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Introduction

This book1,2 presents original mathematical models of phase-transformation stresses
in composite materials, along with mathematical models of phase-transformation
micro-/macro-strengthening and phase-transformation intercrystalline or transcrys-
talline crack formation. The materials consist of an isotropic matrix with isotropic
ellipsoidal inclusions. These stresses originate during a cooling process at the phase-
transformation temperature Ttq, and are a consequence of the difference between di-
mensions of crystalline lattices, which are mutually transformed during the phase-
transformation process in the inclusions (q= IN) or the matrix (q=M).
The mathematical models are determined for a suitable model system. The model

system is required to correspond to real isotropic matrix-inclusion composites. The
phase-transformation stresses are derived within a suitable coordinate system. The
coordinate system is required to correspond to a shape of the ellipsoidal inclusions.
The mathematical determination results from mechanics of an isotropic elastic

continuum, and result in different mathematical solutions for the phase-transfor-
mation stresses, i.e., 19 and 2 mathematical solutions for the matrix and the ellip-
soidal inclusion, respectively. Due to these different mathematical solutions, the
principle of minimum elastic energy is considered.
The mathematical models of the phase-transformation stresses, micro-/macro-

strengthening and crack formation include microstructural parameters of a real ma-
trix-inclusion composite, i.e., the inclusion dimensions a1, a2, a3, the inclusion vo-
lume fraction vIN , as well as the inter-inclusion distance d = d (a1,a2,a3,vIN).
Consequently, the mathematical models are applicable to composites with el-

lipsoidal inclusions of different morphology, i.e., a1 ≈ a2 ≈ a3 (dual-phase steel),
a1� a2 ≈ a3 (martensitic steel).
In case of a real matrix-inclusion composite, such numerical values of the mi-

crostructural parameters can be determined,

1 This book was reviewed by the following reviewers:
Assoc. Prof. Ing. Robert Bidulský, PhD., visiting professor, Politecnico di Torino, Torino, Italy.

Prof. Ing. Daniel Kottfer, PhD., Alexander Dub³cek University of Tren³cı́n, Faculty of Special Technology,
Department of Mechanical Engineering, Tren³cı́n, Slovak Republic.

2 This book was supported by the Slovak scientific grant agency VEGA 2/0069/24.
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• which result in maximum values of the micro- and macro-strengthening,
• which define limit states with respect to the intercrystalline or transcrystalline
crack formation in the matrix and the ellipsoidal inclusion.

This numerical determination is performed by a programming language. The
mathematical procedures in this book are analysed in Appendix.
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Chapter 1

Matrix-Inclusion Composite

1.1 Model System

Figure 1.1 shows a model system, corresponding to real matrix-inclusion com-
posites, which is considered within the mathematical models of the phase-transformation
stresses. This model system consists of an infinite isotropic matrix and isotropic el-
lipsoidal inclusions with the dimensions a1, a2, a3 and the inter-inclusion distance
d along the axes x1, x2, x3 of the Cartesian system (Ox1x2x3), respectively, where O
represents a centre of the ellipsoidal inclusion.

Figure 1.1: The matrix-inclusion system with an infinite isotropic matrix and
isotropic ellipsoidal inclusions with the dimensions a1, a2, a3 and the inter-inclusion
distance d along the axes x1, x2, x3 of the Cartesian system (Ox1x2x3), respectively,
where O represents a centre of the ellipsoidal inclusion.

As presented in [1]–[22], the phase-transformation stresses are determined in the
cubic cells with the dimension d along the axes x1, x2, x3 and with central ellipsoidal
inclusions (see Figure 1.2). Due to the infinite matrix, the phase-transformation
stresses, which are determined for one of the cubic cells, are identical with those,
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which are determined for any of the cubic cells [1]–[22]. With regard to the volume
VIN = 4πa1,a2a3 [23] and VC = d3 of the ellipsoidal inclusion and the cubic cell,
the inter-inclusion distance d as a function of the inclusion volume fraction vIN is
derived as

vIN =
VIN
VC

=
4πa1a2a3
3d3

∈
(
0,

π
6

)
, d =

(
4πa1a2a3
3vIN

)1/3
, (1.1)

where the value vINmax = π/6 results from the condition ai→ d/2 (i= 1,2,3). Ac-
cordingly, the phase-transformation stresses are functions of the material parameters
a1, a2, a3, vIN , d.

Figure 1.2: The cubic cells with the dimension d along the axes x1, x2, x3 of the
Cartesian system (Ox1x2x3) and with the plane x12x3, where O represents a centre of
the ellipsoidal inclusion, and (x12 ⊂ x1x2, x12x3 ⊥ x1x2.

1.2 Coordinate System

Figure 1.3 shows the ellipse E with the dimensiions a, b along the axes x, y, respec-
tively. The ellipse E is described by the function

(x
a

)2
+
(y
b

)2
= 1. (1.2)

Any point P of the ellipse E is described by the coordinates [23]
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x= acosα, y= bsinα, α ∈ 〈0,2π〉 , (1.3)

where the normal n of the ellipse E at the point P is derived [23]

∂x
∂α
(x−acosα)+

∂y
∂α
(x−bsinα) = 0. (1.4)

Figure 1.3: The ellipse E with the dimensions a, b along the axes x, y of the Cartesian
system (Oxy), respectively, and the point P related to the angle α.

With regard to Equations (1.3), (1.4), we get

y=
xa tanα

b
−
(
a2−b2

)
sinα

b
. (1.5)

The phase-transformation stresses are determined by the spherical coordinates
(r,ϕν) (see Figure 1.4). The model system in Figures (1.1), (1.2) is symmetric,
and then the phase-transformation stresses are determined within the intervals ϕ ∈
〈0,π/2〉, ν ∈ 〈0,π/2〉 [1]–[22].
Figure 1.4 shows the ellipsoidal inclusion for ϕ,ν ∈ 〈0,π/2〉 with the centre O

and with the dimensions a1 = O1, a2 = O2, a3 = O3 along the axes x1, x2, x3 of the
Cartesian system (O,x1,x2,x3) (see Figures (1.1), (1.2)), respectively. With regard
to Equation (1.3), any point of the ellipse E12 in the plane x1x2 is described by the
coordinates

x1 = a1 cosϕ, x2 = a2 sinϕ, ϕ ∈
〈
0,

π
2

〉
. (1.6)

Similarly, any point P of the ellipse E123 in the plane x12x3 is described by the
coordinates

5



x12P = a12 sinν, x3P = a3 cosν, a12 = O4=
√
a21 cos

2ϕ+a22 sin
2ϕ,

ϕ,ν ∈
〈
0,

π
2

〉
. (1.7)

Finally,
(
P,xn,xϕ,xν

)
is a Cartesian system at the point P, where the axes xn and

xν represents a normal and a tangent of the ellipse E123 at the point P, respectively,
x12x3 ⊥ x1x2, (x12 ⊂ x1x2, xϕ ⊥ x12.
Figure 1.5 shows the cross section O567 of the cubic cell in the plane x12x3 (see

Figures 1.2, 1.4). The angle ν ∈ 〈0,π/2〉 defines a position of the point P with
the Cartesian system

(
P,xn,xϕ,xν

)
(see Figure 1.4) for ν = ν0 (see Figure 1.5a),

ν ∈ 〈0,ν0) (see Figure 1.5b), ν ∈ (ν0,π/2〉 (see Figure 1.5c). The points P1, P2
represent intersections of the normal xn with O567.

Figure 1.4: The inclusion with the centre O and with the dimensions a1 = O1,
a2 =O2, a3 =O3 along the axes x1, x2, x3 of the Cartesian system (O,x1,x2,x3), re-
spectively. The ellipses E12, E123 in the planes x1x2, x12x3 (see Figure 1.4) are given
by Equations (1.6), (1.7), respectively, where x12x3 ⊥ x1x2, (x12 ⊂ x1x2, xϕ ⊥ x12.
The point P on the inclusion surface is defined by ϕ,ν ∈ 〈0,π/2〉, ν ∈ 〈0,π/2〉, and(
P,xn,xϕ,xν

)
is a Cartesian system at the point P, where P⊂ E123. The axes xn and

xν represents a normal and a tangent of the ellipse E123 at the point P, respectively.
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With regard to Equation (1.5), the normal xn at the point P of the ellipse E123 in
the plane x12x3 is derived as

x3 =
cosν
a3

( a12 x12
sinν

+a23−a212
)

, ν ∈
〈
0,

π
2

〉
. (1.8)

With regard to Equation (1.8), the coordinates xx12,1, x3,1 of the point P1 have the
forms

x121 =

(
a212−a23

)
sinν

a12
, x31 = 0, ν ∈

〈
0,

π
2

〉
. (1.9)

a b

c

Figure 1.5: The angle ν ∈ 〈0,π/2〉
defines a position of the point P with the
Cartesian system

(
P,xn,xϕ,xν

)
(see Fig-

ure 1.4) for (a) ν = ν0, (b) ν ∈ 〈0,ν0),
(c) ν ∈ (ν0,π/2〉, where ν0 is given by
Equation (1.8). The points P1, P2 repre-
sent intersections of the normal xn with
O567, where O567 is a cross section of
the cubic cell in the plane x12x3 (see Fig-
ures 1.2, 1.4). The angle θ∠(xn,x3) is
given by Equation (1.12).

