This book presents original mathematical models of thermal-stress-field
interactions in two-component materials, which result from the
superposition method, along with mathematical models of thermal-stress
induced  micro-/macro-strengthening and  thermal-stress induced
intercrystalline or transcrystalline crack formation. The mathematical
determination results from mechanics of an isotropic elastic continuum.
The materials consist of an isotropic matrix with isotropic ellipsoidal
inclusions. The thermal stresses are a consequence of different thermal
expansion coefficients of the matrix and ellipsoidal inclusions. The
mathematical models of the thermal-stress-field interactions include
microstructural parameters of a real matrix-inclusion composite. In case of
a real matrix-inclusion composite, such numerical values of the
microstructural parameters can be determined, which result in maximum
values of the micro- and macro-strengthening, and which define limit
states with respect to the intercrystalline or transcrystalline crack formation
in the matrix and the ellipsoidal inclusion. This numerical determination is
performed by a programming language.
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Introduction

This book! presents original mathematical models of thermal-stress-field inter-
actions in composite materials, along with mathematical models of thermal-stress
induced micro-/macro-strengthening and thermal-stress induced intercrystalline or
transcrystalline crack formation. The materials consist of an isotropic matrix with
isotropic ellipsoidal inclusions. These stresses originate during a cooling process,
and are a consequence of different thermal expansion coefficients of the matrix and
ellipsoidal inclusions.

The mathematical models are determined for a suitable model system. The model
system is required to correspond to real isotropic matrix-inclusion composites. The
thermal stresses are derived within a suitable coordinate system. The coordinate
system is required to correspond to a shape of the ellipsoidal inclusions.

The mathematical determination results from mechanics of an isotropic elastic
continuum, and result in different mathematical solutions for the thermal stresses.
Due to these different mathematical solutions, the principle of minimum elastic en-
ergy is considered.

The mathematical models of the thermal-stress-field interactions, which result
from the superposition method, along with the mathematical models of the thermal-
stress induced micro-/macro-strengthening and crack formation, include microstruc-
tural parameters of a real matrix-inclusion composite, i.e., the inclusion dimensions
ay, ap, az, the inclusion volume fraction vy, as well as the inter-inclusion distance
d=d(a1,a2,a3,vin).

Consequently, the mathematical models are applicable to composites with el-
lipsoidal inclusions of different morphology, i.e., a; ~ ax ~ a3 (dual-phase steel),
a) > apy ~ az (martensitic steel).

In case of a real matrix-inclusion composite, such numerical values of the mi-
crostructural parameters can be determined, which result in maximum values of the
micro- and macro-strengthening, and which define limit states with respect to the

IThis book was reviewed by the following reviewers:
Assoc. Prof. Ing. Robert Bidulsky, PhD., visiting professor, Politecnico di Torino, Torino, Italy

Assoc. Prof. Ing. Daniel Kottfer, PhD., Alexander Dubéek University of Trenéin, Faculty of Special Technology De-
partment of Mechanical Engineering, Trenéin, Slovak Republic
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intercrystalline or transcrystalline crack formation in the matrix and the ellipsoidal
inclusion. This numerical determination is performed by a programming language.
The mathematical procedures in this book are analysed in Appendix.



Chapter 1

Matrix-Inclusion Composite

Figure 1.1 shows a model system, corresponding to real matrix-inclusion com-
posites, which is considered within the mathematical models of the thermal stresses.
This model system consists of an infinite isotropic matrix and isotropic ellipsoidal
inclusions with the dimensions aj, az, az and the inter-inclusion distance d along the
axes xp, Xz, x3 of the Cartesian system (Oxx,x3), respectively, where O represents a
centre of the ellipsoidal inclusion.

a matrix

inclusion

‘--

Y A

-— W w W
Figure 1.1: The matrix-inclusion system with an infinite isotropic matrix and
isotropic ellipsoidal inclusions with the dimensions a1, ap, az and the inter-inclusion

distance d along the axes xj, x, x3 of the Cartesian system (Ox;x,x3), respectively,
where O represents a centre of the ellipsoidal inclusion.

As presented in [1]-[22], the thermal stresses are determined in the cubic cells
with the dimension d along the axes xp, x», x3 and with central ellipsoidal inclusions
(see Figure 1.2). Due to the infinite matrix, the thermal stresses, which are deter-
mined for one of the cubic cells, are identical with those, which are determined for
any of the cubic cells [1]-[22]. With regard to the volume V;y =4may,asa3 [23] and
Ve = d? of the ellipsoidal inclusion and the cubic cell, the inter-inclusion distance d
as a function of the inclusion volume fraction vy is derived as

3



V]N 4na1a2a3 ( T 4na1a2a3 1/3
_v c 0,—), d= (2R 1.1
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where the value viyqx = T/6 results from the condition a; — d/2 (i=1,2,3). Ac-
cordingly, the thermal stresses are functions of the material parameters a;, a», a3,
VIN, d.

O 0 0 _0-0
os)

Figure 1.2: The cubic cells with the dimension d along the axes xi, xp, x3 of the
Cartesian system (Oxjxpx3) and with the plane x1,x3, where O represents a centre of
the ellipsoidal inclusion, and (x12 C x1x2, x12x3 L x1xp. The thermal stresses in the
cell A and the neighbouring cells B are mutually affected.

Additionally, the thermal stresses in the cell A and the neighbouring cells B are
mutually affected. In contrast to [1]-[13], [15]-[22], this effect is explicitly de-
termnined [14].

Figure 1.3 shows the ellipse £ with the dimensiions a, b along the axes x, y,
respectively. The ellipse E is described by the function

G-

Any point P of the ellipse E is described by the coordinates [23]

x=acoso, y=hsina, o€ (0,2m), (1.3)
where the normal 7 of the ellipse E at the point P is derived [23]
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Figure 1.3: The ellipse £ with the dimensions a, b along the axes x, y of the Cartesian
system (Oxy), respectively, and the point P related to the angle o.

xatana  (a®>—b*)sina
5T T b

The thermal stresses are determined by the spherical coordinates (r,ov) (see Fig-
ure 1.4). The model system in Figures (1.1), (1.2) is symmetric, and then the thermal
stresses are determined within the intervals ¢ € (0,m/2), v € (0,7/2) [1]-[22].

Figure 1.4 shows the ellipsoidal inclusion for ¢,v € (0,7/2) with the centre O
and with the dimensions a; =01, a, = 02, az = O3 along the axes xi, xp, x3 of
the Cartesian system (O, xy,x2,x3) (see Figures (1.1), (1.2)), respectively. Finally,
(P, xn,x(p,xv) is a Cartesian system at the point P, where the axes x;,, and xy represents
a normal and a tangent of the ellipse E»3 at the point P, respectively, xjox3 L x1x2,
x12 C X1X2, X L x12. Figure 1.5 shows the cross section 0567 of the cubic cell in
the plane xjox3 (see Figures 1.2, 1.4). The angle v € (0,m/2) defines a position of
the point P with the Cartesian system (P,x,,xg,Xv) (see Figure 1.4) for v = vy (see
Figure 1.5a), v € (0,vp) (see Figure 1.5b), v € (vo,m/2) (see Figure 1.5¢). The points
Py, P, represent intersections of the normal x,, with O567.

With regard to Equations (1.2)—(1.4), the angle v represents a root of the follow-
ing equation [24]

(1.4)

d/ai 0052(P+a2 sinz(p ;
cosVy 1 2 2 (2. 2 _ d_
as 2 f (@) sinvg +a3 (alcos ¢+ a;sin (p> 5 0,
r ; T T
f(®) = coso, (P€<071>, [ (@) =sing, (P€<Z7§>’ (1.5)
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Figure 1.4: The inclusion with the centre O and with the dimensions a; = O1,
ap = 02, az = O3 along the axes xj, xp, x3 of the Cartesian system (O, x1,x7,x3),
respectively, where Ej2, E123 represent ellipses in the planes xjx», x12x3, respec-
tively, and x12x3 L x1x2, (x12 C X1x2, X¢ L X12. The point P on the inclusion surface
is defined by @,v € (0,7/2), v € (0,7/2), and (P, x,,X¢,xy) is a Cartesian system at
the point P, where P C E133. The axes x;,, and xy represents a normal and a tangent
of the ellipse E1y3 at the point P, respectively.

and this root is determined by a numerical method. The angle 6 = £ (x,,x3) is de-
rived as [24]

\/a% cos2@+ajsin® @
cosb = )
\/a% cos2 @ + a3 sin® ¢ + (a3 tanv)?
sinf — % . (1.6)
\/(a% cos2 @+ a3 sin® @) cotv2 + a?
Consequently, we get [23]
3 (00\ "9 J
9 _ (D) 9 _g2 1.7
20 <Bv> o0 v’ 147



where the function ® = © (@) has the form [24]

a?cos? @+ a2sin’ @ )2
_ \/ ! 2 l . (a3 vaz) — +cos2v]. (1.8)
as ajcos? @+ ajsin® @
X3 Xn X3 x7
7 6:p2 7 le 6
N
3 \3 T~ %o
P_X(p X9
=0 Ein
Eixs N X12 X12
0P, 4 5 o [P 4 5
a b
X3

Figure 1.5: The angle v € (0,1/2)
7 6 defines a position of the point P with the

Xe\ X, Cartesian system (P,x,,,x(p,xv) (see Fig-
/ ure 1.4) for (a) v = vy, (b) v € (0,v),

(©) v € (vo,m/2), where vq is given by

Equation (1.5). The points Py, P> repre-

Eix; sent intersections of the normal x,, with
0567, where 0567 is a cross section of

\4 P=Xq the cubic cell in the plane x{>x3 (see Fig-
o X12  ures 1.2, 1.4). The angle 6/ (x,,x3) is
P, 4 5 given by Equation (1.5).
c

As analysed in [1]-[20], due to the symmetry of the model system, any point P on
the matrix-inclusion boundary exhibits the displacement u,, along x,. Consequently,
any point P of the normal x,, exhibits u, along x,, i.e., up = uy = 0 [1]-[20], where
ug, uy are displacements along the axes xg, xv, respectively.

As presented in [1]-[22], the thermal stresses, which are determined along the
axes Xxp, Xg, Xg of the Cartesian system (P, xn,x(p,xg) , represent function of the spher-
ical coordinates (x,,,0) for @,0 € (0,m/2). The intervals x, € (0,x;y) and x, €

7



(x1n,xp1) are related to the ellipsoidal inclusion and the cell matrix, where P = Py,
P C Ep3 and P = P, for x, = 0, x,, = xzv and x,, = xjy (see Figure 1.5), respectively.
Finally, we get [24]

. 2
a3 sinv
xiy = PIP = a3 ( ) +cos?v,
ap

. 2 2 2
sinv d cosv ajpp cosv 5
xy = PP, = \/(—) < a%) + <7> (x122 —a2)",
aln 2a3 as

d -
W’ app = a%COSZ(p‘i‘a%SIH Q. (19)

X122 =



Chapter 2

Mechanics of Elastic Solid
Continuum

2.1 Fundamental Equations

As analysed in [1]-[20], any point P of the normal x,, exhibits the displacement u,,
along x,. The thermal stresses are determined along the axes x;,, x¢, xg of the Carte-
sian system (P, xn,xq,,xg). Fundamental equations of mechanics of a solid continuum
are represented by Cauchy’s equations, the equilibrium equations and Hooke’s law.
Cauchy’s equations represent functions of strains and displacements. With respect
to the normal displacement u,, Cauchy’s equations have the forms [1]-[20, 22]

ouy;
. 2.1
& o, 2.1
€p =€ = Z—", 2.2)
n
1 du
Sn(p = 8([))1 = x—n 8—(57 (2.3)
® Ju,
€0 = €0 = — 35, (2.4)
n

where €, is a normal strain along the axis x,, and © is given by Equation (1.8).
Consequently, € and &g are tangential strains along the axes xq and xg, respectively.
Finally, €, €, and €, €g, represent shear strains along the axes x, and xg, xq,
respectively. Due to ug = uy = 0, we get €y = €y = 0 [1]-[22], where ug, uy
are displacements along the axes xg, xy, respectively, and €4y is a shear strain. As
presented in [1]-[22], the equilibrium equations are derived as

dJo, aGn(p aGne _

26”_6"’_6V+x”87+ 30 +0 5 =0, (2.5)
n

dG dG,¢
—— +30, n—=— =0, 2.6
3o 30wty (2.6)
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aGe Jdo 0
C) Y + 30,9 + X1 a—x’; =0, 2.7

where G, is a normal stess along the axis x,. Consequently, G, and Gg are tangen-
tial stresses along the axes xq and xg, respectively. Finally, 6,4, G, and Ggn, Gy
represent shear stresses along the axes x, and x, xg, respectively, where 6,¢ = Ggn,
Gu9 = Opy. Due to €gv = &yp = 0, we get Ggy = Oy = 0 [1]-[22], where Oy is a
shear stress. With regard to €¢g = 0, G = 0, Hooke’s law has the form [1]-[20, 22]

€ = 5110, + 512 (Gp + Gp) , (2.8)
€p = 512 (0, + Op) + 51106, (2.9)
g9 = 512 (04 + Og) + 51106, (2.10)
€np = 544050, (2.11)
€np = 5440¢, (2.12)

where 511, $12, 544 are derived as [25]

Lo g 220, 2.13)

Finally, E and u are Young’s' modulus and Poisson’s ratio, respectively. In case of
the ellipsoidal inclusion and the cell matrix, we get E = Epy, u = uiy and E = Eyy,
U = uy, respectively.  With regard to Equations (2.1)—(2.4), (2.8)—(2.12), we get

[1]-22]

S11 =

d
Cy = (c1+cz)a—”'22cz tn (2.14)
Xn Xn
d
G = 0o = —C a—”"+c1@, 2.15)
Xn n
1 ou,
Oy = —— 2.16
no S44Xn a(p7 ( )
G © duy 2.17)

"0 Sk OV
where cy, c2, c3 (see Equation (2.24)) have the forms

10
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and ¢3 < 0 due to u < 0.5 for real isotropic components [26].

Letaj; =cos[Z (x1,x;)] (i =n,,0) represent a direction cosine of an angle formed
by the axes x1, x; (see Figures 1.4, 1.5). With regard to Figures 1.4, 1.5, the coefficient
ay; = cos[Z (x1,x;)] (i = n,¢,0) is derived as

] = C3=—4(1—‘u)<07 (2.18)

ay, = cosQsin®, ajp=sin@sin®, a9 =cos6,
agr = —sin@, agy = —cosPcoso, (2.19)

where cos 0, sin0 are given by Equation (1.6). The stress 6 along the axis x; has the
form

G1 = a1, On +a19Og + a16 06 + a1y (One + One) + A19Oen -+ a1600n. (2.20)

With regard to Equations (2.14)-(2.17) and due to G = Ggu, Onp = Op, [25], we
get

uy, uy, 1 ouy, duy,
_ _n . 2.21
o1 =" o, +7 & +S44x,, V3 30 + Y4 v ) (2.21)
where v; (i=1,...,4) is derived.as

Y1 = a1 (c1+¢2) — (arg+aie) c2, V2= (aig+aig) c1 —2ainc2,
Y3 =a, +aig, Y4=0(ay,+ap), (2.22)

and O is given by Equation (1.8). As presented in Chapter 8, the analytical models of
the micro-strengthening G5, = G (x1) and the macro-strengthening Gy, result from
the stress o (see Equations (2.21), (2.22)).

Let Equations (2.14)—(2.17) be substituted to Equation (2.18) and to [0Eq.(2.6) /0]
+ © [0Eq.(2.7)/9v]. Consequently, Equations (2.5)—(2.7) are derived as

o%u Ju U,
2 n n n
2x, — —2 —— =0 2.23
" ox? + 2 ox,, tn+ sa4(c1+¢2) ’ (2.23)
oy,
Xn — = c3Uy, (2.24)
0x,,

where U, is derived as

11



_ a2un +(’92 azun.
0¢? ov2
The system of the differential equations (2.23), (2.25) is solved by the mathemat-

ical procedures in Sections 3.1, 4.1, 5.1, 6.1, 7.1.

U, (2.25)

2.2 Elastic Energy

As analysed in [1]-[22] with respect to the different mathematical procedures (see
Sections 3.1, 4.1, 5.1, 6.1, 7.1), such a mathematical solution, which exhibits a min-
imum value of the elastic energy W¢ of the cubic cell, is considered, where Wyy and
Wy is elastic energy, which is accumulated in the volume V;y and V), of the ellip-
soidal inclusion and the cell matrix, respectively. The elastic energy density w is
derived as [25]

1
w= 5 (?’”G’l + €¢0¢ + 8966) + €neOnep + €,6050, (2.26)

and Wy, Wy and W have the forms

T2 /2 xy
W[N = /W[NdV[N =8 / / / wle,%dxn d(p dV,
Vin 0 0 0
n/2 /2 xy
Wiy = /devM :8/ / / wyrx2dx, do dv,
VM 0 0 XIN
We =Win +Wy. (2.27)

2.3 Boundary Conditions

The mathematical solutions of the system of the differential equations (2.23), (2.25)
include integration constants. As presented in [1]-[22], these constants are deter-
mined, using Cramer’s rule (see Chapter 8) [23], by the following boundary condi-
tions for the ellipsoidal inclusion and the cell matrix.

