W (2)
dxn, i = 1,2. (10.16)

Wronskian’s determinants W (2), W (2)
i (i = 1,2) with 2 rows and 2 columns are

have the forms [23]

W (2) =

∣∣∣∣∣∣
u1n, u2n

∂u1n
∂xn

,
∂u2n
∂xn

∣∣∣∣∣∣ , W (2)
1 =

∣∣∣∣∣∣
0, u2n

g,
∂u2n
∂xn

∣∣∣∣∣∣ , W (2)
2 =

∣∣∣∣∣∣
u1n, 0

∂u1n
∂xn

, g

∣∣∣∣∣∣ . (10.17)

The determinant W (2)
i (i = 1,2) is created from W (2), i.e., the i-th column of W (2)

is replaced by the following one [23]
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0
g

}
2 rows. (10.18)

Let f1, . . . , fn represent n solutions of a differential equation of the n-th rank with
zero right-hand side. Let the functions f1, . . . , fn of the variable x exhibit continuous
derivatives to the (n−1)-th degree. The solution of this differential equation with a
non-zero right-hand side (i.e., g �= 0) is derived as [23]

f =
n

∑
i=1

ai fi, ai =
∫ W (n)

i

W (n)
dx. (10.19)

With respect to f1, . . . , fn, Wronskian’s determinantW (n) (i = 1, . . . , n) with n rows
and n columns have the form [23]

W (n) =

∣∣∣∣∣∣∣∣∣∣∣∣

f1, f2, . . . fn
∂ f1
∂x ,

∂ f2
∂x , . . .

∂ fn
∂x

... ... ... ...

∂n−1 f1
∂xn−1 ,

∂n−1 f2
∂xn−1 , . . .

∂n−1 fn
∂xn−1

∣∣∣∣∣∣∣∣∣∣∣∣
, (10.20)

where W (n)
i (i = 1, . . . , n) with n rows and n columns is created from W (n), i.e., the

i-th column of W (n) is replaced by the following one [23]

0
0
...
g

⎫⎪⎪⎬
⎪⎪⎭ n rows. (10.21)

Numerical Determination. Numerical values of the thermal stresses in a real ma-
trix-inclusion composite include integrals and derivatives, which are determined by a
programming language. If f = f (x), then a numerical value of the derivative ∂ f/∂x
is determined by [23]

∂ f
∂x

≈ f (x+Δx)− f (x)
Δx

. (10.22)

In case of the angles ϕ, ν (see Figure 1.4), the step Δx = Δϕ = Δν = 10−6 [deg]
is sufficient [3, 4, 5, 19]–[22].

Let F represent a definite integral of the function f = f (ϕ,ν) with the variables
ϕ,ν ∈ 〈0,π/2〉. Let n, m be integral parts of the real numbers π/(2Δϕ), π/(2Δν)
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[3, 4, 5, 19]–[22], respectively. Numerical values of the definite integral F are deter-
mined by the following formula [23], [3, 4, 5, 19]–[22]

F =

π/2∫
0

π/2∫
0

f (ϕ,ν)dϕ dν ≈
m

∑
j=0

(
n

∑
i=0

f (i×Δϕ; j×Δν)Δϕ

)
Δν, (10.23)

where the steps Δϕ = Δν = 0.1 [deg] are sufficient. Finally, the average numerical
value f of the function f = f (ϕ,ν) with the variables ϕ,ν ∈ 〈0,π/2〉 is determined
by the following formula [23]

f =

(
2
π

)2 π/2∫
0

π/2∫
0

f (ϕ,ν) dϕdν ≈
(

2
π

)2 m

∑
j=0

(
n

∑
i=0

f (i×Δϕ; j×Δν)Δϕ

)
Δν.

(10.24)
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