Similarly, the coordinates xx12,2, x3,2 of the point P2 in Figure 1.5b for ν ∈ 〈0,ν0〉
are derived as

7



x122 =
sinν
a12

(
d cosν
2a3

+a212−a23

)
, x32 =

d
2
, ν ∈ 〈0,ν0〉 . (1.10)

The coordinates xx12,2, x3,2 of the point P2 in Figure 1.5c for ν ∈ 〈ν0,π/2〉 have
the forms

x122 =
d

2 f (ϕ) sinν
,

f (ϕ) = cosϕ, ϕ ∈
〈
0,

π
4

〉
; f (ϕ) = sinϕ, ϕ ∈

〈π
4
,
π
2

〉
,

x32 =
cosν
a3

[
a12d

2 f (ϕ) sinν
+a23−a212

]
, ν ∈

〈
ν0,

π
2

〉
. (1.11)

The coordinate x12,2 of the point P2 in Figure 1.5a for ν = ν0 is given by Equa-
tion (1.11), where x32 = d/2. With regard to Equation (1.8), the angle ν0 represents
a root of the following equation

cosν0
a3

[
a12d

2 f (ϕ) sinν0
+a23−a212

]
− d
2
= 0,

f (ϕ) = cosϕ, ϕ ∈
〈
0,

π
4

〉
; f (ϕ) = sinϕ, ϕ ∈

〈π
4
,
π
2

〉
, (1.12)

and this root is determined by a numerical method. The angle θ = ∠(xn,x3) is de-
rived as

cosθ=
x3P√

(x12P− x121)
2+ x23P

=
1√

1+(a3 tanν/a12)
2
,

sinθ=
1√

1+(a12 cotν/a3)
2
. (1.13)

Consequently, we get [23]

∂
∂θ
=

(
∂θ
∂ϕ

)−1 ∂
∂ϕ
=Θ

∂
∂ϕ

, (1.14)

where the function Θ=Θ(ϕ) has the form

Θ=
(
a12
a3

)[(
a3 sinν
a12

)2
+ cos2ν

]
. (1.15)
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As analysed in [1]-[20], due to the symmetry of the model system, any point P on
the matrix-inclusion boundary exhibits the displacement un along xn. Consequently,
any point P of the normal xn exhibits un along xn, i.e., uϕ = uν = 0 [1]-[20], where
uϕ, uν are displacements along the axes xϕ, xν, respectively.
As presented in [1]–[22], the phase-transformation stresses, which are determined

along the axes xn, xϕ, xθ of the Cartesian system
(
P,xn,xϕ,xθ

)
, represent function of

the spherical coordinates (xn,ϕ,θ) for ϕ,θ ∈ 〈0,π/2〉. The intervals xn ∈ 〈0,xIN〉
and xn ∈ 〈xIN,xM〉 are related to the ellipsoidal inclusion and the cell matrix, where
P = P1, P ⊂ E123 and P = P2 for xn = 0, xn = xIN and xn = xM (see Figure 1.5),
respectively. Finally, we get

xIN = P1P=
√
(x12P− x121)

2+ x23P = a3

√(
a3 sinν
a12

)2
+ cos2ν, (1.16)

xM = PP2 =
√
(x122− x12P)

2+(x32− x3P)
2

=

√(
sinν
a12

)2(d cosν
2a3

−a23

)2
+

(
a12 cosν

a3

)2[ d
2 f (ϕ) sinν

−a12

]2
. (1.17)

1.3 Phase-Transformation Strain

The phase-transformation stresses, which are a consequence of a phase-transformation
strain, are determined for a cubic crystalline lattice (CCL). This lattice exhibits [24]

• a simple modification (K6), which is characterized by atoms at corner points
of CCL,

• a body-centered modification (K8), which is, besides atoms at corner points of
CCL, characterized by an atom at an intersection point of diagonals of CCL,
i.e., at the geometrical center of CCL,

• a face-centered modification (K12), which is, besides atoms at corner points
of CCL, characterized by a central atom on each of surfaces of CCL.

Let the phase transformation originate at the temperature Ttq ∈
〈
Tf ,Tr

〉
in the

ellipsoidal inclusion (q= IN) or the matrix (q=M) during a cooling process, when

CCL with the dimension aqI ⊂
{
a(K6)qI ,a(K8)qI ,a(K12)qI

}
is transformed to one with the

dimension aqII ⊂
{
a(K6)qII ,a(K8)qII ,a(K12)qII

}
, i.e., aqI → aqII at the temperature T = Ttq,

9



Figure 1.6: The cubic crystal lattice (K6, K8, K12) in the ellipsoidal inclusion

(q= IN) or the matrix (q=M), where aqm ⊂
{
a(K6)qm ,a(K8)qm ,a(K12)qm

}
represents a di-

mension of CCL along the axis xiqm (i= 1,2,3) at the temperature T ∈ 〈Ttq,Tr〉
(m= I) and T ∈ 〈

Tf ,Ttq
〉
(m= II). The beginning O of the Cartesian system(

Ox1qm x2qm x3qm
)
represents a corner of the cubic crystal lattice. A position of the

Cartesian system
(
Ox1qm x2qm x3qm

)
with respect to (Ox1x2x3) (see Figure 1.4) is

defined by the angles ϕi jqm = ∠
(
xiqm,x j

)
(i, j = 1,2,3). As an example, the angles

ϕ11qm, ϕ22qm, ϕ33qm are shown. Pqm represents an intersection point of xn with one
of the surfaces 1456, 2754, 3657, and �x′nqm = �OPqm is a vector along the normal xn
(see Figure 1.4), which represents a radial direction with respect to the spherical co-
ordinates (r,ϕ,ν). The point P12 represents a projection of Pqm onto the plane x1x2
(see Figure 1.4).

where Tf is final temperature of the cooling process, Tr = (0.35−0.4)×Tm [24] is
relaxation temperature, and Tm is melting temperature of a real composite.

Let a position of CCL with respect to the Cartesian system (Ox1x2x3) (see Fig-
ure 1.4) be defned by the angle ϕi jqm, which is formed by the axes xiqm, x j (i, j = 1,2,3;
q= IN,M; m= I,II). As an example, the angles ϕ11qm, ϕ22qm, ϕ33qm are shown in Fig-
ure 1.6. Consequently, the coefficient ai jqm, which represents a direction cosine of
ϕi jqm, is derived as [4, 23]

ai jqm= cosϕi jqm= cos
[
∠
(
xiqm,x j

)]
, i, j= 1,2,3; q= IN,M; m= I, II. (1.18)
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Let Pqm represent an intersection point of the normal xn (see Figure 1.6) with one
of the surfaces 1456, 2754, 3657, where xn represents a radial direction with respect
to the spherical coordinates (r,ϕ,ν) (see Figure 1.4), and the point P12 is a projection
of Pqm onto the plane x1x2. The length

∣∣ �xnqm
∣∣ = ∣∣OPqm∣∣ of the vector �xnqm = �OPqm,

which represents length of the axis xn in CCL with the dimension aqm along the
axis xiqm (i= 1,2,3; q= IN,M; m= I,II), is determined by aqm, ϕ, ν (see Figure 1.4).
The point Pqm is determined by the coordinates (x1,x2,x3) in the Cartesian system
(Ox1x2x3) or

(
x1qm,x2qm,x3qm

)
in
(
Ox1qmx2qmx3qm

)
. Consequently, we get [4, 23]

xiqm =
3

∑
j=1

ai jqm x j, i= 1,2,3; q= IN,M; m= I, II, (1.19)

where
3
∑
i=1

(
xiqm

)2
=

3
∑
i=1

x2i ,
3
∑
i=1

ai jqm aikqm = δ jk ( j,k = 1,2,3), and δ jk is Kronecker’s

symbol, i.e., δ jk = 0 and δ jk = 1 for j �= k and j = k [23], respectively. The unit
vector �en along the normal xn, which is derived in (Ox1x2x3), has the form [4, 23]

�en =
3

∑
i=1

ani�ei, an1 = cos [∠(xn,x1)] = cosϕsinν,

an2 = cos [∠(xn,x2)] = sinϕsinν, an3 = cos [∠(xn,x3)] = cosν. (1.20)

Let �eiqm represent a unit vector along the axis xiqm (i= 1,2,3; m= I,II). Conse-
quently, the unit vector �en, which is derived in

(
Ox1qm x2qm x3qm

)
, is derived as [4, 23]

�en =
3

∑
i=1

a(n)iqm �eiqm,

a(n)iqm = cosϕ(n)i jqm = cos
[
∠
(
xiqm,xn

)]
=

3

∑
j=1

an j ai jqm,

i= 1,2,3; q= IN,M; m= I, II, (1.21)

If Pqm with the coordinates
(
xnqm,x2qm,x3qm

)
represents a point of the surface

1456, i.e., Pqm ⊂ 1456, then the length
∣∣ �xnqm

∣∣ = ∣∣∣ �OPqm
∣∣∣ of the vector �xnqm = �OPqm

along xn has the form [4]∣∣ �xnqm
∣∣= aqm

a(n)1qm
, q= IN,M; m= I, II, (1.22)

where xnqm = aqm, xϕqm = aqma
(n)
2qm/a(n)1qm ≤ aqm, xνqm = aqma

(n)
3qm/a(n)1qm ≤ aqm [4].