2.3.1 Inclusion

In case of the ellipsoidal inclusion we get [1]-[22]

12



(un)y —0 =0, (2.28)

(G"’N)xn:xuv = —Dn; (2.29)

where x;y is given by Equation (1.9). Additionally, the conditions

(UnIN)y, o 7 Fo, (&1N),, o 7 Fo°, (OIn),_o +— Foo are required to be ful-
filled [1]-[22].

2.3.2 Matrix

In case of the cell matrix we get [1]-[22]

(Gutt ),y = —Pr (2.30)

(tn) ), = O- (2.31)

As analysed in [1]-[22], the following boundary condition can be considered

(Eant)y, -3, = 0. (2.32)

With regard to (Eq)M)x,,:xM = —puPMs (S‘P’N)xn:xm = —pnpin [11-[22], the nor-
mal stress p, on the matrix-inclusion boundary, i.e., for x, = P{P = xjy (see Fig-

ure 1.5), which acts along the axis x;, (see Figures (1.4), (1.5)), has the form [1]-[22]

oy — O T,—T
po = Lo 2 T) (233)
Pm + PIN
where 7, = (0.35—0.4) x T, [26] and T,, is relaxation and melting temperature of a

real composite system, respectively, and T is final temperature of a cooling process.

2.3.3 Stress-Field Interactions

With regard to Figure 1.2, the stresses in the cells B affect those in the cell A. Let P
represent a point on the cell boundary with the coordinates (x7, ¢, V) and (xp7, — @, V)
for the cells A and B, respectively. Let (Pxuaxgaxea) and (Px,pxopxes) represent
coordinate systems at P in the cells A and B (see Figure 1.4), respectively.

As presented in [14], the effect of the cell B is represented by the normal stress
o, Which acts at the point P along the axis x,4. The stress 6,5, which is a projection
of 6,8, OB, Opp ONLO X4 at P (i.e., for x,p = xpr), is derived as [14]

13



OnB = ﬂl (G"M)xn:xM
+ (ﬁl +132) (Gn(pM)

+ '62 <G(PM)Xn: ” + ‘133 (GQM)x”:xM
+ (01 493) (Cponm ) 5y, (2.34)

Xn=XMm

where ¥; (i=1,2,3) has the form [14]

91 =1-2sin’@sin’v, ¥, =+2sin (g —(p) sin@ sinv,

1. T .
V3= Esm (2([)— E) sin2v. (2.35)

The total normal displacement u,7¢,, the total stresses G,79,, Opr0,> OoT0,> the
total strains €,7¢,, €pT0,, €070, the total elastic energy density wr and the total
energy Wr (see Equations (2.26), (2.27)) are determined by the superposition method
[25]. As presented in [14], we get

UnTQ, = UnQ, + UnQ,

Gnr Q) = OnQ, +0n0y: OoTQ; = 090, +090,: O6T0; = 060, + 060,
OnoTQ; = OnpQ; T OneQy»  OnbTQ; = Onb0; + Onb0, 5

EnTQ) = €n0, T €n0y, €070, = €90y T €0, €670, = €00, €00,

€npT Q1 = €npQs T €no0ys EnOTO; = €n0Q; T €100,

wr =wiy +wing +wy + Wy, Wr =Wy +Wing + Wiy + Was,

Q1 =IN= 0, =INB;_ Q=M = Q> = MB, (2.36)

where G,9,, G¢0,> G60,> OngQ;> OnbQ;> €n0:> 901> €60;> €190, > €460, AN CnQ,, G0,
00055 0n90>> 060> €n0>» €002 €601> Enp0»» €n60,> Which induce wg, , Wp, and wo,,
Wo, (Q1 = IN,M; Q> = INB, MB), are determined by the mathematical boundary con-
ditions (2.28)—(2.32) and (2.37)—(2.39), respectively.

Consequently, 6,18, CoMB> OomB»> €nMB> EoMB> €0MB> WymB» Wap, which result
from 6,5, are determined by the following mathematical boundary conditions

(GnMB)x”:xM = —OnB, (2.37)

(unmB)y —y,, = O- (2.38)

Accordingly, 6,788, O¢INB, OpINB> EnINB> EQINB, €01NB> WINB, WinB, Which result
from ©,,p, are determined by the following mathematical boundary condition

(UnINB) -y = (UnMB) 3, sy, - (2.39)

14



The integration constant Ciyp is a function of (u,pp) P— (see Equation (2.39)).
The absolute values |u,yp| and |u,;yvy| are decreasing and increasing functions of
Xp € (xv,xm) and x, € (0,x7y), respectively. The conditions (u,inB),_q +— £o°,
(€INB) o 7— Eoo, (OINB),_o — e are required to be valid [1]-[22, 24].

The boundary condition (2.32), along with Equation (2.38), is not applicable to
(SnMB)x,,:xM’ ie., (gnMB)xn:xM # 0, otherwise we get (G"MB)xn:xM = 0 (see Equa-
tions (2.14), (2.38)), and the boundary condition (2.37) is not fulfilled.

As mentioned in Section (2.2), the different mathematical procedures in Sec-
tions 3.1, 4.1, 5.1, 6.1, 7.1 result in 19, 16 and 2 mathematical solutions for the
elastic energy Wy, Wyp and Wiy, Wyyp in the cell matrix and the ellipsoidal in-
clusion (see Equations (2.27), (2.36)), which are given by Equations (3.10), (4.10),
(4.13), (4.16), (4.19), (5.9), (5.12), (5.15), (5.18), (6.8), (6.11), (6.14), (6.17), (7.9),
(7.12), (7.15), (7.18), (7.21), (7.24) and (3.14), (6.21), respectively.

The normal stress pj, is included in formulae for the thermal stresses. Conse-
quently, the coefficients py; and pyy are given by Equations (3.12), (4.12), (4.15),
(4.18), (4.21), (5.11), (5.14), (5.17), (5.20), (6.10), (6.13), (6.16), (6.19), (7.11),
(7.14), (7.17), (7.20), (7.23), (7.26) and (3.16), (6.22), respectively.

In case of a real material, such a combination of these mathematical solutions is
considered to result in a minimum value of the elastic energy Wr = W = Wiy +
Wing + Wiy + Wiy of the cubic cell (see Equations (2.27), (2.36)). As an example,
let the mathematical solutions for Wy, Wyp and Wiy, Wiyp, which are given by
Equations (6.17), (4.16) and (3.14), respectively, represent such a combination to
result in a minimum value of Wr. In this case, the radial stress 6,5, which is given by
Equations (6.17), (6.18) for Q.= M, is included in Equations (4.16), (3.14). Finally,
the coefficients py, piy in’Equation (2.33) are given by Equations (6.19), (3.16),
respectively.
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Chapter 3

Mathematical Model 1

3.1 Mathematical Procedure

Let the mathematical procedure x, [0Eq.(2.24)/dx;,] be performed, and then we
get [1]-[22]

o’y U,
2 n n

1-— —=0 3.1
n ax’% +( C3>xl‘l axn ) ( )
where ¢3 < 0 and U, = U, (x, ¢,0) are given by Equations (2.18) and (2.25), re-
spectively. Let Equation (2.24) be substituted to Equation (3.1), and then we get

[1]-{22]

X

0%,
x2 ax}%" +e3(1=¢3)U, =0. (3.2)

Let U,, be assumed in the form U,, = x,z“, then we get [1]-[22]

Uy =C1xM 4+ Cox)2, (3.3)

where Cy, C; are integration constants, which are determined by the boundary con-
ditions in Section 2.3, and A, A, with respect to u < 0.5 for a real isotropic material
[26], have the forms [1]-[22]

M= % [1+\/1+16(1—y) [1+4(1—u)]] >3,

1
MZE[I—\/1+16(1—,u)[1+4(1—,u)]}<—2. (3.4)
Let Equation (3.3) be substituted to Equation (2.23), and then we get [1]-[22]

382121 +2xy, % _
ox; 0x,

The mathematical solution of Equation (3.5), which is determined by Wron-
skian’s method (see Chapter 10) [23], is derived as

2uy = CrxM +Cox. (3.5)
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unfClx —|—C2x

(3.6)

With regard to Equations (2.1)—(2.4), (2.14)—(2.17), (2.21), (2.26), (3.6), we get

)\111 7\,21

&n=CiAx," +Chx2
M1 M1
€p=Crx;,' +Cox> 7,

aCI )\’171

aCz M —1
En(p = S44Gn(p = %xn + _.xnz

L)

aCl 8C2 _
€n0 = 5440ppg = © < ov x’zhl + a—vx,}z 1) ,

)

—1 —1

on=CrExM T G 8!
—1 —1
(5(p=69=C1§3x7” —|—C2§4x,3‘2 ,

1 1
=M !
W= len(ll 1>—|—K2x,%<k2 )+—|—K3x7”+?”2

3.7)

where O, s44 is given by Equations (1.8), (2.13), respectively. The coefficients &;,

Eotis §2+i+2j, M, X (i=1,2; j=1,2,3) are derived as

g,_E[%i(l—#)+2#] Eyi = E(T+\p)
T (-2m) " T @ (12w
)., E{N M (1 —p) 4]+ 2}
24+i+2j =

2(1+p) (1=2)

1 aC; aC;
ni=C (Ml+yz)+—<va a<p+y4®av>

al (o) o ()
k3 =C1C(E6+87)+ 1(

where y; (i=1,...,4) is given by Equation (2.22).

1
C §2+'§l + -

00 9¢ oV ov

3.2 Matrix

The subscript Q = M,MB and the stress 6, in Section 3.2 are derived as

O0=M = Gg = Dn,
QO=MB = 0,=0y3,

18

910 | g% @) L ij=12,

(3.8)

(3.9)



where p,, 6,p are given by Equations (2.33), (3.10), respectively. Consequently,
the conditions in Equation (2.36) are considered. With regard to Equations (2.21),
(2.26), (2.27), (2.30), (2.31), (2.34), (2.37), (2.38), (3.6), (3.7), we get

e — o | MM (Ln)“wl L am <x_n)m_l
"o T Ci0 \ xm Co0 \xm ’
3 3 G 1<M>MWJ+1 <M>MW1
=€&gp = — s
00 ] q CIQ QZQ

Ay—1 a Oq Aav—1 a Oq
€npQ = S44M Onpo = — X, Py vl B PR v
Cioxy Caoxyf

Cioxy™™ Cooxpt™™
Eim (xn >“M1 Eom (x,, >MM1
Gnp = —O +—\— )
© q[@lQ C2Q XM
Eam (xn )“Ml e <xn )’Wl
+a==| — ,
QIQ CZQ XM

hao—1
(71Q:1”|1Q)CnL +M2 anQ )

2(Mm— 1)—1—1( X2 (7"2M_1)+_~_K3Qx3l\1M+7¥2M*2’

€100 = S44M Onpp = — O |x

G0 = 000 =

wo = K19Xn
mn/2m/2f 2x1M+1 121371MH) K20 (XI%/IMMH _XI%ZMH)

W, 4

Q= / / 2Mm+1 * 2Mom +1

K3p (x ( Mmooy +1 7;\1]M+7»2M+1)
+ d a'V7
My + Ao+ 1 ¢
(9) v)
_|_
Cur = — pm+u], Q=M MB. (3.10)
S44M

where O, X7y, X, Saam> Mivs E_,jM (i=12; j=1,...,8) are given by Equations (1.8),
(1.9), (2.13), (3.4), (3.10), respectively. The coefficients CiQa Nig> Kjo (i=12;
Jj=1,2.3; O = M,MB; see Equation (3.10)), pp, pg) (T = ¢, Vv) have the forms

Xy hing—1 Xy Aaim—1
CIM &zM - &3 iM )
XM XM
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CiMB = &iM - é3—iMa

Og (MimYim+Yom)  Yam O ( 4
e

Nip = — o —1 it —1
Cimxpy"™ Saam 0@ m Xy

_ Yam O Gq
Sa4m OV CMx a1
2 | 3 2
S ) Gq 9 Sq
KzQ*§2+31M (Cz A— 1) +S44M [a(p (CIMXA?\;[IM 1)]
© | J o4 ?
Saam | OV C,-Mx,{‘jM_l ’
o, (Eem +E7m) 1 9 o4 ] o4
K30 = Mot —2 + 0 w1 | 9¢ Aon—1
ClQCQQx 1M 2M — S44M (p Cle 1M~ CZQ 2M —

e 9 oy a oy
+ S aﬁ Am—1 Moy—1
44M 90 \ C19x)y, Cooxpp

& 01 &+ (0240 -
=3 18im (§2~ 3) §2+1M
i=1 iM

a pn a pi’l
Ciox)1 CooXyf

d Pn + d Pn

v CIQXMM 1 Ca0 xXzM 1

i=1,2, OQ=M,MB, (3.11)

p( ) — (9, +0,)

Py = O (91 +03)

where yip, O (i=1,...,4; j=12,3) are given by Equations (2.22), (2.35), respec-
tively. The normal stress p, is given by Equation (2.33). With regard to Equa-
tion (3.10), the coefficient pg (Q = M,MB) in Equations (2.33), (3.13) is derived as

My—1 Aoy—1

l M 1 2M

po— - (XI_N) L (XIN) . O=M,MB.  (3.12)
CJ]Q XM CZQ

3.3 Inclusion

The subscript Q = IN,INB and the stress 6, in Section 3.3 are derived as

1
O=IN = Oy=pu Po=PIN=%—
Eun

O=INB = Gy =OnB, PQ = PMB (3.13)
20



where p,, E11v, Onp, PMB, PIn are given by Equations (2.33), (3.8), (3.10), (3.16),
respectively. Consequently, the conditions in Equation (2.36) are considered. In case
of the ellipsoidal inclusion, we get Co;y = 0, otherwise we get (uny) X0
(EIN)x"HO — oo, (Oqv),_,g — Feodueto Ay < —2 (see Equations (3.4), (3.6)—
(3.12)). With regard to Equations (2.28), (2.29), (3.6)—(3.14), (2.21), (2.26), (2.27),
we get [1]-[22]

— £ oo,

Xn Miv—1
€10 = — OgPoMIN < ) ;

XIN

X Av—1
€po = €00 = — OgPo | ——
010) q XN )
1 9 [ o4p
€190 = S44IN Onpo = —xy " ! 90 < o |
XIN

_ _ -1 9 [ SgPo
€qvQ = S44INOrvQ = —O X, E <)CMIN1 s
IN
o Xn Mv—1
nQ — q Xy )

X Av—1

n

Gpo = Ovp = — 64P0&31N (—> ;
XIN

GIQ:lexZ;”N !
wo = K] xz(?\'”N D
4 n/2n/2
2hn+1
Wo=—7+—"— K INTEdo dv, =IN,INB, 3.14
(0] 27\11N+10/0/ 10 XIn ¢ ) ( )

where ©; xin; Sqarv; Auns Euns &z, Esiv are given by Equations (1.8); (1.9);
(2.13); (3.4); (3.8); respectively. The coefficients Ny, K19 (Q =M,MB; see Equa-
tion (3.8)) have the forms

N = — 6y (AN +Y2in) _ WIN i ( Gy >
Eun

Ery ™ S44IN 0@ An—1

Xn
_ Yan O Gy
b
S441N OV \ &gy 0!
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90 \ &y X;}{/'N_l

2
E)C1 Gq .

XIN

(¢ 1
_ q
K1 = &5y ( MN—1> + Sy
EIIN XN

@2

S44IN

where vy (i=1,...,4) is given by Equation (2.22). The normal stress p,, is given
by Equation (2.33). With regard to Equation (3.14), the coefficient p;y in Equa-
tion (2.33) is derived as

_ () (1= 2uy)
Emv [Mun (1 — wn) + 2]

PN (3.16)
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Chapter 4

Mathematical Model 2

4.1 Mathematical Procedure

Let the mathematical procedure 9°Eq.(2.24)/0x2 be performed, and then we get
[1]-[22]

U, 0*U,
it LR, R
n ox; +(2-c) ox2

where ¢3 < 0 and U,, = U, (x,, 9, V) are given by Equations (2.18) and (2.25), respec-
tively. Let Uy, be assumed in the form U,, = x,z‘, and then we get

=0, A.1)

U, =Cixy, —|—C2x,f3 + C3, “4.2)

where Cj, C,, C3 are integration constants; which are determined by the boundary
conditions in Section 2.3. Let Equation (2.28) be substituted to Equation (2.23), and
then we get

2 azun a

u
"5 T a—x" —2uy = C1x, +CaxS + C3x2. (4.3)
n n

The mathematical solution of Equation (4.3), which is determined by Wron-
skian’s method (see Chapter 10) [23], is derived as

1
u, =Ci1x, (§ — lnxn) +Cox? +Cs. (4.4)

With regard to Equations (2.1)—(2.4), (2.14)—(2.17), (2.26), (4.4), we get

2
g, =—C) <§—|—lnxn> +C2€3X,i3_1,

1 C
€p==¢€y= C (g —lnxn> —|—C2x,f3_1 + —3,

n
1 dC| _19Cy 1 9C3
— S bt} c—17~2 , = 75
Sn(p S44 Gn(p <3 n.xn> a(p +Xn a(p —+ x a(p s
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1 aC aC 1 oC
€ne=S44Gne=9[<§—1ﬂxn> 1—1— el 2—1———3],

ov oV x, ov
e [2(61;—262)

—l—(Cl—Cz)ll‘lxn] +C2[(61+62)C3—2C2] =l _

c1+2c
Gq,:cezclﬁl[ ! 3 (cl—cz)lnxn} +C&o(c1 —cpe3)x™ L4
=M1 +M2 Inx, +nzx ! + 0

n

W=C1 K1+C2K2+C3K3+C1C2K4+C1C3K5+C2C3K6
8C1 2 2 8C1 2 A2 8C2 2 8C2
(%) (%) |+ 2 (W) @(av>
L[ (3G g (3G 9C19C; | 29C19Cy
+S44l<acp) O (S +S44 S0 90 1O v av
9C10C | 20C19C) | s (9C20C: | 0Cr 0y
Sa4 B(p B(p ov dv Saq a(p a(p ov ov

S44

2C3 (o))

b

Xn

Xn

G3&3¢1

4.5)

where O, ¢; (i=1,2,3), s44 are given by Equations (1.8), (2.18), (2.13), respectively.