The surface 1456 with the normal x1qm is defned by each of the following condi-
tions [4]

11



a(n)2qm

a(n)1qm
≤ 1 and

a(n)3qm

a(n)1qm
≤ 1, q = p,e,m; m= I, II. (1.23)

Consequently, if Pqm ⊂ 2754, then we get [4]

∣∣ �xnqm
∣∣= aqm

a(n)2qm
, q= IN,M; m= I, II, (1.24)

where xnqm = aqma
(n)
1qm/a(n)2qm ≤ aqm, xϕqm = aqm, xνqm = aqma

(n)
3qm/a(n)2qm ≤ aqm [4].

The surface 2754 with the normal x2qm is defned by each of the following condi-
tions [4]

a(n)1qm

a(n)2qm
≤ 1 and

a(n)3qm

a(n)2qm
≤ 1, q= IN,M; m= I, II. (1.25)

Accordingly, if Pqm ⊂ 3657, then we get [4]

∣∣ �xnqm
∣∣= aqm

a(n)3qm
, q= IN,M; m= I, II, (1.26)

where xnqm = aqma
(n)
1qm/a(n)3qm ≤ aqm, xϕqm = aqma

(n)
2qm/a(n)3qm ≤ aqm, xνqm = aqm [4].

The surface 3657 with the normal x3qm is defned by each of the following condi-
tions [4]

a(n)1qm

a(n)3qm
≤ 1 and

a(n)2qm

a(n)3qm
≤ 1, q = p,e,m; m= I, II. (1.27)

Finally, the surface with the normal xiqm is defned by each of the following con-
ditions [4]

a(n)jqm

a(n)iqm
≤ 1 and

a(n)kqm

a(n)iqm
≤ 1,

i, j,k = 1,2,3; i �= j �= k; q= IN,M; m= I, II. (1.28)

The phase-transformation induced radial strain εntq (q= IN,M) is derived as [4]

εntq =
∣∣ �xnqII

∣∣− ∣∣ �xnqI
∣∣∣∣ �xnqII

∣∣ , q= IN,M, (1.29)
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where
∣∣∣ �x′1qI

∣∣∣, ∣∣∣ �x′1qII
∣∣∣ are related to the temperature T = Ttq. In case of K6, K8, K12,

the dimension aqm in Equations (1.22), (1.24) is replaced by a(K6)qm , a(K8)qm , a(K12)qm

(q= IN,M; m= I,II), respectively. If T ∈ 〈Tf ,Ttq), then ∣∣ �xnqII
∣∣ in Equation (1.26) is

replaced by the following formula

∣∣ �xnqII
∣∣= ∣∣ �xnqII

∣∣(1−βq
)
, βq =

Ttq∫
Tf

αq dT,

T ∈ 〈Tf ,Ttq〉 , q= IN,M. (1.30)

where αq = αq (T ) is a thermal expansion coefficient of the ellipsoidal inclusion
(q= IN) or the matrix (q=M).
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Chapter 2

Mechanics of Elastic Solid
Continuum

2.1 Fundamental Equations

As analysed in [1]-[20], any point P of the normal xn exhibits the displacement
un along xn. The phase-transformation stresses are determined along the axes xn, xϕ,
xθ of the Cartesian system

(
P,xn,xϕ,xθ

)
. Fundamental equations of mechanics of a

solid continuum are represented by Cauchy’s equations, the equilibrium equations
and Hooke’s law. Cauchy’s equations represent functions of strains and displace-
ments. With respect to the normal displacement un, Cauchy’s equations have the
forms [1]-[20, 22]

εn =
∂un
∂xn

, (2.1)

εϕ = εθ =
un
xn

, (2.2)

εnϕ = εϕn =
1
xn

∂un
∂ϕ

, (2.3)

εnθ = εθn =
Θ
xn

∂un
∂ν

, (2.4)

where εn is a normal strain along the axis xn, and Θ is given by Equation (1.15).
Consequently, εϕ and εθ are tangential strains along the axes xϕ and xθ, respectively.
Finally, εnϕ, εnθ and εϕn, εθn represent shear strains along the axes xn and xϕ, xθ,
respectively. Due to uϕ = uν = 0, we get εϕν = ενϕ = 0 [1]–[22], where uϕ, uν
are displacements along the axes xϕ, xν, respectively, and εϕν is a shear strain. As
presented in [1]–[22], the equilibrium equations are derived as

2σn−σϕ−σν+ xn
∂σn

∂xn
+

∂σnϕ

∂ϕ
+Θ

∂σnθ
∂ν

= 0, (2.5)
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∂σϕ

∂ϕ
+3σnϕ+ xn

∂σnϕ

∂xn
= 0, (2.6)

Θ
∂σθ
∂ν
+3σnθ+ xn

∂σnθ
∂xn

= 0, (2.7)

where σn is a normal stess along the axis xn. Consequently, σϕ and σθ are tangen-
tial stresses along the axes xϕ and xθ, respectively. Finally, σnϕ, σnθ and σϕn, σθn
represent shear stresses along the axes xn and xϕ, xθ, respectively, where σnϕ = σϕn,
σnθ = σθn. Due to εϕν = ενϕ = 0, we get σϕν = σνϕ = 0 [1]–[22], where σϕν is a
shear stress. With regard to εϕθ = 0, σϕθ = 0, Hooke’s law has the form [1]–[20, 22]

εn = s11σn+ s12
(
σϕ+σθ

)
, (2.8)

εϕ = s12 (σn+σθ)+ s11σϕ, (2.9)

εθ = s12
(
σn+σϕ

)
+ s11σθ, (2.10)

εnθ = s44σnθ, (2.11)

εnϕ = s44σnϕ, (2.12)

where s11, s12, s44 are derived as [25]

s11 =
1
E

, s12 =− μ
E

, s44 =
2(1+μ)

E
. (2.13)

Finally, E and μ are Young’s modulus and Poisson’s ratio, respectively. In case of
the ellipsoidal inclusion and the cell matrix, we get E = EIN , μ = μIN and E = EM,
μ = μM, respectively. With regard to Equations (2.1)–(2.4), (2.8)–(2.12), we get
[1]–[22]

σn = (c1+ c2)
∂un
∂xn

−2c2 unxn , (2.14)

σϕ = σθ =−c2 ∂un
∂xn

+ c1
un
xn

, (2.15)

σnϕ =
1

s44xn

∂un
∂ϕ

, (2.16)

σnθ =
Θ

s44xn

∂un
∂ν

, (2.17)

16



where c1, c2, c3 (see Equation (2.24)) have the forms

c1 =
E

(1+μ)(1−2μ), c2 =− μE
(1+μ)(1−2μ), c3 =−4(1−μ)< 0, (2.18)

and c3 < 0 due to μ < 0.5 for real isotropic components [24].
Let a1i= cos [∠(x1,xi)] (i= n,ϕ,θ) represent a direction cosine of an angle formed

by the axes x1, xi (see Figures 1.4, 1.5). With regard to Figures 1.4, 1.5, the coefficient
a1i = cos [∠(x1,xi)] (i= n,ϕ,θ) is derived as

a1n = cosϕsinθ, a1ϕ = sinϕsinθ, a1θ = cosθ,

aϕ1 =−sinϕ, aθ1 =−cosϕcosθ, (2.19)

where cosθ, sinθ are given by Equation (1.13). The stress σ1 along the axis x1 has
the form

σ1 = a1nσn+a1ϕ σϕ+a1θ σθ+a1n
(
σnϕ+σnθ

)
+a1ϕσϕn+a1θσθn. (2.20)

With regard to Equations (2.14)-(2.17) and due to σnϕ = σϕn, σnθ = σθn [25], we
get

σ1 = γ1
∂un
∂xn

+ γ2
un
xn
+

1
s44 xn

(
γ3

∂un
∂ϕ
+ γ4

∂un
∂ν

)
, (2.21)

where γi (i= 1,. . . , 4) is derived as

γ1 = a1n (c1+ c2)−
(
a1ϕ+a1θ

)
c2, γ2 =

(
a1ϕ+a1θ

)
c1−2a1n c2,

γ3 = a1n+a1ϕ, γ4 =Θ(a1n+a1θ) , (2.22)

and Θ is given by Equation (1.15). As presented in Chapter 8, the analytical models
of the micro-strengthening σst = σst (x1) and the macro-strengthening σst result from
the stress σ1 (see Equations (2.21), (2.22)).
Let Equations (2.14)–(2.17) be substituted to Equation (2.18) and to [∂Eq.(2.6)/∂ϕ]

+ Θ [∂Eq.(2.7)/∂ν]. Consequently, Equations (2.5)–(2.7) are derived as

x2n
∂2un
∂x2n

+2xn
∂un
∂xn

−2un+ Un

s44 (c1+ c2)
= 0, (2.23)

xn
∂Un

∂xn
= c3Un, (2.24)
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whereUn is derived as

Un =
∂2un
∂ϕ2

+Θ2
∂2un
∂ν2

. (2.25)

The system of the differential equations (2.23), (2.25) is solved by the mathemat-
ical procedures in Sections 3.1, 4.1, 5.1, 6.1, 7.1.