The coefficients N, K¢, Xk (j=1,...,4; k=1,...,6) are derived as

B 1 1 dCy dCq
nl—g[cl('YZ_z'Yl)‘Fa(% + 48\/)]

99
1 dCy dCq
= — C —_— —
n2 [ 1("{1+Y2)+S44< %0 +Ys 8v>]
1 d0C, dC
:C —_
3 2(7103+Yz)+ (Ys 30 +74 av)
1 aCz dCs
—C —
N4 2724- <Y3 90 + Y4 8\/)
2 7 2
K| = ©2-Aa lnzxn—|—7(c2 <) 1nxn—&—7c1 + 62,
3 9
2
Ky = |:C3 (Cl +C2) +C1 (1 _263):| x3(03_1)7 K3 = %7
2 X
2
Ky =c3(c _02>xr§371 Inox, +2 |:Cl - W] xr§3717
2
Ks ==L =0,
Xn
2 1 1
Xl :1n2xn_§]nxn+§7 X —x}%(cg 1)7 X?):)C_%?
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2 . 2 21 .
X4 = gx,?*l —2)6,2371 Inx,, xs5= P ;xn’ X6 = xr‘zrz» (4.6)
n n

where v; (i=1,...,4) is given by Equation (2.22). The integrals ®;;, W;ps of the

Kim = Kjm (xn), X i = X M (xn) (i= 6) respectlvely, have the forms
®?, = / K,Mx dx,, Y= / X,Mx dx,, i=1,...,6, 4.7
XIN XIN

where xjy, x)s are given by Equation (1.9), respectively. The integrals are determined
by the formulae in Chapter 10 (see Equations (10.10)—(10.12)) and consequently, we

get
>0 [ (In ! 2+ !
—x v — — z
IN IN~3 9

- 1\* 1
®1M=w{xﬂl<lnxﬂ4—§> +§

2(C2M_CIM) 1 1
Jr# xi,, lanfg foN lnxleg

(Teim+2com) (xfw —x;N)
27 ’
1 Ay (e + cam)
23 +1 [ 2
D3y = c1m (xm — xiv)

cam (i —cam) [ eaysn 1 a2 1
Dy — M 1 B oy 1 _
4M o 12 [xM < nxy 2 X0 nx;N p—

[Cl - C3M<2C1M+02M>:| (xc3M+2 C3M+2)’

Doy = +em (1 —2C3M)] (xf,,‘w“ 2]\?3M+1) ,

cam+2 3 M N

2 2
D5y = cim (XM —Xuv) , Doy =0,

3 3
1 2 1 2
Yy = X?M [(lan -1 (lan — 3) + 9] — 7 [(lnxm —1) <lnx1N — 3) + 9] ,
x203M+1 252M+1

Yo =M 263M+H;, » Wam = xm —xiw,
2 cay+5 2| cam+5
Wiy = x G2 [4lnx ] x| PR T ny ,
M an 2 { M 3(cam+2) MOV 13 (e +2) i
5 5 xC3M+1 _xC3M+1
Wsy = xlz‘,, (6 —lan) —x%N <6 —lanN) , Yo = MC3—+1IN 4.8)

In case of the ellipsoidal inclusion, we get (unn)
+ oo, (Oqn),_,g — Foodueto (Inx,)

v,—0 — T, (&)

X,—0
— + coand (xy)

P — &£ oo for
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c3 < 0 (see Equations (2.18), (4.4)). Accordingly, the mathematical solution (4.4) is
suitable for the matrix.

4.2 Matrix

The integration constants Cyyy, Capy, Capy for the matrix (see Equation (4.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)—(2.32). The boundary
conditions result in the following combinations of Cys, Copy, C3p. Finally, such a
combination is considered to exhibit a minimum value of the elastic energy W¢ of
the cubic cell (see Equation (2.27)). The subscript Q = M,MB and the stress 6, in
Section 4.2 are derived as

O0=M = Ggq = Dn,
Q=MB = 0,=03, 4.9)

where p, and 6,5 are given by Equations (2.33) and (4.10), (4.13), (4.17), (4.20),
respectively. Consequently, the conditions in Equation(2.36) are considered.

Conditions C1y; # 0, Copr # 0, C3py = 0. With regard to Equations (2.21), (2.26),
(2.27), (2.30), (2.31), (2.34), (2.37), (2.38),(4.4), (4.5), we get

2 1 x, ) !
—+1Inx,+cay | =z =Inxy — ,
3 3 XM
l —Inx, — l —Inx, A ot
3 n 3 M X ;
1 8 [
€100 = 544M Onepo = | Inx; — =
Co
. 0 o 1
+ x)(l:sM ! % C C({I.M 1 (§ B lan)
1 8 o
€00 = 544M Onpp = © { (hlxn —) ( CZ)

10 c 1 ]
+ xCom la\; C qu 1(§lan) },

0q [2(c1m+2com)
=, 3

9
SnQ:i

€ € %
=& =—
(010] [¢) CQ

+ (ClM — CZM) Inx,
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1 Xn c3u—1
+[(c1m+com) cap —2com] (3 lan) <XM> ,

_ Oy |cimt2com 1
G‘PQ_GGQ__@ f_(clM_CZM) nx,

1 X cay—1
—(cim—comeam) (§ - IHXM) (—) ;
XM

Gio = Mg+ Moo Inx + N3 X,
2 2 -
WQ:<ﬁ) Kip+K20 l—flnjclM +K4Q(31:1x}f11 1)
CQ 3xM3M 3stM
L m {a (“q)]ﬁeﬂa (Gﬂ
S44M Co o
2 2
oo ([9 [og=3mnn)] 1" [ [oy(1=3ms)
saan \ | 00 [ 380 x5 N | 3Lpx!
L Xam i( > 9 | 0g(Blnxy — 1)
S44M a(p CQ 3€ xcle
UL ENENLY L
Saapm OV CQ ov 3CQXX,13M71 )

n/2 n/2 LAl 5 o N 1
—Jinx, nxy —
Wo = 4//( ) D1+ Doy CW_lM + 4M(cwiw1 ) de dv
3xM 3x>

M

n/2 w/2

S44M/ / 1M{{a¢( )]2+®2 {% (g—g)}z} do dv
A n/2 n/2 ; _ 3insy) 5
+m/ \PZM({_[ e i ]})d(pdv
ai 73;313)01”)1} ) dodv

3lan

3C XM ! ]d(pdv



s d 3 [o,(31 )
v, 02 L <G‘1) 9 |Og(3Inxy —1) do dv,
S44M/ / M Co/ ov 3L XM 1 ¢

pisPn 1 [ (9 0 ( ) (v) 0 ( n)}
Opp=——F—— +
b Cm S4am {013 a(P Cum plB g

P28 Pn pZB
’ W (3 ~Inxy S44M ¢ l X 1 lan)]
(v)
P2 i Pn l_ B
* S44p OV [CMXﬁM_l (3 lan>‘| , Q=M,MB, (4.10)

where ©, Xy, Saam, cims Kjm, Xjms Py, Wim (i=1,2,3; j=1,2,4) are given by
Equations (1.8), (1.9), (2.13), (2.18); (4.6); (4.8), respectively. The coefficients g,

CiQ, Njo, PiB; pg) (i=12; j=1,2,3; 1= 0,v; Q=M,MB; see Equation (4.6)) have
the forms

Co =00 —Ci0 G —lan> Civ =Cims (Zg) cwil?

2(ciy+2c¢
Com=— [M +(c1m C2M)lnx1N] ,
Cims = (cim +cam) c3m — 2 com,
2(cipy+2c¢
Comp = — [(1M32M) + (et — c2M)1an] ,

o= - {2 Lo (22) v (22)] |
o csq(YquH(zM) +S41M [ a?p (g > + 4Ma(1 (ggﬂ

Nso = Gy ('YIMC3M+'YZM) (l _ lan) + 13m i Sq <1 —]an>
Loyt \3 saam 99 [Loxp ' \3

Yam 9 Sq 1<l—lan> ,
Saam OV | Loxp ' \3
cim +2c
PlB:WfZM(624‘133_2131)+(C2M_01M)(61+ﬁ2+ﬁ3)lan7

p2B = {131 [(c1m +cam) e3m — 2 com] + (2 +03) (c1m — camc3m) }xﬁM_lv
1 1
pEB) = (91 +02) ( lan) PEQ =0 (0 +03) (3 lan) 5
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pSY = (01 +02)xi !, pYy =@ (01 +03)xi ! Q=MMB,  (41D)
where yiy, 0 (i=1,...,4; j=1,2,3) are given by Equations (2.22), (2.35), respec-

tively. The normal stress p, is given by Equation (2.33). With regard to Equa-
tion (4.10), the coefficient pp (Q = M,MB) in Equations (2.33), (3.13) is derived as

11 1 ) !
R L A XN — M, MB. 412
pQ CQ [3 anN <3 an> (.XM) ) Q b) ( )

Conditions Cyy; # 0, C3pr # 0, Copy = 0. With regard to Equations (2.21), (2.26),
(2.27), (2.30), (2.31), (2.34), (2.37), (2.38), (4.4), (4.5), we get

€,0 = % z—an

nQ—chM 3 n s
o 1 /1 1 /1

€p0 = €90 = — Ll — (= —Inx, | —— ( = —Inxy s
C_,Q XM 3 Xn 3

_ _ (1 0 (_9a ) L 9 fo,(1=3Inx)

€100 = S44M OnpQ =

1 d o 1 0 [o4(1—3Inxy)
of (3-1) a5 (o) mw| - e )
Gnp = g_; {L {Z(CIMJFZCZM)' + (CIM—62M>]“x"] = (% _lan) } ’

XM 3 Xn
Op0 = G690 =
_ O [l femt2em x| = M (L
CQ X 3 M 2M n X, 3 M )

2 2
o K 1 Ksar (3Inxy — 1
wo — (C_q> KU (5 _ 1an) N SM(3—XM>]
0 Xy M

) = )

22 (A o g
-2 A
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+X5M®2i(€6q )ai{cq(ﬂan—l)]’

S44M ov 0 XM 3CQ
s ) 1 2 ®sy (31 1
WQ:4/ / <q> 1M+(I)3M<—lan> +M do dv
b Co xM 3 3xm
TE/.Z /2 5 5
el A 1 G IR o Coer | B
S44M0 ) 99 \ Lo xm ov \ Lo xm
n/2 w/2 5
//‘P3M{ { a1 3lan)}} dodv
S44M 380
/2 /2

i 29 31an)]}2
+S44M /‘PgM@ {a [ 3t do dv

4 “/2 ”/2 9 3 [o,(31 1)
Oy nxy —
—_— — — do dv
S44M oL} ) (P[ 3% } ¢
oo 9 9 [, (3lnxy —1)
(¢ (0 nxy —

C T Trae 2y e o
S44M M ov \Coam) 9 38 ¢
 P1BPn 1 8( P ) v) 8( Pn )]

G = - — Py +
b CMXM S44M {pw 00\ Cprxu Pis ov \ Cmxm
()
p3gpn 1 > P3 d |:pn <1 )]
TR NV ey Uy (e
Cum (3 saam 09 | Cm i
p(V) J [p 1

+i—[ "( 1an>}, 0 =M, MB, (4.13)

s4am OV [ Cm

where ©, xp, Saapm, Cimt, Kjm» X jms Pjm, st P1ss ng (i=1,23;j=1351t=9,v)
are given by Equations (1.8), (1.9), (2.13), (2.18), (4.6); (4.8); (4.11), respectively.
The coefficients CQ, Nios P3B» pé}? (i=1,24;1=¢,v; O = M,MB; see Equation (4.6))
have the forms

1 (2 2 2 1
CM: — M+(01M—62M)IUXIN + cam ——Inxy |,
XM 3 XIN 3
1 2(ciy+2c 1
Cmp=— 2lews +2¢m) + (et —cam)Inxp | +2com | 5 —Inxw ) ¢
XM 3 3
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1fo,(Yam —2vm) | 1 { d < oy > d < oy ﬂ}
=—= + ) +Vamr 5= ,
e 3 { QQ XM S44M Yam a(p CM XM Yau av CQ XM

64 (Yim+Y2m) 1 [ 0 ( Oy ) 0 < oy )}
= + — Yapr o :
2o Coxm S44M 13m 00 \Go xu a5y Co xum

64Yam (1 =3Inxpy)  yam 0 [Gq(1—3lan)]
MNag = -

3Co S4am 0P 3Co
Yam i |:(5q(1 —31an):|
S44m OV 3§Q ,

1
p3g=—|cim (D2 +03) —2c1m0 |,
XM

p((p) ) p(v) OV +1;3)

3B XM ’ 3B T XM ’

0=M,MB, (4.14)

where Yy, O (i=1,...,4; j=1,2,3) are given by Equations (2.22), (2.35), respec-
tively. The normal stress p, is given by Equation (2.33). With regard to Equa-
tion (4.13), the coefficient pp (Q = M,MB) in Equations (2.33), (3.13) is derived as

1 1 1 1 1
pPo To [xM <3 anN) o <3 an)] , 0 ; (4.15)

Conditions Cyy; # 0, C3p1 # 0, C1pr. =0.  With regard to Equations (2.21), (2.26),
(2.27), (2.30), (2.31), (2.34), (2.37), (2.38), (4.4), (4.5), we get

enp = Sac (3 )
nQ CQXM X )

enl -G ]

1 ) c 0
Sn(pQ = S44M Gn(pQ = - — |:X,L1‘3M = ( q(,‘3M> - %
d

€p0 = €pQ =

Xn 99 \ Lo x)7 (Z)] ’

Of .. 0 o o,
w0 =sswvamo =~ 0 [ 5 (e ) 55 ()|
4 {C3M (cim+com) —2com (x_n>C3M_1+2C2M}

G =— —+
e CQ M XM Xn
cay—1
Gop = Gop = — 00 | S = C2mC3m (X M o
00 9] CQ M iy X |’
-1, M40
G1o = N3px,™ +x—’
n
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- <><>
{ ]z+@2[a (¢ Gchﬂz}
2@k @)
B<g;aw>%<z—;>+@” (@) @)
o] [ () (e vme ) e

XZM

S44M

M
o] [l (2 oo 2 (e o
+ ﬁ ://2072‘113/14{ {aa <CQ)T+®2 [% (gg)r} de dv
 Saam 727/2 Wy aa(p <CQGﬁ> ai <C_q> do dv
 saam 72 72 M®2 ’ ( Gqfw> kS (C—q> dodv,
o= 288 L0 2 () i3 ()

P3spn | 1 [ (¢) 9 < ) v 9 ( ﬂ
4 P3BPn ° 2 + ., O0=M,MB, (4.16
Cm S44M P3s 09 \ Cum P35 5y ov \Cum ¢ ( )

where ©; xpr; s44pr; civ (1=2,3,6); Wing, Y jnas Cjmes Yim (G =1,3,5); Prss Prp © (k=2,3;
T = @,V) are given by Equations (1.8); (1.9); (2.13); (2.18); (4.13), (4.15), respec-
tively. The coefficients {p, Mip (i=3,4; Q = M,MB; see Equation (4.6)) have the
forms

1 xn )\ M
Cn = _{[CSM (c1m+cam) —2com] <ﬂ> +2C2M}7
XIN M

_csm ey +com)
Cmp = ———
Xm

)
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Mo = — Og(Yimeam+Yom) 1 Ly d( o4
30 Lo xi Saant C M3y, Cox Lw )