2.2 Elastic Energy

As analysed in [1]–[22] with respect to the different mathematical procedures (see
Sections 3.1, 4.1, 5.1, 6.1, 7.1), such a mathematical solution, which exhibits a min-
imum value of the elastic energyWC of the cubic cell, is considered, whereWIN and
WM is elastic energy, which is accumulated in the volume VIN and VM of the ellip-
soidal inclusion and the cell matrix, respectively. The elastic energy density w is
derived as [25]

w=
1
2

(
εnσn+ εϕσϕ+ εθσθ

)
+ εnϕσnϕ+ εnθσnθ, (2.26)

andWIN ,WM andWC have the forms

WIN =
∫
VIN

wIN dVIN = 8

π/2∫
0

π/2∫
0

xIN∫
0

wIN x
2
n dxn dϕ dν,

WM =
∫
VM

wM dVM = 8

π/2∫
0

π/2∫
0

xM∫
xIN

wM x2n dxn dϕ dν,

WC =WIN+WM. (2.27)

2.3 Boundary Conditions

The mathematical solutions of the system of the differential equations (2.23), (2.25)
include integration constants. As presented in [1]–[22], these constants are deter-
mined, using Cramer’s rule (see Chapter 8) [23], by the following boundary con-
ditions for the ellipsoidal inclusion and the cell matrix. In case of the ellipsoidal
inclusion we get [1]–[22]

(un)xn=0 = 0, (2.28)
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(σnIN)xn=xIN =−pn, (2.29)

where xIN is given by Equation (1.16). Additionally, the conditions (unIN)xn→0 /−→
±∞, (εIN)xn−→0 /−→±∞, (σIN)r→0 /−→±∞ are required to be fulfilled [1]–[22].
In case of the cell matrix we get [1]–[22]

(σnM)xn=xIN =−pn, (2.30)

(unM)xn=xM = 0. (2.31)

As analysed in [1]–[22], the following boundary condition can be considered

(εnM)xn=xM = 0. (2.32)

With regard to
(
εϕM

)
xn=xM

=−pnρM,
(
εϕIN

)
xn=xIN

=−pnρIN [1]–[22], the nor-
mal stress pn on the matrix-inclusion boundary, i.e., for xn = P1P = xIN (see Fig-
ure 1.5), which acts along the axis xn (see Figures (1.4), (1.5)), has the form [1]–[22]

pn =
εntM− εntIN

ρM+ρIN
, (2.33)

where εntq (q= IN,M) is given by Equations (1.30), (??).
As mentioned in Section (2.2), the different mathematical procedures in Sec-

tions 3.1, 4.1, 5.1, 6.1, 7.1 result in 19 and 2 mathematical solutions for the phase-
transformation stresses in the matrix and the ellipsoidal inclusion, respectively.
The normal stress pn is included in formulae for the phase-transformation stresses.

Consequently, the coefficients ρM and ρIN are given by Equations (3.29), (4.26),
(4.37), (4.48), (4.59), (5.25), (5.36), (5.47), (5.58), (6.24), (6.35), (6.46), (6.57),
(7.25), (7.36), (7.47), (7.58), (7.69), (7.80) and (3.37), (6.65), respectively. Conse-
quently, such a combination of ρM and ρIN is considered to result in a minimum
value of the elastic energyWC of the cubic cell (see Equation (2.27)).
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Chapter 3

Mathematical Model 1

3.1 Mathematical Procedure

Let the mathematical procedure xn [∂Eq.(2.24)/∂xn] be performed, and then we
get [1]–[22]

x2n
∂2Un

∂x2n
+(1− c3)xn

∂Un

∂xn
= 0, (3.1)

where c3 < 0 and Un = Un (xn,ϕ,θ) are given by Equations (2.18) and (2.25), re-
spectively. Let Equation (2.24) be substituted to Equation (3.1), and then we get
[1]–[22]

x2n
∂2Un

∂x2n
+ c3 (1− c3)Un = 0. (3.2)

LetUn be assumed in the formUn = xλ
n , then we get [1]–[22]

Un =C1 x
λ1
n +C2 x

λ2
n , (3.3)

where C1, C2 are integration constants, which are determined by the boundary con-
ditions in Section 2.3, and λ1, λ2, with respect to μ< 0.5 for a real isotropic material
[24], have the forms [1]–[22]

λ1 =
1
2

[
1+

√
1+16(1−μ) [1+4(1−μ)]

]
> 3,

λ2 =
1
2

[
1−

√
1+16(1−μ) [1+4(1−μ)]

]
<−2. (3.4)

Let Equation (3.3) be substituted to Equation (2.23), and then we get [1]–[22]

x2n
∂2un
∂x2n

+2xn
∂un
∂xn

−2un =C1 x
λ1
n +C2 x

λ2
n . (3.5)

The mathematical solution of Equation (3.5), which is determined by Wron-
skian’s method (see Chapter 10) [23], is derived as
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un =C1 x
λ1
n +C2 x

λ2
n . (3.6)

With regard to Equations (2.1)–(2.4), (2.14)–(2.17), (2.21), (2.26), (3.6), we get

εn =C1λ1 xλ1−1
n +C2λ2 xλ2−1

n , (3.7)

εϕ =C1 x
λ1−1
n +C2 x

λ2−1
n , (3.8)

εnϕ = s44σnϕ =
∂C1
∂ϕ

xλ1−1
n +

∂C2
∂ϕ

xλ2−1
n , (3.9)

εnθ = s44σnθ =Θ
(

∂C1
∂ν

xλ1−1
n +

∂C2
∂ν

xλ2−1
n

)
, (3.10)

σn =C1ξ1 xλ1−1
n +C2ξ2 xλ2−1

n , (3.11)

σϕ = σθ =C1ξ3 xλ1−1
n +C2ξ4 xλ2−1

n , (3.12)

σ1 = η1 xλ1−1
n +η2 xλ2−1

n , (3.13)

w= κ1 x
2(λ1−1)
n +κ2 x

2(λ2−1)
n ++κ3 xλ1+λ2−2

n , (3.14)

whereΘ, s44 is given by Equations (1.15), (2.13), respectively, and ξ i, ξ2+i, ξ2+i+2 j,
ηi, κ j (i= 1,2; j = 1,2,3) are derived as

ξ i =
E [λi (1−μ)+2μ]
(1+μ)(1−2μ) , ξ2+i =

E (1+λi μ)
(1+μ)(1−2μ),

ξ2+i+2 j =
E
{

λi
[
λ j (1−μ)+4μ

]
+2

}
2(1+μ)(1−2μ) ,

ηi =Ci (λi γ1+ γ2)+
1
s44

(
γ3

∂Ci
∂ϕ
+ γ4

∂Ci
∂ν

)
,

κ i =C2i ξ2+3i+
1
s44

[(
∂Ci
∂ϕ

)2
+Θ2

(
∂Ci
∂ν

)2]
,

κ3 =C1C2 (ξ6+ξ7)+
1
s44

(
∂C1
∂ϕ

∂C2
∂ϕ
+Θ2

∂C1
∂ν

∂C2
∂ν

)
, i, j = 1,2. (3.15)
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3.2 Matrix

With regard to Equations (2.30), (2.31), (3.6)–(3.14), (2.21), (2.26), (2.27), we get

εnM =−pn
[

λ1M
ζ1

(
xn
xM

)λ1M−1
+

λ2M
ζ2

(
xn
xM

)λ2M−1
]

, (3.16)

εϕM = εθM =−pn
[
1
ζ1

(
xn
xM

)λ1M−1
+
1
ζ2

(
xn
xM

)λ2M−1
]

, (3.17)

εnϕM = s44M σnϕM =− ∂
∂ϕ

(
pn

ζ1 xλ1M−1
n

)(
xn
xM

)λ1M−1

− ∂
∂ϕ

(
pn

ζ2 xλ2M−1
n

)(
xn
xM

)λ2M−1
, (3.18)

εnθM = s44M σnθM =−Θ

[
∂

∂ν

(
pn

ζ1 xλ1M−1
n

)(
xn
xM

)λ1M−1

+
∂

∂ν

(
pn

ζ2 xλ2M−1
n

)(
xn
xM

)λ2M−1
]

, (3.19)

σnM =−pn
[

ξ1M
ζ1

(
xn
xM

)λ1M−1
+

ξ2M
ζ2

(
xn
xM

)λ2M−1
]

, (3.20)

σϕM = σθM =−pn
[

ξ3M
ζ1

(
xn
xM

)λ1M−1
+

ξ4M
ζ2

(
xn
xM

)λ2M−1
]

, (3.21)

σ1M = η1M xλ1M−1
n +η2M xλ2M−1

n , (3.22)

wM = κ1M x2(λ1M−1)n +κ2M x2(λ2M−1)n ++κ3M xλ1M+λ2M−2
n , (3.23)

WM = 4

π/2∫
0

π/2∫
0

⎡
⎣κ1M

(
x2λ1M+1
M − x2λ1M+1

IN

)
2λ1M+1

+
κ2M

(
x2λ2M+1
M − x2λ2M+1

IN

)
2λ2M+1

+
κ3M

(
xλ1M+λ2M+1
M − xλ1M+λ2M+1

IN

)
λ1M+λ2M+1

⎤
⎦dϕ dν, (3.24)
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where Θ, xIN , xM, s44M, λiM, ξ jM (i= 1,2; j = 1, . . . , 8) are given by Equations (1.15),
(1.16), (1.17), (2.13), (3.4), (3.15), respectively, and ζ i, ηiM, κ jM (i= 1,2; j = 1,2,3;
see Equation (3.15)) have the forms

ζ i = ξ iM
(
xIN
xM

)λiM−1
−ξ3−iM

(
xIN
xM

)λ3−iM−1
,

ηiM =− pn (λiM γ1M+ γ2M)
ζ i xλiM−1

n

− γ3M
s44M

∂
∂ϕ

(
pn

ζ i xλiM−1
n

)

− γ4M
s44M

∂
∂ν

(
pn

ζ i xλiM−1
n

)
,

κiM = ξ2+3iM

(
pn

ζ i xλiM−1
M

)2
+

1
s44M

[
∂

∂ϕ

(
pn

ζ i xλiM−1
M

)]2

+
Θ2

s44M

[
∂

∂ν

(
pn

ζ i xλiM−1
M

)]2
,

κ3M =
p2n (ξ6M+ξ7M)

ζ1ζ2 xλ1M+λ2M−2
M

+
1

s44M

∂
∂ϕ

(
pn

ζ1 xλ1M−1
M

)
∂

∂ϕ

(
pn

ζ2 xλ2M−1
M

)

+
Θ2

s44M

∂
∂ϕ

(
pn

ζ1 xλ1M−1
M

)
∂

∂ϕ

(
pn

ζ2 xλ2M−1
M

)
, i= 1,2. (3.25)

The normal stress pn is given by Equation (2.33). With regard to Equation (3.17),
the coefficient ρM in Equation (2.33) is derived as

ρM =
(1+μ)(1−2μ)

E

[
1

λ1 (1−μ)+2μ
+

1
λ2 (1−μ)+2μ

]
. (3.26)

3.3 Inclusion

In case of the ellipsoidal inclusion, we getC2IN = 0, otherwise we get (unIN)xn→0−→± ∞, (εIN)xn−→0 −→± ∞, (σIN)r→0 −→±∞ due to λ2 <−2 (see Equations (3.4),
(3.6)–(3.12)). With regard to Equations (2.28), (2.29), (3.6)–(3.14), (2.21), (2.26),
(2.27), we get [1]–[22]

εnIN =− pnλ1IN
ξ1IN

(
xn
xIN

)λ1IN−1
, (3.27)
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εϕIN = εθIN =− pn
ξ1IN

(
xn
xIN

)λ1IN−1
, (3.28)

εnϕ IN = s44IN σrϕ IN =− ∂
∂ϕ

(
pn

ξ1IN xλ1IN−1
IN

)
xλ1IN−1
n , (3.29)

εnν IN = s44IN σrν IN =−Θ
∂

∂ν

(
pn

ξ1IN xλ1IN−1
IN

)
xλ1IN−1
n , (3.30)

σ11IN =−pn
(
xn
xIN

)λ1IN−1
, (3.31)

σϕIN = σνIN =− pnξ3IN
ξ1IN

(
xn
xIN

)λ1IN−1
, (3.32)

σ1IN = η1IM xλ1IM−1
n , (3.33)

wIN = κ1IN x
2(λ1IN−1)
n (3.34)

WIN =
4

2λ1IN+1

π/2∫
0

π/2∫
0

κ1IN x2λ1IN+1
IN dϕ dν, (3.35)

where Θ, xIN , s44IN , λ1IN and ξ1IN , ξ3IN , ξ5IN are given by Equations (1.15), (1.16),
(2.13), (3.4) and η1IN κ1IN (see Equation (3.15)) has the form

η1IN =− pn (λ1IN γ1IN+ γ2IN)
ξ1IN xλ1IN−1

n

− γ3IN
s44IN

∂
∂ϕ

(
pn

ξ1IN xλ1IN−1
n

)

− γ4IN
s44IN

∂
∂ν

(
pn

ξ1IN xλ1IN−1
n

)
,

κ1IN = ξ5IN

(
pn

ξ1IN xλ1IN−1
IN

)2
+

1
s44IN

[
∂C1
∂ϕ

(
pn

ξ1IN xλ1IN−1
IN

)]2

+
Θ2

s44IN

[
∂C1
∂ν

(
pn

ξ1IN xλ1IN−1
IN

)]2
. (3.36)

The normal stress pn is given by Equation (2.33). With regard to Equation (3.28),
the coefficient ρIN in Equation (2.33) is derived as
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ρIN =
(1+μIN)(1−2μIN)

EIN [λ1IN (1−μIN)+2μIN]
. (3.37)
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Chapter 4

Mathematical Model 2

4.1 Mathematical Procedure

Let the mathematical procedure ∂2Eq.(2.24)/∂x2n be performed, and then we get
[1]–[22]

xn
∂3Un

∂x3n
+(2− c3)

∂2Un

∂x2n
= 0, (4.1)

where c3 < 0 andUn=Un (xn,ϕ,ν) are given by Equations (2.18) and (2.25), respec-
tively. LetUb be assumed in the formUn = xλ

n , and then we get

Un =C1 xn+C2 x
c3
n +C3, (4.2)

where C1, C2, C3 are integration constants, which are determined by the boundary
conditions in Section 2.3. Let Equation (2.28) be substituted to Equation (2.23), and
then we get

x2n
∂2un
∂x2n

+2xn
∂un
∂xn

−2un =C1 xn+C2 x
c3
n +C3 x

2
n. (4.3)

The mathematical solution of Equation (4.3), which is determined by Wron-
skian’s method (see Chapter 10) [23], is derived as

un =C1 xn

(
1
3
− lnxn

)
+C2 x

c3
n +C3. (4.4)

With regard to Equations (2.1)–(2.4), (2.14)–(2.17), (2.26), (4.4), we get

εn =−C1
(
2
3
+ lnxn

)
+C2 c3 x

c3−1
n , (4.5)

εϕ = εθ =C1

(
1
3
− lnxn

)
+C2 x

c3−1
n +

C3
xn

, (4.6)

εnϕ = s44σnϕ =

(
1
3
− lnxn

)
∂C1
∂ϕ
+ xc3−1n

∂C2
∂ϕ
+
1
xn

∂C3
∂ϕ

, (4.7)
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εnθ = s44σnθ =Θ
[(
1
3
− lnxn

)
∂C1
∂ν
+ xc3−1n

∂C2
∂ν
+
1
xn

∂C3
∂ν

]
, (4.8)

σn =−C1

[
2(c1+2c2)

3
+(c1− c2) lnxn

]
+C2 [(c1+ c2)c3−2c2]xc3−1n − 2C3 c2

xn
,

(4.9)

σϕ = σθ =C1ξ1
[
c1+2c2
3

− (c1− c2) lnxn

]
+C2ξ2 (c1− c2 c3)x

c3−1
n +

C3ξ3 c1
xn

,

(4.10)

σ1 = η1+η2 lnxn+η3 xc3−1n +
η4
xn

, (4.11)

w=C21 κ1+C22 κ2+C23 κ3+C1C2κ4+C1C3κ5+C2C3κ6

+
χ1
s44

[(
∂C1
∂ϕ

)2
+Θ2

(
∂C1
∂ν

)2]
+

χ2
s44

[(
∂C2
∂ϕ

)2
+Θ2

(
∂C2
∂ν

)2]

+
χ3
s44

[(
∂C3
∂ϕ

)2
+Θ2

(
∂C3
∂ν

)2]
+

χ4
s44

(
∂C1
∂ϕ

∂C2
∂ϕ

+Θ2
∂C1
∂ν

∂C2
∂ν

)

+
χ5
s44

(
∂C1
∂ϕ

∂C3
∂ϕ

+Θ2
∂C1
∂ν

∂C3
∂ν

)
+

χ6
s44

(
∂C2
∂ϕ

∂C3
∂ϕ

+Θ2
∂C2
∂ν

∂C3
∂ν

)
, (4.12)

where Θ, ci (i= 1,2,3), s44 are given by Equations (1.15), (2.18), (2.13), respectively,
and η j, κk, χk ( j = 1, . . . , 4; k = 1, . . . , 6) are derived as