S [ a() (ﬂ
_ 4 + , Q=M,MB, (4.1
N4o Co Sant 8(p 'Y4M 0 4.17)

where where Yy (i=1,...,4) is given by Equation (2.22). The normal stress p,
is given by Equation (2.33). With regard to Equation (4.17), the coefficient pg
(O = M,MB) in Equations (2.33), (3.13) is derived as

pQ:LK’ﬂ> 3M_1], 0 = M, MB. (4.18)
Co [\xm

Conditions Cyy; # 0, Cops # 0, C3py # 0. With regard to Equations (2.21), (2.26),
(2.27), (2.30)—(2.32), (2.34), (4.4), (4.5), we get

2 o
EnM = — é)—;; l:CIM <§+lnxn> 7C2MC3MX’§3M 1:| ,

1 a1, S3m
EoM = Eom = 5—; [Cw (5 lnxn> + Com ;2 1+Cx—] ,
n

1 n a n
EnoM = S44M OnoM = (g —Inx ) (p CCMlM) +xcz 1 <p CC];M)
14 pnC?aM)
+ NP bl
Xn 99 ( Cm

_ _ l_ i PnCim 0371i PnCom
enGM—s44MGn9M—®|:<3 lnxn> 8v< Tt )+xn P (—CM

+ — 1d pnC3M
% v\ Cu '
2(cim+2
o=~ ¢, Cum M+(CIM_C2M>IHXn
Cm 3
c 1 262MC3M
— Coml(cim+cam)esm—2com]xs™ +x7 7
n
cim+2c
Gon = O = 2 4 Capg | M2V eopg) In,
9y 3
+c2M(C1M—62MC3M) C3m— 1+ clﬁiﬂ}?
n

Nam
)

Gim = Mim +Nans I, +Mapr x4 B
n

2
wy = (é);) (KIMC%M +K2MC%M + K3MC§M
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+ K4MC1M§2M+K5M§1M§3M+K6M§2MQ3M>
(8] o (8]
A oo )
{3 ()

)
("5 ) a5
(

Xam i (PnC1M> <pnC2M>+®zi M M
saam 90\ Cm d
Xsm | O (Pn§1M> <pnC3M> 20 (Pn 1M> d <
+ - -
S4am | 09 Cm v Cum ]
X6_M i(Pn§2M> i(pnC3M>_~_® i(PncﬂM) i(pnCSM
saam |09\ C 90\ Cwm d Cv ) ov ]
n/2 /2 5
_ Pn 2 2 2
WM—4/ / (—M> (CDlMClM+<I>2MC2M+‘D3MC3M+‘D4MC1MC2M
0 0
+ ‘D5M§1MC3M+‘D6MC2MC3M) dedv
/2 /2

{ 8) o (%)) 2
& P AT (oalon\ P 2 [ (palan\]?
v | [ e () e[ ()
{‘ (p,%c;M)Z@z %<p§<:ﬁjM)2}

i [l () %
+®28 <Pn§1 ) <pnC2M):| de dv

S44M/ / Fam {a(p <pnCCMlM> (

34

—

—




o3 ()8
" Sen / / o {8@ (PZQMZM> %’ <P"C‘;M3M)
@2 ) (PnéjM) ;V(PnCCAjM)] do dv.
Ot = Zp npitid {p?‘” A <M> I <M)] . @19)

saam | B 09\ Cm B ov\ Cu

where O, xps, Saap, Cims Kim, XjM> q)jM, \I‘jM; PiB, pl(;) (i= 1,2,3; j= 1,...,6;
T = @,V); are given by Equations (1.8), ( (1.9), (2.13), (2.18); (4.6); (4.8); (4.11),
(4.15); respectively. The coefficients (s, s, Mjm (i=1.23; j=1,...,4; see Equa-
tion (4.13)) have the forms

2
Cim = camx? ™, Com = 3 +Inxy,
2 1
C3M = —xlf,;M |:3 +Inxp +c3ym (g —lan)] ,
Cm =
2 2 2 1 .
c3m M—f—(clM—cZM)lnxm — ZOMIM(Z nxy xgm!
3 XIN 3
2o x| (2
- {[(01M+62M)C3M —2comfxii ! 4 szMix} ( +1an>
IN
i — PnCim (Yom —2Y1m) 1 PnClM y
M 3Cm 3 Sa4m Ty av
-+ 1
Moa = — PnCim (Yime +vom) [ (PnClM) v ( )}
Cm S44M v
~ pnCom (Yimes +yam) |1 { (PnC2M> d ( )]
N3m = + Il
Cwm S44M My
pnCamyom 1 [ <PnC3M> (m@wﬂ
= + + : 4.20
Tl Cm S44M 356 o\ Cm T4 Gy Cm (4-20)

where vy (i=1,...,4) is given by Equation (2.22). The normal stress p,, is given
by Equation (2.33). With regard to Equation (4.19), the coefficient pys in Equa-
tions (2.33), (3.13) is derived as

1 1
pM = T [ClM (IHXIN 3> —Comx 3"~ ! C3M} : (4.21)

XIN
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Chapter 5

Mathematical Model 3

5.1 Mathematical Procedure

Let the mathematical procedure 9°Eq.(2.23)/dx2 be performed, and then we get
[1]1-[22]

ra3u" +4x2 ity =+ *n U, =
ox3 ox2  sa4(c1+c2) Oxy

where s44, ¢; (i=1,2,3) and U, = U, (r,,V) are given by Equations (2.13), (2.18)
and (2.25), respectively. With regard to Equations (2.24), (4.2), we get

U,

X

" ox,

where Cj, C,, C3 are integration constants, which are determined by the boundary

conditions in Section 2.3. Let Equation(5:2) be substituted to Equation (5.1), and

then we get

0, 5.1)

=3 (Crx, +Coxy¥+C3), (5.2)

x 8%2" . it

ox3 ox2

The mathematical solution of Equation (5.3), which is determined by Wron-
skian’s method (see Chapter 10) [23], is derived as

+ =C1 X +Cx8 +Cs. (5.3)

4 1
u, = C1xy, (§ —lnxn) +CoxP+Cs (5 —l—lnxn) . 5.4)

With regard to Equations (2.1)—(2.4), (2.14)-(2.17), (2.26), (5.4), we get

1 C
g, =C| (§ —lnxn> +C2C3x,f3_l + —3,

Xn

4 G (1
gg=¢g9=C] <§ —lnxn> 4—C2x,$3_l + =3 (E +1nx,,> ,

n

4 aC _,0C 1 /1 aC
Smp:S44Gmp: <§—lnxn> a—(;—F.x,? la—(pz x—n (5—1—11'1)(”) —3,

4 aC| 109G 1 (1 dCs
€19 = 5440y = © {(3 1nxn) v +x,° 187\/ — (2 +lnxn> FYE
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—Tco

C
c,=C [ ! —(cl—cz)lnxn] +C2[(Cl+62)03—262] c3—1

C
43 (c1 —2colnxy,),

n

461 —C
6o =0 =Ci [ 3 — (e —cz)lnxn] +C(c1—cre3) x5 !
C -2
+ 3 <c1 @ +e lnxn) ;
Xn 2
o +ms Inx,
61 =N1 +MN2 Inx, +M3x,;° L4+ W,
n

W=C12K1+C22K2+C32K3+C1C2K4+C1C3K5+C2C3K6

aCI 2 2 aC1 2 A2 aCQ 2 aCQ
60”@ﬂ*a@ﬁ®@ﬂ
1 [(3GY g (9G], 1 (369G, gaciacy

+S44 l(a(p) +e (av + S44 8(p 8(p +0 ov dv

15 (013G | 20CAG | s (9GO, (1323
s44 \ 0@ 00 ov oV 544 \ 9 00 av ov )’ '

S44

where O is given by Equation (1.8). The coefficientsn; x;, x; (i=1,...,4; j=1,...,6)
are derived as

_ 1 4 dCy oCy
nl—g{CI(Yl‘i“le)"‘a(% + 74 a\})}

99
—_laim+ )+L dCy . dCy
N2=-— Yi+72 a(p Ya—=— v
1 dC, 0C,
M =C(vic3+12)+ < 0 +74 av>
_ T2 L dC; dC;
T]4—C3(Yl+2)+2s44 (Y a B ov
1 15/0%) dC3
:C —_—
Ns 3Yz+s44 (Y3 90 + Y4 av)
c)—c¢ cp—c¢ 17¢14+c¢
K| = 2 112xn+ 13 2lnx,ﬁ— i8 2,
2
Ky = [M—Fq(l—Zq)} x,%(crl),
Ky = c1 lnzxn <l Inx, c¢2—2c¢
x2 x2 4x2

38



_ c3(cp—"Tey _
Ks =c3(c1 —c2) x3 Ulnx, + ZCH_% x5 L

Inx, 4ci—c

K5 = (36‘1 —62)

)
Xp 3x,

ke =2c1(1—c3) x8 2 Inx, + (cre3— 1) x5 72,

8 16 .
Xl :lnzxn—glnxn—i——7 X2 :_)('3(C3 1>7

9
In’x, Inx, 1 8 i1 1
X3 = x% x_,%+4-_x,217 X4=§x,fi3 —2x37  Inxy,
4  5lnx, 2ln’x B B
Xs =3t Xe=2x I (5.6)
n n n

where v; (i=1,...,4) is given by Equation (2.22). With regard to Equations (4.7),

(5.6), we get
2 2
oM — CIM 1 1 1 1
Dy = BT {X?W [<1an — §> + 9 —x;N [<lnxm - g) + 9 }

CiM — Cam 1 1 17cim+com
+ B — [xi,, <lan - 3) —x?N <1nx1 -~ 3>] + 1 <xi,, —x?N) ,

1 Sy (v -+ com) 2ol 2wt
:2C3M+1|: 2 +CIM(1—2C3M) (XMC'W _xll\?w ),

D3y =1y [XM <ln2xM —2Inxpp 2) — XIN (lnszN —2Inx;y + 2>:|

Doy

oM —2cim

— C1M [)CM (Inxps — 1) — XIN (lanN — 1)] + 2

(xm —xIn),

_ aam (cim —cam)

()
M cay +2
1
% cay+2 1 o o c3p+2 1 o
[XM < nxys " n 2 xIN nxyy cont T )
cam(cm—=Tem) | [ etz emt2
2 ( 3M _ 3M ) ,
+ 12 [ C1M+—3 } x5 x5

3ciy—c2 1 1
(I)SM = y |:)C12W (IHXM — 5) _)C%N (lanN — §>:|

6
2eim (L=capm) [ eqptt 1 st 1
Dgpy = ——— 2 x4 Inxp, — — XM Inxpy —
oM 3y +1 M M cay+1 N N ay+1
COMC3M — C1M (xcsMH 7xc3M+1) ’
cay+1




3 1 17
Yy = XTM [(lan -3) <1an — —) + —}

3 9
3
1 17
_ % [(lanN -3) (lnxlN - 5) + j} ;
Yoy = xf%’IQMH 7)5121\?[‘/1+1
2c3y+1 ’
5 —
Wan = xpr Inxpy (Inxy — 1) —xpy Inxgy (Inxgy — 1) + M7
. desy+11 a2 | deam 11
Yy = G2 {7 —Inx } x| 22 T )
4M 63M+2{ Yo Blewty Y Blawty T

2 (x%, —x% 5 1 1
Wsy = M + 6 |:x12w (lan — E) —X%N (hlxlN - §>:|

1 1
— x,zvl (lnzxM —Inxy + 5) —|—x%N <1H2X1N —Inx;y + 5) )

2 1 1
¥ — 3+l 1 _ _ oyl 1 _
oM - T 1 |:.XM nxyy cam ¥ 1 x]N nxiN e + 1
1

(x[f/;M—b—l _XIC;/M-H) ’ (5.7)

3y +1

where x;n, xr are given by Equation (1.9); respectively. The integrals (4.14), which
consider Equation (5.7), are determined by the formulae in Chapter 10 (see Equa-
tions (10.10)—(10.12)).

In case of the ellipsoidal inclusion, we get (uy) 0 — T oo (ern) 0
+ oo, (Ov), 9 — Foodueto(Inx,), o — *eoand (x'), o — + eofor
c3 < 0 (see Equations (2.18), (5.4)). Accordingly, the mathematical solutions (5.4)
are suitable for the matrix.

5.2 Matrix

The integration constants Cyy, Copr, Capy for the matrix (see Equation (5.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)—(2.32). The boundary
conditions result in the following combinations of Cyys, Cays, C3p. Finally, such a
combination is considered to exhibit a minimum value of the elastic energy W¢ of
the cubic cell (see Equation (2.27)). The subscript Q = M,MB and the stress 6, in
Section 4.2 are derived as

O=M = 04=py,
QO=MB = 04,=0y, (5.8)
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where p, and G,p are given by Equations (2.33) and (5.9), (5.12), (5.15), (5.18),
respectively. Consequently, the conditions in Equation (2.36) are considered.

Conditions Cyy; # 0, Cops # 0, C3py = 0. With regard to Equations (2.21), (2.26),
(2.27), (2.30), (2.31), (2.34), (2.37), (2.38), (5.4), (5.5), we get

1 4 ) !
&g = QQ —Inx, —c3m 3 —Inxy E )
o, | 4 4 x| !
€p0 = €pp = — i [g—lnxn— <§—]an> <J$> ] R

4 8 Oy
€n90 = S44M Ongo = | Inx, — 2y

Oq

J 4
L'3M71 o _ 71
o 09 [CQ xgm! (3 HXM)] ’
4\ 0 /(o
€100 = 544M OnoQ = 9{ <lnxn —> (§Z>

a o 4
+ xCm— 1 lcixcqw : <§ —lan>] }7
Tcom —cim

Cno = CQ {3 + (c1m —¢am) Inx,

4 X, !
+[(c1m+com)esp —2com] (g lan) (—) ,

Xy

(0 C2M—4CIM
4 |:7 + (ClM—CZM)ln)Cn

o o
o0 = 960 = Lo 3

4 x, \ Cm!
+(c1m—camesm) <§ —lan) (i) ] ,

G109 =Mig +M2g Inxy, +n3erCl'3M*1’

2 2
. Gq 4—3111)CM K4M(31an—4)

M
LK { P
Saapm | 09
9
1oL0)

@)= @)

Xom (4 3lan) ? 2 d Gy (4—3lan) ?
+ ﬁ +O° V- |
S44Mm 3Co x5 ov 3(0 xpM
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Lt 0 (q> o (3Inxy — 4)
S44M 90 \Cp /) 00 3CQXLW YT

X4M® a(ﬁq) 9 |0g(3Inxy —4)
saam OV \Co/ OV | 37, Y R
/2 n/2 4 | ) o ] )
WQ:4/ / q)lM-f—(DzM ?n,x]M + 4M(3Cr1x§/11— ) do dv
CQ 3x;13M 3XM3M
2T T [2 (@) e [2 (2] ) doan
S44M M 99 \ Cp av \{o ¢
n/2 /2 2
ol Te((a o] )
S44M o0 3CQ x;;M
n/2 n/2 ’
A [ wye {; lMH sody
S44M 00 Y 3§QXM
4 n/2 /2 3 5 » A
+—/ /\P“M ¢ ﬁ>_ Gq(ﬂ;wl) dg dv
Saam s 99 \Co/ 99| 3L x5
n/2 /2 3 5 . y
+— / / Yam @2 — (ﬁ) Gq(nixﬁ/[jl) d(P dv,
S44M av C av 3C.>Q x;,;M
P18 Pn 1 () J (pn> (v) d (pn):|
Oyp=——F—— — —— — == |+
’ Cm S44M { %99 \ Cu P15 5y Cm
(¢)
M i_l + sz ) Pn i—]an
Cm xC3M—1 3 S44M a(p CMXX/;M—I 3
V)
P2p i Pn i_ B
S OV [ch;;M—l (3 “‘XM)]’ Q=M,MB, (5.9)

where ©, xp, Saam, civs Kjim, Xjms P, Win (i=1,2,3; j=1,2,4) are given by
Equations (1.8), (1.9), (2.13), (2.18); (5.6); (5.7), respectively. The coefficients g,

Sio- Mjo- Pis: P,(;) (i=12; j=12,3; 1= @,v; Q=M,MB; see Equation (5.6)) have
the forms

Co="C0—Cip <: lan> ,
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C3M—l
XIN cim—"Tcom
Civ =Cims (xM > , Com= —3 - (c1ym — com) Inxgy,

cim —Teom
Cimp = (cim+cam) camr —2com, Comp = — 5 - (c1m — com) Inxpy,

_ l 64 (Yim+4v2m) 4 d (o, d A
he="3 { Co iy { Moo \ o tam gy o)l
O (Vi +vom) | 1 { J (0 ) d <Gq>]
g _|_ + Yq ’
e Co S44M M 50 0p \ ¢ VYam 5y Co
o= 64 (Yimcam +Yom) (ﬂ —lan> L Yom 0 [ o, (4_; —lan>]