η1 =
1
3

[
C1 (γ2−2γ1)+

1
s44

(
γ3

∂C1
∂ϕ
+ γ4

∂C1
∂ν

)]
,

η2 =−
[
C1 (γ1+ γ2)+

1
s44

(
γ3

∂C1
∂ϕ
+ γ4

∂C1
∂ν

)]
,

η3 =C2 (γ1 c3+ γ2)+
1
s44

(
γ3

∂C2
∂ϕ
+ γ4

∂C2
∂ν

)
,

η4 =C3 γ2+
1
s44

(
γ3

∂C3
∂ϕ
+ γ4

∂C3
∂ν

)
,

κ1 =
c2− c1
2

ln2 xn+
2(c2− c1)

3
lnxn+

7c1+2c2
9

,

κ2 =
[
c23 (c1+ c2)

2
+ c1 (1−2c3)

]
x2(c3−1)n , κ3 =

c1
x2n

,
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κ4 = c3 (c1− c2)x
c3−1
n lnxn+2

[
c1 − c3 (2c1+ c2)

3

]
xc3−1n ,

κ5 =
2c1
xn

, κ6 = 0,

χ1 = ln2 xn− 23 lnxn+
1
9
, χ2 = x2(c3−1)n , χ3 =

1
x2n

,

χ4 =
2
3
xc3−1n −2xc3−1n lnxn, χ5 =

2
3xn

− 2lnxn
xn

, χ6 = xc3−2n . (4.13)

The integrals Φi, Ψi of the κ j = κ j (xn), χ j = χ j (xn) (i= 1, . . . , 6), respectively,
have the forms

Φi =

xM∫
xIN

κi x2n dxn, Ψi =

xM∫
xIN

χi x2n dxn, i= 1, . . . ,6, (4.14)

where xIN , xM are given by Equations (1.16), (1.17), respectively. The integrals
are determined by the formulae in Chapter 10 (see Equations (10.10)–(10.12)) and
consequently, we get

Φ1 =
c2− c1
6

{
x3M

[(
lnxM− 13

)2
+
1
9

]
− x3IN

[(
lnxIN− 13

)2
+
1
9

]}

+
2(c2− c1)

9

[
x3M

(
lnxM− 13

)
− x3IN

(
lnxIN− 13

)]

+
(7c1+2c2)

(
x3M− x3IN

)
27

,

Φ2 =
1

2c3+1

[
c23 (c1+ c2)

2
+ c1 (1−2c3)

](
x2c3+1M − x2c3+1IN

)
,

Φ3 = c1 (xM− xIN) ,

Φ4 =
c3 (c1− c2)
c3+2

[
xc3+2M

(
lnxM− 1

c3+2

)
− xc3+2IN

(
lnxIN− 1

c3+2

)]

+
2

c3+2

[
c1 − c3 (2c1+ c2)

3

](
xc3+2M − xc3+2IN

)
,

Φ5 = c1
(
x2M− x2IN

)
, Φ6 = 0,

Ψ1 =
x3M
3

[
(lnxM−1)

(
lnxM− 13

)
+
2
9

]
− x3IN
3

[
(lnxIN−1)

(
lnxIN− 13

)
+
2
9

]
,

Ψ2 =
x2c3+1M − x2c3+1IN

2c3+1
, Ψ3 = xM− xIN,
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Ψ4 =
2

c3+2

{
xc3+2M

[
c3+5
3(c3+2)

− lnxM
]
− xc3+2IN

[
c3+5
3(c3+2)

− lnxIN
]}

,

Ψ5 = x2M

(
5
6
− lnxM

)
− x2IN

(
5
6
− lnxIN

)
, Ψ6 =

xc3+1M − xc3+1IN

c3+1
. (4.15)

In case of the ellipsoidal inclusion, we get (unIN)xn→0 −→ ± ∞, (εIN)xn−→0−→± ∞, (σIN)r→0 −→±∞ due to (lnxn)xn→0 −→ ± ∞ and (xc3n )xn→0 −→ ± ∞ for
c3 < 0 (see Equations (2.18), (4.4)–(4.10)). Accordingly, the mathematical solutions
(4.4)–(4.10) are suitable for the matrix.

4.2 Matrix

The integration constants C1M, C2M, C3M for the matrix (see Equation (4.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)–(2.32). The boundary
conditions result in the following combinations of C1M, C2M, C3M. Finally, such a
combination is considered to exhibit a minimum value of the elastic energy WC of
the cubic cell (see Equation (2.27)).

Conditions C1M �= 0, C2M �= 0, C3M = 0. With regard to Equations (2.30), (2.31),
(4.4)–(4.12), (2.21), (2.26), (2.27), we get

εnM =
pn
ζ

[
2
3
+ lnxn+ c3M

(
1
3
− lnxM

)(
xn
xM

)c3M−1
]

, (4.16)

εϕM = εθM =− pn
ζ

[
1
3
− lnxn−

(
1
3
− lnxM

)(
xn
xM

)c3M−1
]

, (4.17)

εnϕM = s44M σnϕM =

(
lnxn− 13

)
∂

∂ϕ

(
pn
ζ

)

+ xc3M−1n
∂

∂ϕ

[
pn

ζM xc3M−1M

(
1
3
− lnxM

)]
, (4.18)

εnθM = s44M σnθM =Θ
{(

lnxn− 13
)

∂
∂ν

(
pn
ζ

)

+ xc3M−1n
∂

∂ν

[
pn

ζM xc3M−1M

(
1
3
− lnxM

)]}
, (4.19)
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σnM =
pn
ζ

{
2(c1M+2c2M)

3
+(c1M− c2M) lnxn

+[(c1M+ c2M)c3M−2c2M]
(
1
3
− lnxM

)(
xn
xM

)c3M−1
}

, (4.20)

σϕM = σθM =− pn
ζ

[
c1M+2c2M

3
− (c1M− c2M) lnxn

−(c1M− c2M c3M)

(
1
3
− lnxM

)(
xn
xM

)c3M−1
]

, (4.21)

σ1M = η1M+η2M lnxn+η3M xc3M−1n , (4.22)

wM =

(
pn
ζ

)2⎧⎨
⎩κ1M+κ2M

(
1−3lnxM
3xc3M−1M

)2
+

κ4M (3lnxM−1)
3xc3M−1M

⎫⎬
⎭

+
χ1M
s44M

{[
∂

∂ϕ

(
pn
ζ

)]2
+Θ2

[
∂

∂ν

(
pn
ζ

)]2}

+
χ2M
s44M

⎛
⎝{ ∂

∂ϕ

[
pn (1−3lnxM)
3ζ xc3M−1M

]}2
+Θ2

{
∂

∂ν

[
pn (1−3lnxM)
3ζ xc3M−1M

]}2⎞⎠

+
χ4M
s44M

∂
∂ϕ

(
pn
ζ

)
∂

∂ϕ

[
pn (3lnxM−1)
3ζ xc3M−1M

]

+
χ4M Θ2

s44M

∂
∂ν

(
pn
ζ

)
∂

∂ν

[
pn (3lnxM−1)
3ζ xc3M−1M

]
, (4.23)

WM = 4

π/2∫
0

π/2∫
0

(
pn
ζ

)2⎧⎨
⎩Φ1M+Φ2M

(
1−3lnxM
3xc3M−1M

)2
+

Φ4M (3lnxM−1)
3xc3M−1M

⎫⎬
⎭ dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

{[
∂

∂ϕ

(
pn
ζ

)]2
+Θ2

[
∂

∂ν

(
pn
ζ

)]2}
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

⎛
⎝{ ∂

∂ϕ

[
pn (1−3lnxM)
3ζ xc3M−1M

]}2⎞⎠ dϕ dν
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+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M Θ2
⎛
⎝{ ∂

∂ν

[
pn (1−3lnxM)
3ζ xc3M−1M

]}2⎞⎠ dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ4M
∂

∂ϕ

(
pn
ζ

)
∂

∂ϕ

[
pn (3lnxM−1)
3ζ xc3M−1M

]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ4M Θ2
∂

∂ν

(
pn
ζ

)
∂

∂ν

[
pn (3lnxM−1)
3ζ xc3M−1M

]
dϕ dν, (4.24)

where Θ, xM, s44M, ciM (i= 1,2,3) and κ jM, χ jM; Φ jM, Ψ jM ( j = 1,2,4) are given
by Equations (1.15), (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and ζ, ζ i
(i= 1,2), η jM ( j = 1,2,3; see Equation (4.13)) have the forms

ζ= ζ2−ζ1
(
1
3
− lnxM

)
, ζ1 = [(c1M+ c2M)c3M−2c2M]

(
xIN
xM

)c3M−1
,

ζ2 =−
[
2(c1M+2c2M)

3
+(c1M− c2M) lnxIN

]
,

η1M =− 1
3

{
pn (γ2m−2γ1M)

ζ
+

1
s44M

[
γ3M

∂
∂ϕ

(
pn
ζ

)
+ γ4M

∂
∂ν

(
pn
ζ

)]}
,

η2M =
{
pn (γ1M+ γ2M)