Coxpi ! 3 s44m 90 | Lo xy ! \3
Sa4m OV

Oy 4
CQXX;M—I (3_lan>‘| ’
1

P = g{yw (cim —Team) + (Yamr +Y3m) (4 e — com) }

Yam 3

+ (comr — cim) (Yim +Yam +VY3m) Inxpy,

p2p = {YlM [(c1p + com) e3m — 2 com] + (Yamr+Y3m) (c1m — com c3m) } xpM L

4 4
pﬁ‘? = (Yim +Y2m) <3 1HXM> , pﬁ}? =0 (Yim +7V3m) (3 anCM) )

08 = (i +yam) x5 P =0 (i +yam) x5, Q =M, MB, (5.10)

where Yiy, 0 (i=1,...,4;77=1,2,3) are given by Equations (2.22), (2.35), respec-
tively. The normal stress p, is given by Equation (2.33). With regard to Equa-
tion (5.9), the coefficient pp (Q = M,MB) in Equations (2.33), (3.13) is derived as

1 |4 4 ay ) !
L b PO (e S XIN — M,MB. 11
Po To [3 nxzy (3 HXM> (XM> , Q=M, (5.11)

Conditions Cjy; # 0, C3py # 0, Copr = 0. With regard to Equations (2.21), (2.26),
(2.27), (2.30), (2.31), (2.34), (2.37), (2.38), (5.4), (5.5), we get

1 1 xu (4
= 1 ——1 — = =-1
BT, K " “"M> (3 ) X (3 Mﬂ ’
1 4 xy (4 1
€p0 = €gp = CQ K +lan> (§ —lnxn) - % (§ —lan) (E—i—lnxnﬂ ,
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1 deyy—c
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4 _
+ — | = —Inxy M+C3M1nxn ,
X; \ 3 2

+ Inx
G190 =MN1g +MN2p Inx, + M,

Xn
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s (Lo ) (4|
o +w>H (&8 Gl})
Gl Gl o G Gl
gl (Hw)] |t )]
o oo ()| [ (o)

2
1 4
Dy (5 +lan> —|—q)3Mx%,‘, <§ — lan>

XlM
S44M

{
o <a

5 44M

XSM

1 4
+ Dsppx01 (5 —|—1an> <§ — lanﬂ do dv
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2 /2
g o [o, (1 2
+—/ /\PIM — | == =+1nxy
Saam ) ¢ [Cp \2

Cm
L [ @9 [Pl VRS ”
S44m {913 99 | Cm RS L Cm g Hinaw

L[ @ 9 [paxm (4 ) 2 | P (4 )]}
S44M{p3B 00 | Ty \3 i )|+ P35 ov| Cu \3 Inxay '

0 =M, MB, (5.12)

where ©, xu1, Sa4m Civ> Kjna, Xjms ®jms Y jnrs P1ss pETB) (i=123;j=13,51=0,v)
are given by Equations (1.8), (1.9), (2.13), (2.18), (5.6); (5.7); (5.10), respectively.

The coefficients Cg, Cip, Njo, P38 pgg (i=12; j=1,24,5,1=0,v; Q=M,MB; see
Equation (5.6)) have the forms

_C2Q 1 4
CQ_E E+1HXM Cio 3 Inxy |,

X ciy —T1c
Cim = M (cim —2comInxiy), Com =xm [IM—ZM —(cim— CZM)lanN} ;

XIN 3

ciy—1c
Cimp = cim —2comInxpy, Comp =xum {wa —(c1m — C2M)lan:| )
Gq(YlM+4'Y2M) <1 > 4y3y 0 {Gq <1 >]
= 2 HIMEREM) (2 4y ) — 2129 2 4 Inxy

nie 300 2 M ) T S 09 [T \2
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Sq (Yim +Y2m) <1 ) Ym0 [Gq (1 >]
=—————F | +nxy |+ —— | z+nx
e Co 2 M) saam 00 [To \2 M

Yam 0 Oy 1
dam 9 1% (24
* Sa4m OV L;Q (2 * an)] ’
Sgxm (2Y1m +Yom) 4 Yau O [Cgxm 4
o 280 <HXM 3> * 2544m 09 | Co B
Yam O OgXMm 4
il 1 _ -
+ 2 844Mm ov [ CQ <an 3)] ’
Nsm = Oq M Y2 (lan - i) + Tam i [quM <1an - Z—‘)]
Y Co 3)  saam 99 [ Co 3
Yam O [Ogxm 4
M= 1 _ -
+S44M ov [ Co <an 3)}’

(c1m —2cam) (Yam +¥3m)
2

+ [clM ('Y2M +'Y3M) - ZCZM'YIM] 1an},

(0 _ (Yia+vam) (1 W _ O +vm) (1
P3p = Iy 2+lan y P3p = xM— 2-‘1-1an ,

Q=M ,MB, (5.13)

1
P3p=— {CIMYIM +
XM

where vy, 95 (i=1,...,4; j=1,2,3) are given by Equations (2.22), (2.35), respec-
tively. With regard to Equation’(5.12), the coefficient py (Q = M,MB) in Equa-
tions (2.33), (3.13) is derived as

- 1+ln i,m .l ﬂfln lJrln
Po = oo l\2 )| 3 XIN v \3 || 5 xiv s
Q=M ,MB. (5.14)

Conditions Cyy; # 0, C3pr # 0, Cipy = 0. With regard to Equations (2.21), (2.26),
(2.27), (2.30), (2.31), (2.34), (2.37), (2.38), (5.4), (5.5), we get

(¢} 1 L xim
&g = — i |:C3M <§+lan> x&m I ill :| 7
7

o, [[1 e M (1
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1
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e (cqx;;M)z 2dC3u (cqx;‘;M)z
+0 do dv
3o \ Lo v\ Lo ?

WM/ / %M@{ s (ool 5 ()

d [0, (1 ogxp
v [cQ (z““Mﬂ ov (cQ )} Qav,

L f @O [P (L VEANE
S {plB a(p CM 2+1an +p33 aV QM 2+1an
1 n I n v
[p 9) 0 (p Xpr >+ng 0 (p X )], 0=M,MB, (5.15)

saam | P 99\ G Cum

where ©; xar; Sqanr; cime (1= 1,2,3); Kjnr, X jas v, ¥ jm (J=2.3,6); P P ) (k=2,3;
T =@, V) are given by Equations (1.8); (1.9); (2.13);(2:18); (5.6), (5.7), respectively.
The coefficients Cp, Cip, Njo (i=1,2; j=3,4,5; Q = M,MB; see Equation (4.6)) have
the forms

1
CQC2Q(2+IHXM> Crpxp ™,

XM

Cim= N(ClM 2eom Inxaw), Comr = xm[cam (i -+ cam) — 2 cam] X~

Cimp=cim—2com Inxpr, Comp = [cam (cim + cam) — 2 com] x}cv;M7
Sgxp" (Yimesm+Yam)  Yam 9 (quj,;’”)

N3g =

CQ Saam 0@ CQ
L Yam 9 <quszM>
sam oV \ Co /)’
64 (2vim +v2m) < ) Yau O {Gq <1 >]
QaiZNIMTVIM) (2 iy ) + 20 2 +1
Ml = 28 2 2544m 99 [ G0 o

Yam O 1
* 254401 OV [CQ < +IHXM>}

Nsm = GqYZM( +1Inx, >+Y3—Mi{ﬁ(l+lnxﬁ4ﬂ

Co saam 99 [Co
4 Yam O {6’1 (1+1an>], 0 = M,MB, (5.16)
Sa4Mm ov CQ
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where Yy (i=1,...,4) is given by Equation (2.22). The normal stress p, is given by
Equation (2.33). With regard to Equation (5.15), the coefficient pg (Q = M,MB) in
Equations (2.33), (3.13) is derived as

1 1 3y 1
po = 0 {(5 +lan) gt a7 <§ —annv)] , OQ=M,MB. (5.17)
0 XIN

Conditions Cyy; # 0, Cops # 0, Capy # 0. With regard to Equations (2.21), (2.26),
(2.27), (2.30)—(2.32), (2.34), (5.4), (5.5), we get

1 — 3
€M = — é)—;l [ClM <§ —lnxn) +Gomeamxg M+ CX—M] ;
n
4 1
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OnM = — é)—; {ClM [M —(c1m —cam) hlxn]
+ Com [(c1m + com) 3 — 2com] x5+ Cam (c1m ;ZCZM In ) } ;
n
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Gim = Ninm +MNow Inx, +Map x4 w’
n

2
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+ }apr G Comr +x5pr Cina G + K6MC2MC3M>
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‘e / / e (%22) 56 (752
ro s (M) & (p”c%;Mﬂ dodv,

PiBD C 1 [ () d <pn ) (pn >:|
Oug = +—1Ipip = , (5.18
b= ,2_1 Cm S44M Pis 9 Cm ZB av ( )

where @, XM, S44M, CiM, KjM, XjM; (DjM’ \PjM’ PiB, P iB (l=l,2,3, j=l,...,6;
T = @,V); are given by Equations (1.8), ( (1.9), (2.13), (2.18); (5.6); (5.7); (5.10),
(5.13); respectively. The coefficients Cin, Sy, Mjm (1=1,2,3; j=1,...,4; see Equa-
tion (4.13)) have the forms

1
Gum = x3 " [C3M (5 —HHXM) - 1} ;

4
Com = 3 —1Inxy — ( +lan) <— —lan>

1 4
§3M—x1ij {g—lan—cW 3= lanﬂ
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XIN
cim—T7c¢a 1
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XIN
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3CM
4 PnClM) d (pnC1M>:|
J— _|_ - R
3544m [Y a([) < CM Yam av CM
PG (Yim +v2m)
Nom =
Cum

1 J pnClM) ) <pnC1M>:|
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PnCom (Yimcam +Yom)

N3y = —

Cm

1 d PnC2M> d (PnCZM)]
- - _|_ - ,
S44M [YW 00 ( Cm Yam 3y Cu
 PnCan (2v1m +Yom)

Nam = —

28m

_; i p”§3M> 3<P11C3M>}
2 saam l:'Y3M Ekp( Cor +Yam Iy Cor )
HSM:_PnCszML{Y i(pncw)ﬂ ) <pnC3M>]’ (5.19)

T saam M09\ T Mov\ Ty

where Yy (i=1,...,4) is given by Equation (2.22). The normal stress p,, is given
by Equation (2.33). With regard to Equation (5.18), the coefficient py; in Equa-
tions (2.33), (3.13) is derived as

1 4 _ 1
pv = +— |Cim | 5 —Inxgy |+ Conrxp s C3—M —+Inxy | |- (5.20)
CM 3 XIN 2
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Chapter 6

Mathematical Model 4

6.1 Mathematical Procedure

The differential equation (2.23) is transformed to the form
5 0%u ou
Up = —s44(c1 +¢2) | 2 2” + 2% = —2uy |, 6.1)
ox 0xy,

where s44, ¢; (i=1,2) and U, = U, (x, @, V) are given by Equations (2.13), (2.18) and
(2.25), respectively. Let x, [0Eq.(6.1)/dx,] be performed, and then we get

U, 0“uy,
xna—xn:—SM(Cl-FCz)( a'; 4’%82> (6.2)

Let Equations (6.1), (6.2 be substituted to Equation (2.24, and then we get

3811”
I’la’i

ou
—2¢3x, tn +2c3u, = 0. (6.3)

2
e @ Ll gy, 20

2
an

Let u,, be assumed in the form u,, = xn , then we get [1]-[22]

C
Uy = C1 X+ Cox% + x—j (6.4)
n

where ¢3 < 0 is given by Equation (2.18), and C;, C;, C3 are integration constants,
which are determined by the boundary conditions in Section 2.3. With regard to
Equations (2.1)—(2.4), (2.14)-(2.17), (2.26), (6.6), we get

1 2G3
e
n
G
g =€ =C1+Cox,>" 1+*
i'l
aC, 109G, 109G
an):s446n(p=%+x23 % —3%»
aC dC>; 1 0GC3
= -0 c3—1 —
€19 = 544 Opg Y +X EREY,
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2C 2
0-n—cl (Cl—C2)+C2[(Cl+62)03—202] =1 _ M

x3 ’
6o =09 =Ci(c1—c2) +Car(c1 —c203) X% 1_1_%’
n
o1 =M1 +MxP 4 1;”
W:Kl‘*“(ﬂg(q 1)—1— ¢ T Kax, l—i— 5+ Kex, 4 (6.5)

n n
where © is given by Equation (1.8). The coefficients , x; (i=1,2,3; j=1,...,6) are
derived as

i, 9C
o v
9 acz)

1
m=C(yi+v)+— (Ys
S44

1
M =C(Yic3+v) +— (
S44
3C3

8C3) |
ey

1
=G (2 —271)+— (
544

3((,‘1 —CZ)C% 1

o 2 S44
(c14c2)c 2 2 aC, 2
K = {fgﬁ-q 2er¢3 c2+_ 2,

1] /ac3\? aC
K3_3(Cl+2€2)€3+_ <3_(P3) +®2<8v3>

dCy dC dCy oC
K4:(Cl—02)(2+C3)C1C2+( 192 @2‘2>

o9 09 ov av
dC1 9C3 5 dC1 dC3
S44(8(p 00 +8 ov av)

Ke = [2¢2(1 —c3) *Cl]C2C3+— (

9C2 90 >33 3Cs > 66

¢ 9p v oV
where v; (i=1,...,4) is given by Equation (2.22).

6.2 Matrix

The integration constants Cyyy, Cayy, Capy for the matrix (see Equation (6.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)—(2.32). The boundary
conditions result in the following combinations of Cyys, Cayy, C3py. Finally, such a
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combination is considered to exhibit a minimum value of the elastic energy W¢ of
the cubic cell (see Equation (2.27)). The subscript Q = M,MB and the stress 0, in
Section 4.2 are derived as

o=M = Gg = Pn;

O=MB = 0,=0us, (6.7)
where p, and G,p are given by Equations (2.33) and (6.8), (6.11), (6.14), (6.17),
respectively. Consequently, the conditions in Equation (2.36) are considered.

Conditions Cyy; # 0, Cops # 0, C3py = 0. With regard to Equations (2.21), (2.26),
(2.27), (2.30), (2.31), (2.34), (2.37), (2.38), (6.4), (6.5), we get

9 <ﬁ> _ el 9 04

a(p CQ n a(p QQ x;,;Mﬁ] )
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K K
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X —x dodv,
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P28 Pn 1 | (0 Pn (v) 0 Pn
+ - 1+S44M [Pzg B(p o x}ffMil +Pap ov CMXX;MA )

Q=M ,MB, (6.8)
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where ©; xyv, xpr; Saan; ciy (i=1,2,3) are given by Equations (1.8); (1.9); (2.13);
(2.18), respectively. The coefficients Cgp, Mig, Kjm, Pis P,(E) (i=12; j=124 1=
0,V; O =M,MB; see Equation (6.6)) have the forms

cay—1
XIN
Cv =cim—com—[cam (cim+cam) —2¢oum] <XM> ,

Cmp = (cim+com) (1 —cam),

T 0) i 2]
© Co S44M a(P g v g 7
64 (Yimc3m +Yom)

C3M71
0 Xy

Saam 0\ Coxl v \Co Xy
o=tz () L[ (e v [2 (2]}

2
CiM+Com 6‘2 O
K20 = {M+C1M2C2MC3M] (—q>
0

N2 =

2 xc sm—1

M
1 J
4+ - Lﬁ]
saam | |99 \ L5

2
9(_ %
v (CQXXiW)] ’
_ (com —c1m) (2+c3m) (%)2
Kig = -
Xy CQ

cay—1
2 i(cq)a oy 1 +®28(04>8 oy :
saam |99 \Co Coxsi"™ Co Co Xy~
pig = (01 +02+93) (c1m — c2m) ,
cam—1

P2 = {191 [(01M+62M)C3M*262M]+(192+133)(ClM*62MC3M)} XM,

P(l(f;)zﬁl+ﬁ27 p%): O (01 +193),

Pl — (9 +02) x5 ) = (0 +93)x !, 0 =M, MB, (6.9)

2

+0?

where yiy, O (i=1,...,4; j=1,2,3) are given by Equations (2.22), (2.35), respec-
tively. The normal stress p, is given by Equation (2.33). With regard to Equa-
tion (6.9), the coefficient pg (Q = M,MB) in Equations (2.33), (3.13) is derived as
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cay—1

Conditions Cyy; # 0, C3p1 # 0, Copy = 0. With regard to Equations (2.21), (2.26),
(2.27), (2.30), (2.31), (2.34), (2.37), (2.38), (6.4), (6.5), we get

9 (o 1 9 (0,5
€npQ = S44M OnpQ = — {gp (é) ) % <—ZQM>} )
Jd /o 1 90 {0,
w0 —sumerso =0 35 (21) = 5o )|

3
c X
Ong = — i [ClM—CzM-i-Z(ClM-FZCzM) <xﬂj> ] ;

3
o, x
Opp = Opp = — i |f'1M —Com — (c1m +2c2m) (—> ] ;

n3
G1p =Mip+ —Q7

ﬂ

K3 K5
wo =Ko+ Q + xéz,
n n

n/2m/2

K K
Wo = 4//[19 ?)+%

P1B Pn 1 (9) d < n ) (V) 0 <pn ):|
nB— — —¢ — — ||+ B
OB =TT saam {p 1599 \ 0w ) P18 v \ Gy

B
M
pagpnxy 1 { (¢) 0 <pnx1?4> (v) 0 (pnxi@)]
4 DEIIM — +pi) — ,
Cm L M P

Q = M,MB, (6.11)

S

where O; xps; Sa4p; Civ; P1Bs pSTB) (i=1,2,3; T = @, V) are given by Equations (1.8);

(1.9); (2.13); (2.18); (6.9), respectively. The coefficients (g, N3g. Kip. P3s. Py
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(i=3,5;t=0,v; Q=M,MB; see Equation (6.6)) have the forms

3
XM
S =cim—com+2(cim+2can) <)7N) » Cmp=3(cim+cam),

3 3

ogxy (Yau —2v1m) | 1 [ 0 (quM) 0 (cqu)}

= + — - :
o Co S44M a<P g YMBV ¢

K30 =3 (cim +2com) ( ) Saam { <0qu>}
2R

ok B wH 2)32)

(924+93—201) (cim +2c2m)

P3p = 3 3
M
v+ O +9
:(i(g) = ! 3 2’ 91/3) = #a QZM,MBa (612)
Xy Xy

where vy, O (i=1,...,4; j=1,2,3) are given'by Equations (2.22), (2.35), respec-
tively. The coefficients Mg, K19 (Q = M,MB) are given by Equation (6.9), where
Co in Equation (6.9) is given by Equation (6.12). The normal stress p, is given by
Equation (2.33). With regard to Equation (6.11), the coefficient pg (Q = M,MB) in
Equation (2.33) is derived as

1 XM -3 -
PQ—@ [1—()7}\,) ], Q=M ,MB. (6.13)

Conditions Cyy; # 0, C3p1 # 0, C1py = 0. With regard to Equations (2.21), (2.26),
(2.27), (2.30), (2.31), (2.34), (2.37), (2.38), (6.4), (6.5), we get

o C3M—l 3
€ = — i [C3M <j—;> -2 (i—M) ;
n

0 c . 1 9 [o,x
€190 = 544M OngQ = — [a(p <7C xCZM 1>x3M - —< ZQM>],
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€400 = S44M Ongp = —O
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n
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_S44M{plB 30 | o 2—|—1an +p338 Cn Z—HnXM
C3m
b [p ¢) 9 <anM )er(v)j(pan )} Q=M,MB, (6.14)

S44M 3B 3([) Cm 3B gy Cm

where ©; xps; Sa4pm; Civts PiBs pgg) (i=1,3; T = o,Vv) are given by Equations (1.8);
(1.9); (2.13); (2.18); (6.9), (6.12), respectively. The coefficients CQ, Kep (O =M,MB;
see Equation (4.6)) have the forms

XIN cay+2 XM 3
Cum = 1 [eam (e +com) — 202M]( ) +2(c1m +2c2m) ()E)’

XM
Cms = (cim +cam) (cam +2),
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2 9 Gq i(cqx?w)
saam 00 \ Lo xiv ! ] de \ Co
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_ 2 ( ) g< > Q=M,MB. (6.15)

Saam OV \ L xiv ! Co
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The coefficients N2p, Kog and N3p, K30 (O = M,MB) are given by Equations (6.9)
and (6.12), respectively, where (o in Equations (6.9), (6.12) is given by Equa-
tion (6.15). The normal stress p, is given by Equation (2.33). With regard to Equa-
tion (6.14), the coefficient pg (Q = M,MB) in Equation (2.33) is derived as

C3M71 3
pQ:L l("’_N> - (x_M> ] 0 = M,MB. (6.16)
Co | \xm XIN

Conditions Cyy; # 0, Copy # 0, Capy # 0. With regard to Equations (2.21), (2.26),
(2.27), (2.30)—(2.32), (2.34), (6.4), (6.5), we get

2C3m
ey = — L0 (CIM"'CZMCSMXCW 1o 26 ) ;

Cm x
Pn cay—1 C_:3M
Eom = €om = — 7— | Cim + Coam X, +—>,
o L (c a4 22

PnCim -1 0 (PnCw) 19 (PnCm)
EnoM = Gn +x, M — + === ,
oM S Bt ( T ) 90\ Tu ) e\ T
pnClM Cag—. 9 pnCZM 19 pnC3M
€10M = S44M OnoM = 6[8\/( )+xn3M IE( )+—3— LR NN

CM CM X5, ov CM
OnM = — é)M{ClM(ClM—CzM)+C2M[(01M+C2M)C3M 2eam]o !
~ 28sm(cim +20m)
x3 ’
GoM = Oom = — 57’; lCW (crm — cam) + Con (c1a — coneapr) x5!

Cam (e +2com)
+ )
x5
Nam

1
Gy =Mim +MNam %, + x3,
n

2(C3M71)
Wy = Kim + Kop Xn

Ksm S
L%M 1+x—3+K6MX,§3M 47
n

n/2m/2
M Kom 2ea+l _ et
W 4 M ) ( M M )
M= //[3 e 1M N
ﬂ L_L Kam ( cay+2 CzM+2)
* 3 <X?N X ) +C3M+2 M TN
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K .
sy In (22 ) SO (it )| dga,
XIN C3M—1

pisPalin 1 [ (g) 0 (pnC1M> v) 9 (pnC1M>:|
B = — +
Onb Cu s PP op \ Gy ) P T
n 1 n n
L P2sPaCou | |:p(q>)_ (p Cm) ol >_ (p Cm)} 6.17)

Cum saam | 22 00\ Ly Bov\ Cu
where ©; x7nv; X5 Saam Civ; PiBs pg) (i=1,2,3; T = @,v) are given by Equa-
tions (1.8); (1.9); (2.13); (2.18); (6.9), (6.12), respectively. The coefficients C;y,
Car Mimts Kjp (i=1,2,3; j=2...,6; Equation (6.6)) have the forms

o 3
Cim = (2+cam)xy™ 3, C2M=@7 Cam = (cam — 1) xpM,

3[(c1m +com) cam — 2 com) X~ !
Cn = (camr — c1m) (2+can) 37"+ I )xz by
M

2(cim+2com) (1 —c3pr) xp,"
+ 3 ,

XIN
pnCiv (Vv +vom) 1 [ (PnClM) d (m@w)}
= — + P ,
i Cum saam M Mo\ Cu MGy Cm
 PnCom (Vi c3m +Yom)
Moy = —
Cm

e
S44Mm 3M3(P Cm 8

2l

Nant = — PnG3m (YCZZ 2Yim)- S;M { ai ) o <p”§CAjM>] |
Kiy = 3(61M2_C2M) <PnCCA;M)
o)
Kom = |:<61M+;2M)C%M+C1MZCZMCSM] (p"CCAjM>
B e @ )

pnCC3M>2
o {la e e 5 (28]}
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Kay = ClMCzM(ClM_CzM)(2+C3M>(§M>2
+S4iM {% (pngg;M)%(pncﬁ;M) 92 0 (PnClM)%(pnCZM)}7

IR E I E|

Kem = Conr Cam [2com (1 = e3p) — c1u] <5_An4)
B CSRCE i)
(6.18)

where vy (i=1,...,4) is given by Equation (2.22). The normal stress p, is given
by Equation (2.33). With regard to Equation (6.17), the coefficient py; in Equa-

tion (2.33) is derived as
C3M71 3
3 (X’—N) ey —1) <X—M> ] } . (6.19)
XM XIN

1 1
1_
PM = CM{ ¢y +2

6.3 Inclusion

The subscript Q = IN,INB and the stress 6, in Section 6.3 are derived as

1
O=IN = o4=pu Po=PIN=%—
Eun

O=INB = Gy =0nB, PO =PMB (6.20)

where py, E17v, Oug, PMB, Pin are given by Equations (2.33), (3.8), (3.10), (3.16),
respectively. Consequently, the conditions in Equation (2.36) are considered. In case
of the ellipsoidal inclusion, we get Co;y = Capy = 0, otherwise we get (un[N)anO
+ oo, (&1n),, 0 — £ o0, (ON), g — Feo due to c3 < 0 (see Equations (2.18),
(6.4)—(6.10)). With regard to Equations (2.28), (2.29), (6.4)—(6.6), (2.21), (2.26),
(2.27), we get [1]-[22]

—

€nQ = o0 = €00 = —OqPQ;
€npQ = S44IN OnpQ = —PQ = E)(p
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Jo
€,00 = S44IN Onpp = —O Po avq

OnQ = OpQ = Opp = —O¢,

10 = — po |60 (Yun +aiw) + 1 d54 N dJoy
10 = — PQ |Gq (YUN T+ V2IN SN Y3IN 90 YaIN = v

362 2 do,\> [do
—n2 )74 4 |
WQ_pQ{ZPQ+S44IN l(%) +<3V) ’
) T2 12 s )
49 2[00\, (2
W n / / IN{sz S44IN [(a@) +(av> 1}d(pdv’

0= M,MB, (6.21)

where ©, sy, Yy (i=1,...,4) are given by Equations (1.8), (2.13), (2.22), re-
spectively. The normal stress p, is given by Equation (2.33). With regard to Equa-
tion (6.20), the coefficient p;y in Equation (2.33) is derived as

1 -2y

6.22
Ein (6.22)

PIN =
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Chapter 7

Mathematical Model 5

7.1 Mathematical Procedure

Let the mathematical procedures dEq. (2.24) /dr, Eq. (6.2) /r be performed, and
then we get

9*U, U,
naT,zl*(l*%) o, =0, (7.1)
U, Au, %u,
axn = —S44 (C] +C2) (X% a—x’% +4Xn @) s (72)

where s44 and ¢y, ¢2, c3 < 0 are given by Equations (2.13) and (2.18), respectively.
Let the mathematical procedure dEq. (7.2) /9 be performed, and then we get

9*U, ) d*u, Pu,  Puy,
R L 6 4 . 7.3
ox2 s e+ <x" ox4 0% ox; + ox2 > (7.3)
Let Equations (6.2), (6.3) be substituted to (7.1), and then we get
o*u uy, u
2 n n
X, P +(7T—c3)xn—== o3 +4(2—c3) 2 =0. (7.4)
Let u, be assumed in the form u,, = xn, then we get
e, G
Uy :Clxn+C2X’13+x—2+C4, (75)
n

where C; ...,C4 are integration constants, which are determined by the boundary
conditions in Section 2.3. With regard to Equations (2.1)—(2.4), (2.14)—(2.17), (2.26),
(7.6), we get

1 2G5
€, =C1+Crc3x? I 3
n

G G
gp=€p=C1+Cox '+ = —|——4

n Xn
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€0 = O = 8&4_ 03—182 1 0G5 1 dCy
ne — $44Onpp = a(p Xn a(p a(p Xn a(p

aC, L.Hacz 1 9C3 1ac4

€0 = 54409 = O | — El b St
n® = 544 Ono v X, v xﬁ ™ T x av
2¢C 2 2¢,C
6n = Ci(c1 —2) +Caf(c1 +e2) e3— 2] — 3(C13+ ) 20 s
X Xn
Gy (c1+2c¢ c1C
Gp = 0p = Ci (c1 —€2) +Ca(e1 — cae3) 3! 3 ( 13 2)+ 164
X, X,
n n
= N
X, X
a1) K
W:KHerxr%(L3 1)+X_3+E+(K5+K9)x$ :
n n
K
+ JrK X2 4+ Jrﬂ (7.6)
n Xn n

where © and n;, x; (i=1,2,3) (i=1,2,3) are given by Equations (1.8) and (6.6), re-

spectively. The coefficients N4, ¥; (i=4,...,6) are derived as
1 aC. aC.
n4—C4Y2+— (“{3 30 4+ Y4 av4>

dCy 2
(&)

dC aCy o? dCy @)
¢ 0¢p dv av

1 aC.
_c1C4+— (a—(:> +6?
Ks = (c1—¢2) (24 ¢3)Cy C2+ <

2 a0 0600
" s \ 0@ 0@ v 8\/

[262 (1 —63) —C1]C2C3

2 (30,00, p00,963
o LOJeL0) av av
B 1 (C ac4 ,9C1 ACy

Kg—(cl C2)C1C4—|— <a(P a([) (C] v BV)

S44
_ I (3C,0C; ,9C, 3C,
Ko = (c1—c2¢3)CrCq+— ( 90 a(p +0 WW)

544
9C; 90, ,dCs ac4)

1
K10 = (c1+2¢2)C3Cy + ( 90 a(p + FYY (7.7)

where y; (i=1,...,4) is given by Equation (2.22). In case of the ellipsoidal in-
clusion, we get Co;y = C3py = Cyy = 0, otherwise we get (unIN)xn_@ — & oo,
(&), o — £, (On),_o — oo duetoc3 <0 (see Equations (2.18), (6.4)—
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(6.10)). In case of Cyy # 0 (see Equations (6.4), (7.5)), the mathematical solutions
for the ellipsoidal inclusion is presented in Section 6.3.

7.2 Matrix

The integration constants Cyyz, Capr, C3pr, Capg for the matrix (see Equation (4.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)—(2.32). The bound-
ary conditions result in the following combinations of Cyys, Copr, C3ar, Capg, Where
the combinations of Cyys, Copg, Capy are presented in Section (6.2). Finally, such a
combination is considered to exhibit a minimum value of the elastic energy W¢ of
the cubic cell (see Equation (2.27)). The subscript Q = M,MB and the stress 0, in
Section 7.2 are derived as

o0=M = Gy = Dn,
O=MB = 0,;=0s, (7.8)

where p, and o,p are given by Equations (2.33).and (5.9), (5.12), (5.15), (5.18),
respectively. Consequently, the conditions in Equation (2.36) are considered.

Conditions Cyy; # 0, Cqps # 0, Copy =C3p7 = 0. With regard to Equations (2.21),
(2.26), (2.27), (2.30), (2.31), (2.34),.(2.37), (2.38), (7.5), (7.6), we get

(¢ CM
GnQCZ(C1M02M+ m),
n
O, C1M
G(pQ—GeQ—_é(ClM_CZM_ Xn >7
T
N4
10 =MNi1g + xQ,
n
Ky, Kg
WQ—K1Q+—2Q+x—nQ7
n
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n/2m/2
K K
Wo=4 | M () + st —w) + 2 (5 —h)] doav

_ pPwPn 1 [ (¢) 9 [ Pn v) 0 [ Pn
Ong = CM Saant |:p1 a(p C +plB E)v C
pappn 1 [ (¢ O (m) ) 0 (pn)}
+ +— +ood — (E2) ], o=Mm,MB, (7.9
Cm S4am {943 a(P ¢ p 8 g ¢ 79

where ©; X3 Xar5 S44p5 Cints P1B> p(lg (i=1,2;T= @, V) are given by Equations (1.8);
(1.9); (2.13); (2.18); (6.9), respectively. The coefficients (g, N4p, Kjo (j=4.8;
0 = M,MB; see Equation (7.7)) have the forms

2com XM
Cv=cim—com+ . . Cm=cim+cam,
IN

o= T s e (50) 1ror ()]
o= (@) v [ G o R @)

2 2 2
sa=tew-an (&) - AR EN @ RG]

(924+93)cim — 201 com

PaB =
M
pg):ﬂﬁﬁz’ %}_M7 0 = M,MB, (7.10)
XM XM

where yiy, O (i=2,3,4; j=1,2,3) are given by Equations (2.22), (2.35), respec-
tively. The coefficients N1g, K1g (Q =M,MB) are given by Equation (6.9), where
Co in Equation (6.9) is given by Equation (7.9). The normal stress p, is given by
Equation (2.33). With regard to Equation (7.9), the coefficient pp (Q = M,MB) in
Equation (2.33) is derived as

1 1
pQ@<1a>7 0=MMB. (7.11)

Conditions Cyys # 0, Capg # 0, Cipy = C3pr = 0. With regard to Equations (2.21),
(2.26), (2.27), (2.30), (2.31), (2.34), (2.37), (2.38), (7.5), (7.6), we get

cau—1
e —_ SqC3u (X M
nQ CQ XM 9
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Gq | (X au=l
€00 = €00 = — 7o -=,
T g, l( ) Xn
. G 8 Oy B <0q)
= S44M - - T
neQ neQ CQXLSM 1 C.:Q
d Oy _d <cq)
€00 = S44MOno0 = —0O | — [ ——
c x \ M 2
Cno = — 54 [e3m (cim + cam) — 2c2m] (—") LM
CQ XM Xn

Oy o \ M ey
Gpo =0pp = — 7 | (€1M — C2mC3 —_— - )
00 ? CQ l( M M) (xM) Xn
N4o
O1 2 xC3M 1 0
0= Xn
WQ:KzQx,%(C3M71) K42Q—|—K9QXC3M 1
n/2m/2
K20 2c +1 2cau+1
W4 / / it gert) B
0= |:2C3M 4 1 xIN + K4Q (‘XM 'XIN)
K9Q (L3M+2_xc3M+2>:| d(PdV
03M+2 IN ’
P P2BPn ((p i Pn (V)i Dn
" Cuxs ™ saam P25 3¢ ! TPy Cug !
P4B Pn (¢) a (p > <Pn>]
+ + — (== ]+p , =M,MB, (7.12
Tn s44M[ 530 (&) TP 5 (6) | 2 712

where ©; xiv; Xup; Saams Cints P B

p%) (i=1,2; j=2,4; 1= @,v) are given by Equa-

tions (1.8); (1.9); (2.13); (2.18); (6.9), (7.10), respectively, and { g, K9p ((Q = M,MB);

see Equation (7.7)) have the forms

1
XI M 2CoMm X
Cm = [cam (c1m + com) — 2¢om] ( N) MM
Xy XIN
Cms = c3m (cim +cam),
. :_w(&>2_ L i<_>
© ! Co saam 09 \ Lox ! | 99 \ Lo

69



e 9

Sa4p1 OV

The coefficients Ng, Kop and N4g, K4p (O = M,MB) are given by Equations (6.9)
and (7.9), respectively, where { o in Equations (6.9), (7.9) is given by Equation (7.12).
The normal stress p, is given by Equation (2.33). With regard to Equation (7.12),

< Sq a("q
Coxi" ') v \Lo

the coefficient pp (Q = M,MB) in Equation (2.33) is derived as

o=, Km)cm_l

Conditions Cszy; # 0, Capg # 0, Ci1py = Copy = 0. With regard to Equations (2.21),

XIN

) . O=M,MB.