ζ
+

1
s44M

[
γ3M

∂
∂ϕ

(
pn
ζ

)
+ γ4M

∂
∂ν

(
pn
ζ

)]}
,

η3M =
pn (γ1M c3M+ γ2M)

ζM xc3M−1M

(
1
3
− lnxM

)
+

γ3M
s44M

∂
∂ϕ

[
pn

ζM xc3M−1M

(
1
3
− lnxM

)]

+
γ4M
s44M

∂
∂ν

[
pn

ζM xc3M−1M

(
1
3
− lnxM

)]
. (4.25)

The normal stress pn is given by Equation (2.33). With regard to Equation (4.20),
the coefficient ρM in Equation (2.33) is derived as

ρM =
1
ζ

[
1
3
− lnxIN−

(
1
3
− lnxM

)(
xIN
xM

)c3M−1
]

. (4.26)

Conditions C1M �= 0, C3M �= 0, C2M = 0. With regard to Equations (2.30), (2.31),
(4.4)–(4.12), (2.21), (2.26), (2.27), we get

εnM =
pn

ζ xM

(
2
3
+ lnxn

)
, (4.27)
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εϕM = εθM =− pn
ζ

[
1
xM

(
1
3
− lnxn

)
− 1
xn

(
1
3
− lnxM

)]
, (4.28)

εnϕM = s44M σnϕM =−
(
1
3
− lnxn

)
∂

∂ϕ

(
pn

ζ xM

)
+
1
xn

∂
∂ϕ

[
pn (1−3lnxM)

3ζ

]
,

(4.29)

εnθM = s44M σnθM =−Θ
{(

1
3
− lnxn

)
∂

∂ϕ

(
pn

ζ xM

)
− 1
xn

∂
∂ϕ

[
pn (1−3lnxM)

3ζ

]}
,

(4.30)

σnM =
pn
ζ

{
1
xM

[
2(c1M+2c2M)

3
+(c1M− c2M) lnxn

]
− 2c2M

xn

(
1
3
− lnxM

)}
,

(4.31)

σϕM = σθM =

− pn
ζ

{
1
xM

[
c1M+2c2M

3
− (c1M− c2M) lnxn

]
− c1M

xn

(
1
3
− lnxM

)}
, (4.32)

σ1M = η1M+η2M lnxn+
η4M
xn

, (4.33)

wM =

(
pn
ζ

)2[κ1M
x2M

+κ3M
(
1
3
− lnxM

)2
+

κ5M (3lnxM−1)
3xM

]

+
χ1M
s44M

{[
∂

∂ϕ

(
pn

ζ xM

)]2
+Θ2

[
∂

∂ν

(
pn

ζ xM

)]2}

+
χ3M
s44M

({
∂

∂ϕ

[
pn (1−3lnxM)

3ζ

]}2
+Θ2

{
∂

∂ν

[
pn (1−3lnxM)

3ζ

]}2)

+
χ5M
s44M

∂
∂ϕ

(
pn

ζ xM

)
∂

∂ϕ

[
pn (3lnxM−1)

3ζ

]

+
χ5M Θ2

s44M

∂
∂ν

(
pn

ζ xM

)
∂

∂ν

[
pn (3lnxM−1)

3ζ

]
, (4.34)

WM = 4

π/2∫
0

π/2∫
0

(
pn
ζ

)2[Φ1M

x2M
+Φ3M

(
1
3
− lnxM

)2
+

Φ5M (3lnxM−1)
3xM

]
dϕ dν
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+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

{[
∂

∂ϕ

(
pn

ζ xM

)]2
+Θ2

[
∂

∂ν

(
pn

ζ xM

)]2}
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M

{
∂

∂ϕ

[
pn (1−3lnxM)

3ζ

]}2
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M Θ2
{

∂
∂ν

[
pn (1−3lnxM)

3ζ

]}2
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ5M
∂

∂ϕ

(
pn

ζ xM

)
∂

∂ϕ

[
pn (3lnxM−1)

3ζ

]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ5M Θ2
∂

∂ν

(
pn

ζ xM

)
∂

∂ν

[
pn (3lnxM−1)

3ζ

]
dϕ dν, (4.35)

where Θ, xM, s44M, ciM (i= 1,2,3) and κ jM, χ jM; Φ jM, Ψ jM ( j = 1,3,5) are given by
Equations (1.15), (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and ζ, ηiM

(i= 1,2,4; see Equation (4.13)) have the forms

ζ=
1
xM

[
2(c1M+2c2M)

3
+(c1M− c2M) lnxIN

]
+
2c2M
xIN

(
1
3
− lnxM

)
,

η1M =− 1
3

{
pn (γ2M−2γ1M)

ζ xM
+

1
s44M

[
γ3M

∂
∂ϕ

(
pn

ζ xM

)
+ γ4M

∂
∂ν

(
pn

ζ xM

)]}
,

η2M =
pn (γ1M+ γ2M)

ζ xM
+

1
s44M

[
γ3M

∂
∂ϕ

(
pn

ζ xM

)
+ γ4M

∂
∂ν

(
pn

ζ xM

)]
,

η4M =
pn γ2M (1−3lnxM)

3ζ
+

γ3M
s44M

∂
∂ϕ

[
pn (1−3lnxM)

3ζ

]

+
γ4M
s44M

∂
∂ν

[
pn (1−3lnxM)

3ζ

]
. (4.36)

The normal stress pn is given by Equation (2.33). With regard to Equation (4.28),
the coefficient ρM in Equation (2.33) is derived as

ρM =
1
ζ

[
1
xM

(
1
3
− lnxIN

)
− 1
xIN

(
1
3
− lnxM

)]
. (4.37)
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Conditions C2M �= 0, C3M �= 0, C1M = 0. With regard to Equations (2.30), (2.31),
(4.4)–(4.12), (2.21), (2.26), (2.27), we get

εnM =− pn c3M
ζ xM

(
xn
xM

)c3M−1
, (4.38)

εϕM = εθM =
pn

ζ xn

[
1−

(
xn
xM

)c3M]
, (4.39)

εnϕM = s44M σnϕM =− 1
xn

[
xc3Mn

∂
∂ϕ

(
pn

ζ xc3MM

)
− ∂

∂ϕ

(
pn
ζ

)]
, (4.40)

εnθM = s44M σnθM =− Θ
xn

[
xc3Mn

∂
∂ν

(
pn

ζ xc3MM

)
− ∂

∂ν

(
pn
ζ

)]
, (4.41)

σnM =− pn
ζ

{
c3M (c1M+ c2M)−2c2M

xM

(
xn
xM

)c3M−1
+
2c2M
xn

}
, (4.42)

σϕM = σθM =− pn
ζ

[
c1M− c2M c3M

xM

(
xn
xM

)c3M−1
− c1M

xn

]
, (4.43)

σ1M = η3M xc3M−1n +
η4M
xn

, (4.44)

wM =

(
pn
ζ

)2( κ2M
x2c3MM

+κ3M− κ6M
xc3MM

)

+
χ2M
s44M

{[
∂

∂ϕ

(
pn

ζ xc3MM

)]2
+Θ2

[
∂

∂ν

(
pn

ζ xc3MM

)]2}

+
χ3M
s44M

{[
∂

∂ϕ

(
pn
ζ

)]2
+Θ2

[
∂

∂ν

(
pn
ζ

)]2}

− χ6M
s44M

[
∂

∂ϕ

(
pn

ζ xc3MM

)
∂

∂ϕ

(
pn
ζ

)
+Θ2

∂
∂ν

(
pn

ζ xc3MM

)
∂

∂ν

(
pn
ζ

)]
, (4.45)
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WM = 4

π/2∫
0

π/2∫
0

(
pn
ζ

)2( Φ2M

x2c3MM

+Φ3M−Φ6M

xc3MM

)
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

{[
∂

∂ϕ

(
pn

ζ xc3MM

)]2
+Θ2

[
∂

∂ν

(
pn

ζ xc3MM

)]2}
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M

{[
∂

∂ϕ

(
pn
ζ

)]2
+Θ2

[
∂

∂ν

(
pn
ζ

)]2}
dϕ dν

− 4
s44M

π/2∫
0

π/2∫
0

Ψ6M

[
∂

∂ϕ

(
pn

ζ xc3MM

)
∂

∂ϕ

(
pn
ζ

)
+Θ2

∂
∂ν

(
pn

ζ xc3MM

)
∂

∂ν

(
pn
ζ

)]
dϕ dν,

(4.46)

where Θ, xM, s44M, ciM (i= 1,2,3) and κ jM, χ jM; Φ jM, Ψ jM ( j = 2,3,6) are given by
Equations (1.15), (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and ζ, ηiM

(i= 2,3; see Equation (4.13)) have the forms

ζ=
1
xIN

{
[c3M (c1M+ c2M)−2c2M]

(
xIN
xM

)c3M
+2c2M

}
,

η3M =− pn (γ1M c3M+ γ2M)
ζ xc3MM

− 1
s44M

[
γ3M

∂
∂ϕ

(
pn

ζ xc3MM

)
− γ4M

∂
∂ν

(
pn

ζ xc3MM

)]
,

η4M =
pn γ2

ζ
+

1
s44M

[
γ3M

∂
∂ϕ

(
pn
ζ

)
+ γ4M

∂
∂ν

(
pn
ζ

)]
. (4.47)