] . Q=M,MB.

(2.26), (2.27), (2.30), (2.31), (2.34), (2.37), (2.38), (1.5), (7.6), we get

e ZGq ()C]N>3
nQ CQ x” )
o Oy XIN 3 1
o=toe="g, | (a) “wf

3
XIN 1|0
Crog =S4t Orog =~ [(—) - —] A

3
XIN 1] 0
160 = S om0 = K—) B x—] av
n n

26(1 XIN 3 oM
Ong = |(ctm+2cm) | — ) — ,
CQ Xn Xn
3
(¢ XIN
Gop = o = — 7= | (c1m — 2cam) <—) -
CQ Xn
610 = 113Q n 1’]4Q7
X
n n
_ _ K3 +K4Q K100
x6 X2 T xR
n/2m/2

K 1 1
Wo = 4/ / { 30 (T—T)-&-KA,Q(XM XIN)+K10Q<
Xy Xy XIN

D)

Pn

_ p3BPn 1 |:
S44M

OuB =
n CMxﬁ/[
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(¢) O
P3s 0 <CMx13V[) P

(v) 0

3B gy

(

Pn
Cumxy

XM

(7.13)

(7.14)

! >] dodv,



pappn 1 { (g) O (pn> (v) 0 (pnﬂ
I T T L) oM (L) 0 =M, MB, (7.15
G sa 1P 30 \ G ) TP v \ 4y )] © (7.15)

where ©; xiv; Xpr; Saam; v PjBs pgg (i=12; j=34; T = @,v) are given by
Equations (1.8); (1.9); (2.13); (2.18); (6.12), (7.10), respectively, and (g, Kiop
(Q = M,MB; see Equation (7.7)) have the forms

.
Cy=— [2 (cim +2cam) + 2com (ZS) » Cus=—2(cim+3cm),
5 ) 3
\ o 1 {8 (quIN> d (G‘/ﬂ
_ +2 ) - 30 a9 \Co
K100 = — Xy (C1m C2M)<CQ) saam 09\ Co / 99 \Cp
02 0 qu;N> 0 (Gq>_
- 9 9 (9| 7.16
S44M {8\/( Co / av\Co/| o

The coefficients N3p, K30 and N4g, K4¢ are given by Equations (6.12) and (7.9),
respectively, where (o in Equations (6.12), (7.9)is given by Equation (7.15). The
normal stress p, is given by Equation (2.33). With regard to Equation (7.15), the
coefficient pp (Q = M,MB) in Equation (2.33) is derived as

- XIN = 1
Co xiv

Po , OQ=M,MB. (7.17)

Conditions Cyy; # 0, Cops #0, Capy # 0, Capy = 0. With regard to Equations (2.21),
(2.26), (2.27), (2.30)—(2.32), (2.34), (7.5), (7.6), we get

€M = — é)—; (§1M+C2MC3MX§W71) ;
EoM = EoM = — %1 (C1M+C2Mx,f3M_l + C;—M ,

. 9 (paCim ca—1 d (pnCom 1 0 (pnlam
€noM = S44M OnoM = 90 ( Cur +x, o\ Ty + X0\ Ty )’
€nOM = S44M OnoM =

9 (puCim 1 0 [ PnCom 1 9 (puCam
@ . C3pm . o
|:aV ( CM T ov CM +xn ov CM ’
OnMm =
_ 2 c
- é)—; {ClM (c1m — cam) + Com [(c1m + cam) cam — 2 cap] XS4 1 — y} ,
n

GoM = Ogpm =
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_ AM CIM
- {c at (Crnt — ant) -+ Cong (€1a1 — o cng) X9~ 4 gx—] ,
n

Napm
Gim = MNip +Mam x4 .
n

2(e3y—1 Kapm 1, K8m
War = Kip+ Koy ¥ )+—2+(K5M+K9M) M+,

X Xn
n/27m/2

Kim Kom 2e3y+1 20 +1
W, 4// x x )—|— (x M M )
M= { M —XIN Doy +1 XIN

Kspm + Kop ( e xc3M+2)
ey +2 M N
Kem

+—(xM x )] dodv,

+ Kanm (xpr —xn) +

e L (o) 2 o)
_ PngLCzMMiM [ (<p>§p (PnCCMW) +pl) 2 = < éw >]

 Pappalan 1 [p«p)j (PnCW)erMi (P"C“M)], (7.18)

48 &L0) Cm 4B 9v Cum

Cm S44Mm

where ©; Xy, Xp; Saams Civts P B pﬁ) (#=1,2,3; j=1,2,4; T = @,Vv) are given by

Equations (1.8); (1.9); (2.13); (2.18);(6.9), (7.10); respectively. The coefficients

Cim» Cars Mams Kjnt, Pas, pf&;) (i=1,24; j=4,5,8,9; T = @, V; see Equation (7.7)) have

the forms

cu—1 3

Civ=—cmxy” ", Com=1, Capy=(c3m—1)xy
Car = (camr — cim) esmxid ™ + [(cim + camr) e3m — 2cam) xii ™!
2cm (1 — C3M) Cam
_l’_
XIN

_ Pnlamrom 1 [

Nay = —
Cm S44m

o (%
M3
p)
99

o) {408 o208

ksm = G Com (cim — cam) (2+ cam) ( n)

) g (M)

)}

G A0 2308



Ken = Qv Camt (cim — com) (CM>2
. st % §1M> <p”é:M) +®2 d (anCA;M> % <pnCCA:M): ’

Konmr = Gomr Camr (c1m — com e3m) <&>2

Cm

o L0 ) g (P ) v (Pe2) s (M)
(7.19)

where vy, 95 (i=2,3,4; j=1,2,3) are given by Equations (2.22), (2.35), respectively.

The coefficients Ny, Kiys pig. Poy (i=12: T = @,v) are given by Equation (6.18),
respectively, where (s, Cp in Equation (6.18) are given by Equation (7.19). The
normal stress p,, is given by Equation (2.33). With regard to Equation (7.18), the
coefficient pys in Equation (2.33) is derived as

1 A
Py = 7.- (§1M+czMx A 1+%”V4>, (7.20)

Conditions Cyy; # 0, Caps # 0, Capp # 0, Copy = 0. With regard to Equations (2.21),
(2.26), (2.27), (2.30)—(2.32), (2.34);(7.5), (7.6), we get

A (Cl )

bt = Eop = — ( C3M C4M)
CM Xn
- PnC1M LLo(p L19 pnC4M
noM 44M OnoM — 38 )C a ’
PnC1M 19 nC3M 1 0 PnC4M
n - n @ Y T8 9
€n0M = S44M Onom = L)V ( Cur > 38 X, 0V Cwr
OnMm =
P (cint —can) — 283m (c1m +2com) 2C4M62M
- Cu G
Com = Ogm =
2
R Cam (crm +2com) | Cameru 7
Cm X3 X,
SimM =MNim+ n3M+ n4M7
n Xn
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3M Kapm  Kem | Ksm  Kiom
> t—3 +
X

WM =

n Xn Xn xl‘il 7
Tc/21'c/2 | |
K K3
Wy = 4//[ M — N)+TM<T—T)+K4M(XM—XIN)
XN *m

X K 1 1
+ KeprIn ( M) + M (x,zw x,N> + Kiom < — >] dodv,
XIN XIN XM

2
pprnClM 1 l: a <pnC:IM> (v ) (pnClM)]
WB = — — — +
Ont Cm S44Mm Pis B ae Cum P15 3y aV Cm

P3spnCam | 1 [ (¢ 0 (pnCw) (v) 0 (p;@w)]
* Cm JrS44M [p3 L) Cm +p3 Cm

PapPnam | 1 [ (¢ 9 (pnCzLM) (v) 0 <pnC4M>] 701
* Cm JrS44M[ B oo\ Cm T Pap ov \ Cm » (72D

where ©; Xy, Xp; Saams Cimts P B p;? (i=1,2,3; j=1,3,4; T = @,Vv) are given by
Equations (1.8); (1.9); (2.13); (2.18); (6.9), (7.10); respectively. The coefficients

Cint> Car> Mams Kjm, P4gs pr) (i=134; j=4,5.8,9; k=12; 1= @,v; see Equa-
tion (7.7)) have the forms

2 3
CIM:Ta C?)M:la C4M:_T>
m M
_ 2(cty—cam)  2(cim+2¢am) | 6cm
QM = 3 - 3 + PR
M XIN XIN Xy

()50 (") v () (%))

o)\ 2
Kiom = Canm Cam (cim +2c2m) (C—;)

) a8 w2850
(7.22)

The coefficients Mz, Kipg (1= 1,3) and M4y, Kaps, Kgps are given by Equations (6.18)
and (7.19), respectively, where CjM (j=1,3,4), Ly in Equations (6.18), (7.19) are
given by Equation (7.22). The normal stress p, is given by Equation (2.33). With
regard to Equation (7.21), the coefficient pys in Equation (2.33) is derived as

oy = <C1M+c¥+cﬂ>. (7.23)
Cm



Conditions Coy; # 0, C3py # 0, Capp # 0, C1py = 0. With regard to Equations (2.21),
(2.26), (2.27), (2.30)—-(2.32), (2.34), (7.5), (7.6), we get

2C3m
€M = — é’M (CZMCBMXCW T C3 ) ,
n

3M aM
Caw , Lar).
X5 Xn

X;
Pn am—1
EoM =E€op = — 75— (CzMX,?M +
Cm

EnoM = S44M OnoM =

xcw_li(l?nézM)+ii(PnC3M>+1 J (PnCth)
"9\ Cm x5 00 \ Cu 09\ Cu )’

€n0M = S44M OnoM =

—ol (e () o (P2

OnM = — 5_:4 {‘;ZM [(CIM + o) 3y — 2cop) x5!
~ 28sm(cm+2cm)  28amcom
x Xn ’

Gom = Opm =

_ L {C2M(CIM—C2MC3M) el
Cm

3

Cam (cim +2cam) n Cam CIM]
n

Xn

csu—1 | N3m 114M

O1m =Mam Xy 3 +
Xn
2(e3p—1 K3M Kam _ Kiom
WM:KZMxn(3M )+ o by R *omx 4 T
'x}'l ﬂ xn
n/2m/2
_ Kom 2ol 2ol Kem (11
WM—4//[21(XM XN )+T 3 73
00 c3m + XN Xu

K . L
+ Kt (pr — x) + —22 (L‘W 1_x;;\¢4 1)
ey — 1

Kom ( cay+2 C3M+2> ( >:|
X —X + K ——— || dodv,
cap+2 UM IN M\ i

_ pprnlom 1 [ (9) 9 (PnCom (v) 9 pnCz
OnB = CM Saam | p a CM +p23 av

_pSBPn§3M_ 1 Pn pnCSM
Cm saam | pSB aV
pnC4M PnC4M
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 PagPnlam 1
where ©; Xy, Xp; Saams Cims P B, p]% (i=1,23; j=2,3,4; T = @,Vv) are given by

d
%
8
L)
8
Cm Sa4am | el
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Equations (1.8); (1.9); (2.13); (2.18); (6.9), (7.10); respectively. The coefficients
Cimr (i=2,3,4), {pr, €7pp have the forms

v =3
Com = = Cam = camxy” U Cam=— (2+cm) M,
M
~ 2[(c1m+cam) cam — 2 copm] Xf;i/M_l 2(cim+ 2C3M)03MXEM71
CM = 3 - 3
M XIN
-3
N 2(cim +c3m) com 37"
XIN '

2
w7 = Com Canr [2com (1 — c3m) — c1um] (5—;)
1 0 0 0 0
+ |:_ <pnC2M> g (pnC3M> @2— <pnC2M) 9 (pnC3M>:| . (725)
saap 00\ Cum ) 09\ Cum ov\ Cu Jov\ Cm

The coefficients Ny, Kiny (i=2,3); Namr, Kapr, Koars Kiooam; are given by Equa-
tions (6.18); (7.19); (7.22), respectively, where {y (j=1,3,4), {u in Equations
(6.18), (7.19), (7.22) are given by Equation (7.25).  The normal stress p, is given

by Equation (2.33). With regard to Equation (7.24), the coefficient py in Equa-
tion (2.33) is derived as

1 N
Py = 7 (CzMx;X/M Ly C4—M) : (7.26)
Em Xy XIN
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Chapter 8

Strengthening

The analytical model of the micro-strengthening G;; = G (x]) and the macro-
strengthening Gy, results from the following analysis [3, 4, 12, 13, 21]. Figures 8.1
and 8.2 shows the plane x’zx’3 in the cubic cell (see Figure 1.2) for x; € (0,a;) and
x1 € (a1,d/2), respectively, where [x1,x2,x3] are coordinates of the point P C x)x3.
The plane O'PyP, with the ellipse Ey3 (see Figure 8.2) represents a cross section
of the ellipsoid inclusion in the plane x,x;. With regard to Figures (8.1), (8.2), the
goniometric functions in Equations (1.8), (1.9) have the forms

XA X3
’ dn
X1

/ P 42/
P, Es / d/2
\<P5
P
was/\\
\-
>0 "

O’

4 Py Pi| /P35 X)
/ X2
X1

Figure 8.1: The plane x’zx’3 in the cubic cell (see Figure 1.2) for x; € (0,a;), where
[x1,X2,x3] are coordinates of the point P C x4x5. The plane O'P; P, with the ellipse
E»3 represents a cross section of the ellipsoid inclusion in the plane x5x; (see Fig-
ure 1.2).

1 b))
tan@ = — = —,

X1
)
/x%—i—x% cot X
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[ 2, 2

. X7 +x X3 X3

sinv = 21—222, COSV = ———, xn:—e, (8.1)
X7 +x5+x3 /x%+x%+x% coS

where cos® is given by Equation (1.6). With regard to Equation (1.2), the parame-
ters by, b3 of the ellipse E»3 along the axes x’2, xg, respectively, are derived as (see
Figure 8.1)

) a a% —xf . as a% —xf
by=0'P = , b3=0"P,= , (8.2)
a a
and then we get
as b% fx%
by = PyPs = ——. (8.3)
a
x| %3
d/2
X1
/ T 7
- 2 dn2
dr2
v P
O
Lo ]
6) £
P, |/P3 X,
/ X2
X1

Figure 8.2: The plane x5x} in the cubic cell (see Figure 1.2) for x; € (a1,d/2), where
[x1,%x2,x3] are coordinates of the point P C x)x}.

The micro-strengthening G = Gy (1) represents a stress along the axis xj, which
is homogeneous at each point of the plane x,x} with the area S = d2/4, i.e., 6y #

f(x2,x3).
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If x; € (0,a;), then the elastic energy surface density Wy, which is induced by G
and accumulated within the area S;y = by b3 /4 of the plane O’P; P, and within the
area Sy = (a’/2)2 — Sy of the plane x5x} (see Figure 8.1), has the form

Wy = 002, (8.4)

where Gy is related to x; € (0,a;). The coefficient o is derived as

1 1 1 d?

o= 3 [nb2b3 <m — @) +m] , (8.5)
where Epy and Ejs is Young’s modulus for the ellipsoidal inclusion and the ma-
trix, respectively. The elastic energy surface density Wyg, which is induced by the
stresses Gy = Oy (x1), O1mp = G1mp (x1) (see Equations (3.10), (4.10), (4.13),
(4.16), (4.19), (5.9), (5.12), (5.15), (5.18), (6.8), (6.11), (6.14), (6.17), (7.9), (7.12),
(7.15), (7.18), (7.21), (7.24)) and Gy = O1n (1), O1mB = O1n8 (x1) (see Equa-
tions (3.14), (6.21)) has the form

1 /W, (%
Wis = s Wims ’
b [ bs
Wins = / / (6%1N+G%INB> dx3 | dxa,
0 0
by [ d)2
WIMS: / / (G%M+G%MB) dX3 dx2
0 by
d/2r dj2
+ / / (G%M+G%MB) dx3 dxz,
b, 0
x1 € (0,a1). (8.6)

The micro-strengthening 61 = Gy (x1) for x| € (0,a;), which results from the
condition Wy, = W5 [3, 4, 12, 13, 21], is derived as

I (Wins  Wims
=4/ — [ = 0 . 8.7
Olst \/20) ( E[N + EM , X1€ < 7al> ( )

If x; € (a1,d/2), then the elastic energy surface density Wy, which is induced by
o, and accumulated within the area Sy; = d? /4 of the plane x’2x’3 (see Figure 8.2),
has the form
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2 g2
_ Oost d

W, = 8.8
St 8 EM 9 ( )
where Oy is related to x; € (aj,d/2). Similarly, we get
W d/2 dj2 p
Whs = 2MS, Woms = / / (G%M + G%MB) dxydxz, x1€(a;,= ). (8.9)
2Ey 2
0 0
With regard to the condition Wy, = Whs [3, 4, 12, 13, 21], we get
2/W-
Co = =5 (8.10)
Finally, the macro-strengthening Gy is derived as [3, 4, 12, 13, 21]
) aj d/2
Gy = 7 / Oy dx) + / Oyt dxy | - (8.11)
0 aj

If oyy < oy or oy > oy, the strengthening exhibits a resistive effect against
compressive or tensile mechanical loading, respectively.

The macro-strengthening Gy = Gy (v, a1;a2,a3) is a function of the inclusion vol-
ume fraction vyy and the dimensions ay; ap, az of the ellipsoidal inclusion. In case
of a real inclusion-matrix composite, such values of the microstructural parameters
VIN, a1, a2, az can be numerically determined to result in a maximum value of |Gg]|.
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Chapter 9

Crack Formation

The analytical model of the crack formation in the matrix results from the fol-
lowing analysis [3, 4, 5, 19]-[22]. Figures 9.1, 9.3 show the ellipse E|»3 in the plane
x12x3 of the cubic cell (see Figures (1.4), (1.5)), where ajp» = 04, x122 = OS5 are given
by Equations (1.9), and a3 = O3.

With regard to the plane xj,x3 for @ € (0,7/2) (see Figures 1.4, 1.5), the elastic
energy density wo = wo (x,,,9,V) (Q = IN, INB, M, MB; see Equations (3.10), (3.14),
(4.10), (4.13), (4.16), (4.19), (5.9), (5.12), (5.15), (5.18), (6.8), (6.11), (6.14), (6.17),
(6.21), (7.9), (7.12), (7.15), (7.18), (7.21), (7.24)) is determined as a function of the
coordinates x,, v € (0,1/2).

The elastic energy density wg = wg (X12,9,X3,a1,a2,a3,viy) (Q =IN, INB, M,
MB) as a function of the coordinates x5, x3 is determined by the following transfor-
mations

X3 . X12 X3 1 X12
Xp=——, sinhv=—"r  0$V=—"— tanv=——=—>_(9.1)
C

0s6’ 2 12 2 2 cotv  x3
A2 T3 X2 TX3

where cos 0 is given by Equation (1.6).

Matrix. The curve integral Weys of wo = wg (x12,9,x3,a1,a2, a3, vin) (Q = M,MB)
along the abscissa PP, (see Figure 9.1) in the plane xj2x3 of the matrix (see Fig-
ures 1.4, 1.5) has the form

d/2
Wem = / (Wym +wumB) dx3 = / (Wwm +wumB) dxs. 9.2)
PP 0
Let fiom = fiom (x12,0,a1,a2,as, vy ) represent a decreasing function of the vari-
able x12 € (a12,x0m), wWhich describe a shape of the matrix crack in the plane xx3
(see Figure 1.4), where ¢ € (0,7t/2), a1, az, a3, viy are parameters of this decreasing
function. As presented in [3, 4, 5, 19]-[22], we get

afle__ \/ Wj\/l_ﬁlz\/l 9.3)

ox12 O
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X3
P,
X12
Eix
3
X12
O 4 P 5

Figure 9.1: The ellipse E >3 and the abscissa P; P; in the plane xj,x3 of the cubic cell
(see Figures (1.4), (1.5)), where aj» = 04, x122 = OS5 are given by Equation (1.9),
and a3 = O3.

X3
Eix;
3
flom
XoM
X12
O 4 6 5

Figure 9.2: The decreasing function fion = fiom (x12,9,4a1,a2,a3,viy) of the vari-
able x1» € {(aj2,xop), which describes a shape of the matrix crack in the plane xjpx3
(see Figure 1.4) for ajp > agﬁ,)l or ajp > aglcw) (see Equations (9.8), (9.9)), where
xom = Xxom (@) defnes a position of the crack tip in the matrix, and ¢ € (0,7/2), ay,
ay, az, viy are parameters of this decreasing function.

where Uy, is energy per unit length in the matrix. In case of intercrystalline crack
formation, we get
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K2
IcM
On =%, ©.4)
M
where Kjcyy is fracture toughness of the matrix. In case of transcrystalline crack
formation, we get

Oy = Ogpm, 9.5)

where the energy ¥g,p per unit length is related to the inter-atomic bonding of
boundaries of crystalline grain in the matrix.
As presented in [3, 4, 5, 19]-[22], the condition

(WcM )

is a transcendental equation with the variable @, and the parameters ¢ € (0,7/2),

ai, az, as, viy (see Figure 1.4.
IC c TC
The roots 0521\/)1 = a§21v>l (9,a1,a2,a3,viy) and a(le) = aEZM) (9,a1,az,a3,vin) (see
Equation (1.7)) of Equation (9.3) for O, which is given by Equations (9.4) and (9.5),
represents such a dimension of the ellipsoidal inclusion along the axis x12 C x1x2 (see

Figures 1.4, 1.5), which is critical with respect to the intercrystalline and transcrys-

talline crack formation in the plane xxs; respectively. Accordingly, if a<121v)1 > agAC,)

I T
or agzﬁ,), < agzﬂc,,), then the intercrystalline or transcrystalline matrix crack is formed

in the plane x1x;, respectively.

Let the function ag}w = ag}v[ (9,a1,a2,a3,viny) (X=IC,TC) of the variable @ €

X)

(0,m/2) exhibit the minimum G%ZM for @ = (p,(zZM. The critical dimension a,,;.,, =

—Om =0, (9.6)

X12=di2

a,(;g,)lM (ay,az,a3,viy) (X=IC,TC) along the axis xj» C x1xp (see Figures 1.4, 1.5)
defnes a limit state with respect to the formation of the intercrystalline matrix crack
(X=IC) and the transcrystalline matrix crack (X=7C) in the plane xix; at the mi-
crostructural parameters ay, as, as, viy (see Equation (1.1)). Accordingly, if ajs >

0(1)2(1);,1 (X=IC,TC), the condition [3, 4, 5, 19]-[22]

Wert — Oy =0, ap>als), X=IC,TC 9.7)

represents a transcendental equation with the variable x5 and with the root xoy; =
xom (@,az,a3,viy), which defnes a position of the crack tip in the matrix (see Fig-
ure 9.2). Consequently, the decreasing function fion = fiom (X12,9,a1,a2,a3,viy)
with the variable x1, € {(ajn,xop) and with the parameters ¢ € (0,1/2), a;, az, a3,
vin (see Figures 1.4, 1.5), which describes a shape of the matrix crack in the plane

x12x3 for ayy > a\x), (X=IC,TC)), has the form [3, 4, 5, 19]-[22]
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1
fom = S [CM_/ (\/ Wﬁw“%) dxlz} ., x12 € (a2, xom),  (9.8)

where Cyy = Cy (9, a1,a2,a3,viy) is derived as [3, 4, 5, 19]-[22]

Cy = [ / (M) dxlz} : 9.9)

X12=Xom

Inclusion. The curve integral W,y of wo =wg (x12,9,X3,a1,a2,a3,viy) (Q = IN,INB)
along the abscissa P P, (see Figure 9.3) in the plane x1,x3 of the ellipsoidal inclusion
(see Figures 1.4, 1.5) has the form

X3

P>

X12

3
P Eix;

X12

0 P, 4 5

Figure 9.3: The ellipse E123 and the abscissa P; PP in the plane xj2x3 of the cubic
cell (see Figures (1.4), (1.5)), where aj» = O4, x122 = OS are given by Equation (1.9),
and a3 = O3.

Wern = / (wiy +wing) dx3 + / (Wam +wpp) dx3

PP PP,
by a2
= / (win +wing) dxz + / (Wwm +wy) dxs, (9.10)
0 by

where ajp = 04 (see Equation (1.7)), a3 = O3, and b; is derived as (see Equa-
tion (1.2))
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asy/ iy =1,
by =P P= —, X12€ <O,a12>. 9.11)

a2
With regard to the intercrystalline and transcrystalline inclusion cracks (see Fig-
ure 9.4), the sign ’-” and the subscript M in Equations (9.3) and (9.3)—(9.7) are re-
placed by the sign °+’ and the subscript IN, respectively.

X3
Eix;
3
flon
X0IN
X12
O 6 5

Figure 9.4: The increasing function fia;nv = fiaiv (X12, 9, a1,a2,a3,viy) of the vari-
able x5 € {(aja,xorn), which describes a shape of the inclusion crack in the plane
x12x3 (see Figure 1.4) for ajp > aglzsj)v or ajp > agl?, (see Equations (9.8), (9.9)),
where xo;y = xory (@) defnes a position of the crack tip in the inclusion, and

¢ € (0,1/2) is a parameter of this increasing function.

Consequently, the increasing function fi2;y = fiow (x12,9,a1,a2,a3,viy) with
the variable x| € (aj2,x0;v) and with the parameters ¢ € (0,7/2), ay, az, as, viy
(see Figures 1.4, 1.5), which describes a shape of the inclusion crack in the plane

x1ox3 forajp > a&lzc;])\, orap > a(lgg\),, has the form [3, 4, 5, 19]-[22]
1 2 2
fran = . / Wiy — Oy | dxi2—Civ |, x12 € (a12,xo01n) , 9.12)

where Ciy = Ciy (9,ay,az,a3,viy) is derived as [3, 4, 5, 19]-[22]

Ciy = [/ <\/ WC%N_ﬁ%N> dxl?} : ©.13)

X12=X0IN
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Chapter 10
Appendix

Cramer’s Rule. The system of n linear algebraic equations is derived as

ayxy+apxy+ ... +apx, = by,
a1 xy+apxy+ ... +apx, = by,

Ay X1 +apxo~+ ... +appXxy = by,. (10.1)

The root x; (i=1,...,n) is determined by Cramer’s rule [23]

i=10.,n, (10.2)

where the determinant D™ with n rows and 7 columns has the form

all’ 012, .. aln
D(n) o a217 a22’ e a2n
apl, a2, ... Qpn
S 1+ 1) _ X 14+i (1)
=3 (-)""auD) = (-1 ayD . (10.3)
i=1 i=1
The subdeterminant Dgn) is created from D(’”, i.e., the i-th column of D™ ig
replaced by
by
by
. 1 TOWS. (10.4)
bn

n—

Similarly, the subdeterminant Dl(j D (i,j=1,...,n)with (n— 1) rowsand (n— 1)
columns is created from D), i.e., the i-th row and the Jj-th column of D™ are omit-
ted. If n = 2, then we get
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2 ayl, dap
D@ = = aj1axm — aina;. (10.5)
azy, ax
Consequently, if n = 3, then we get
ay, dap, ai3
DW= ay, an, ax
asy, az, ass
a, a a1, a az, a
—ay 22, A3 21, a3 21, A (10.6)
az, asjz asl, asz asy, az»

Integrals. The derivatives of the functions f = X, f = Inx and the constant C are
derived as [23]

' 1
<x7‘> AL (Inx) = -, € =0, (10.7)
X

The indefinite integrals of f = X, f = Inx and the constant C have the forms [23]

A
/xkdx:xﬂ, A1 /@:mx, /Cdx:Cr. (10.8)
A+1 X

In case of the product f g of the functions f = f (x), g = g (x), we get [23]

(f8)' =fs+rs (10.9)
and then the integral of f g has the form [23]
/f’gdx:fgf/fg’dx. (10.10)
With regard to Equation (10.17), the following integrals are derived as [23]
A+1 A+l A+l
2 X X 1 X 1 / 2
Inxdx=——Inx— | —— X —dx=——Inx— —— d
/x nxdx o nx 7»+1xxx X_an A x"dx

x?»Jrl 1
:m <lnx—m> , 7&#-1,

1
/lnxdx:/lxlnxdx:xlnx—/xx—dx:xlnx—/lxdx:x(lnx—l),
x

1
/x)‘lnzxdx: M ln2x72/x7‘lnxdx
A+1
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s

T AfL

1 \? 1
(mxH) +(7~+1)2]’ £ 1. (10.11)

Let F = F (x) be a primitive function of f = f (x) in the interval x € (a,b), i.e.,
b
f = dF /dx. The definite integral [ fdx is defined by Newton-Leibniz’s formula
a
[23], which has the form

b

/fdxz F(b)—F(a). (10.12)

a

Wronskian’s Method. The differential equation (4.3) with a non-zero right-hand
side [23] is derived as

u, 2 Ju, 2uy 3
ST T e o= Y CixN 2, 10.13
ox2  xp 0x, X2 & & Z‘I i ( )
where the integration constants Cy, C, C3 are determined by the boundary conditions
in Section 2.3. If g = 0, we get

u, 2 du, 2uy,

oxr  x,0x, X2

=0. (10.14)

If u, = x*, then the solutions u; 1, Uz, of Equation (10.24) have the forms

1
Ulp = Xp, U2p = 5. (10.15)
‘x}’l

The solution u,, of Equation (10.22) is derived as [23]

2 W(z)
=Y aju; a:/de i=1,2. (10.16)
Un ~ iUin, i o) n y

Wronskian’s determinants W(z), Wi(z) (i=1,2) with 2 rows and 2 columns are
have the forms [23]

2) Uln, Un 2) 0, uy 2) Uy, 0
W =1 0uy,  dugy |, Wi = dury |+ W = duy, . (10.17)
0x, > oxp & Ox, ox,°

The determinant Wi(2) (i=1,2) is created from w2, ie., the i-th column of W(2)
is replaced by the following one [23]
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2 } 2 rows. (10.18)

Let f1, ..., fu represent n solutions of a differential equation of the n-th rank with
zero right-hand side. Let the functions f, ..., f, of the variable x exhibit continuous
derivatives to the (n— 1)-th degree. The solution of this differential equation with a
non-zero right-hand side (i.e., g # 0) is derived as [23]

n W_(”)
f:izziaifi, ai:/de. (10.19)

With respect to f1,. .., fn, Wronskian’s determinant wn) (i=1,...,n) with n rows
and n columns have the form [23]

f17 f2’ e fn
9N 9h Ofn
wo | X AL (10.20)
r'n lh i
ox—1° gxn—1oo7- - gyn—1
where Wi(") (i=1,...,n) with n rows and n columns is created from W(”), i.e., the
i-th column of W) is replaced by the following one [23]
0
0
. 11 TOWS. (10.21)
8

Numerical Determination. Numerical values of the thermal stresses in a real ma-
trix-inclusion composite include integrals and derivatives, which are determined by a
programming language. If f = f (x), then a numerical value of the derivative df/dx
is determined by [23]

of  flx+Ax)—f(x)
ox Ax '
In case of the angles ¢, v (see Figure 1.4), the step Ax = A@ = Av = 107° [deg]

is sufficient [3, 4, 5, 19]-[22].
Let F represent a definite integral of the function f = f(¢,Vv) with the variables
¢,v € (0,m/2). Let n, m be integral parts of the real numbers ©/ (2A@), ©/ (2Av)

(10.22)
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[3,4,5, 19]-[22], respectively. Numerical values of the definite integral F are deter-
mined by the following formula [23], [3, 4, 5, 19]-[22]

m/2 n/2 m n
F= / / flo,v)ydedv ) ( > fixAg;jx AV)A(p) Av, (10.23)

0 b j=0 \ i=0

where the steps A¢ = Av = 0.1 [deg] are sufficient. Finally, the average numerical
value f of the function f = f (¢, v) with the variables ¢,v € (0,7/2) is determined
by the following formula [23]

n/2 /2

B 2 2 2 2 m n
f= <n> / / f(9,v) dodv ~ (n> j_0<i_20f(i><A<p;ijV)A<p> Av.
00 (10.24)
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