The normal stress pn is given by Equation (2.33). With regard to Equation (4.39),
the coefficient ρM in Equation (2.33) is derived as

ρM =
1
ζ

[(
xIN
xM

)c3M
−1

]
. (4.48)

Conditions C1M �= 0, C2M �= 0, C3M �= 0. With regard to Equations (2.30)–(2.31),
(4.4)–(4.12), (2.21), (2.26), (2.27), we get

εnM =− pn
ζ

[
ζ1
(
2
3
+ lnxn

)
−ζ2 c3M xc3M−1n

]
, (4.49)

εϕM = εθM =
pn
ζ

[
ζ1
(
1
3
− lnxn

)
+ζ2 xc3M−1n +

ζ3
xn

]
, (4.50)
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εnϕM = s44M σnϕM =

(
1
3
− lnxn

)
∂

∂ϕ

(
pnζ1

ζ

)
+ xc3−1n

∂
∂ϕ

(
pnζ2

ζ

)

+
1
xn

∂
∂ϕ

(
pnζ3

ζ

)
, (4.51)

εnθM = s44M σnθM =Θ
[(
1
3
− lnxn

)
∂

∂ν

(
pnζ1

ζ

)
+ xc3−1n

∂
∂ν

(
pnζ2

ζ

)

+
1
xn

∂
∂ν

(
pnζ3

ζ

)]
, (4.52)

σnM =− pn
ζ

{
ζ1
[
2(c1M+2c2M)

3
+(c1M− c2M) lnxn

]

− ζ2 [(c1M+ c2M)c3M−2c2M]xc3M−1n +
2c2M ζ3

xn

}
, (4.53)

σϕM = σθM =
pn
ζ

{
ζ1
[
c1M+2c2M

3
− (c1M− c2M) lnxn

]

+ ζ2 (c1M− c2M c3M)x
c3M−1
n +

c1M ζ3
xn

}
, (4.54)

σ1M = η1M+η2M lnxn+η3M xc3M−1n +
η4M
xn

, (4.55)

wM =

(
pn
ζ

)2(
κ1M ζ21+κ2M ζ22+κ3M ζ23+κ4M ζ1ζ2+κ5M ζ1ζ3+κ6M ζ2ζ3

)

+
χ1M
s44M

{[
∂

∂ϕ

(
pnζ1

ζ

)]2
+Θ2

[
∂

∂ν

(
pnζ1

ζ

)]2}

+
χ2M
s44M

{[
∂

∂ϕ

(
pnζ2

ζ

)]2
+Θ2

[
∂

∂ν

(
pnζ2

ζ

)]2}

+
χ3M
s44M

{[
∂

∂ϕ

(
pnζ3

ζ

)]2
+Θ2

[
∂

∂ν

(
pnζ3

ζ

)]2}

+
χ4M
s44M

[
∂

∂ϕ

(
pnζ1

ζ

)
∂

∂ϕ

(
pnζ2

ζ

)
+Θ2

∂
∂ν

(
pnζ1

ζ

)
∂

∂ν

(
pnζ2

ζ

)]

+
χ5M
s44M

[
∂

∂ϕ

(
pnζ1

ζ

)
∂

∂ϕ

(
pnζ3

ζ

)
+Θ2

∂
∂ν

(
pnζ1

ζ

)
∂

∂ν

(
pnζ3

ζ

)]

+
χ6M
s44M

[
∂

∂ϕ

(
pnζ2

ζ

)
∂

∂ϕ

(
pnζ3

ζ

)
+Θ2

∂
∂ν

(
pnζ2

ζ

)
∂

∂ν

(
pnζ3

ζ

)]
,

(4.56)

37



WM = 4

π/2∫
0

π/2∫
0

(
pn
ζ

)2(
Φ1M ζ21+Φ2M ζ22+Φ3M ζ23+Φ4M ζ1ζ2

+ Φ5M ζ1ζ3+Φ6M ζ2ζ3
)
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

{[
∂

∂ϕ

(
pnζ1

ζ

)]2
+Θ2

[
∂

∂ν

(
pnζ1

ζ

)]2}
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

{[
∂

∂ϕ

(
pnζ2

ζ

)]2
+Θ2

[
∂

∂ν

(
pnζ2

ζ

)]2}
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M

{[
∂

∂ϕ

(
pnζ3

ζ

)]2
+Θ2

[
∂

∂ν

(
pnζ3

ζ

)]2}
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ4M

[
∂

∂ϕ

(
pnζ1

ζ

)
∂

∂ϕ

(
pnζ2

ζ

)

+ Θ2
∂

∂ν

(
pnζ1

ζ

)
∂

∂ν

(
pnζ2

ζ

)]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ5M

[
∂

∂ϕ

(
pnζ1

ζ

)
∂

∂ϕ

(
pnζ3

ζ

)

+ Θ2
∂

∂ν

(
pnζ1

ζ

)
∂

∂ν

(
pnζ3

ζ

)]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ6M

[
∂

∂ϕ

(
pnζ2

ζ

)
∂

∂ϕ

(
pnζ3

ζ

)

+ Θ2
∂

∂ν

(
pnζ2

ζ

)
∂

∂ν

(
pnζ3

ζ

)]
dϕ dν, (4.57)

where Θ, xM, s44M, ciM (i= 1,2,3) and κiM, χiM; ΦiM, Ψ1M (i= 1,. . . , 6) are given by
Equations (1.15), ( (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and ζi, ζ,
ηiM (i= 1,2,3; see Equation (4.13)) have the forms
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ζ1 = c3M xc3M−1M , ζ2 =
2
3
+ lnxM, ζ3 =−xc3MM

[
2
3
+ lnxM+ c3M

(
1
3
− lnxM

)]
,

ζ= c3M

{[
2(c1M+2c2M)

3
+(c1M− c2M) lnxIN

]
− 2c2M xM

xIN

(
1
3
− lnxM

)}
xc3M−1M

−
{
[(c1M+ c2M)c3M−2c2M]xc3M−1IN +

2c2M xc3MM

xIN

}(
2
3
+ lnxM

)
,

η1M =
1
3

{
pnζ1 (γ2M−2γ1M)

ζ
+

1
s44m

[
γ3M

∂
∂ϕ

(
pnζ1

ζ

)
+ γ4M

∂
∂ν

(
pnζ1

ζ

)]}
,

η2M =−
{
pnζ1 (γ1M+ γ2M)

ζ
+

1
s44m

[
γ3M

∂
∂ϕ

(
pnζ1

ζ

)
+ γ4M

∂
∂ν

(
pnζ1

ζ

)]}
,

η3M =
pnζ2 (γ1M c3+ γ2M)

ζ
+

1
s44m

[
γ3M

∂
∂ϕ

(
pnζ2

ζ

)
+ γ4M

∂
∂ν

(
pnζ2

ζ

)]
,

η4M =
pnζ3γ2M

ζ
+

1
s44m

[
γ3M

∂
∂ϕ

(
pnζ3

ζ

)
+ γ4M

∂
∂ν

(
pnζ3

ζ

)]
. (4.58)

The normal stress pn is given by Equation (2.33). With regard to Equation (4.50),
the coefficient ρM in Equation (2.33) is derived as

ρM =
1
ζ

[
ζ1
(
lnxIN− 13

)
−ζ2 xc3M−1IN − ζ3

xIN

]
. (4.59)
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Chapter 5

Mathematical Model 3

5.1 Mathematical Procedure

Let the mathematical procedure ∂2Eq.(2.23)/∂x2n be performed, and then we get
[1]–[22]

r
∂3un
∂x3n

+4x2n
∂2un
∂x2n

+
xn

s44 (c1+ c2)
∂Un

∂xn
= 0, (5.1)

where s44, ci (i= 1,2,3) and Un = Un (r,ϕ,ν) are given by Equations (2.13), (2.18)
and (2.25), respectively. With regard to Equations (2.24), (4.2), we get

xn
∂Un

∂xn
= c3 (C1 xn+C2 x

c3
n +C3) , (5.2)

where C1, C2, C3 are integration constants, which are determined by the boundary
conditions in Section 2.3. Let Equation (5.2) be substituted to Equation (5.1), and
then we get

x3n
∂3un
∂x3n

+4x2n
∂2un
∂x2n

=C1 x
3
n+C2 x

c3
n +C3. (5.3)

The mathematical solution of Equation (5.3), which is determined by Wron-
skian’s method (see Chapter 10) [23], is derived as

un =C1 xn

(
4
3
− lnxn

)
+C2 x

c3
n +C3

(
1
2
+ lnxn

)
. (5.4)

With regard to Equations (2.1)–(2.4), (2.14)–(2.17), (2.26), (5.4), we get

εn =C1

(
1
3
− lnxn

)
+C2 c3 x

c3−1
n +

C3
xn

, (5.5)

εϕ = εθ =C1

(
4
3
− lnxn

)
+C2 x

c3−1
n +

C3
xn

(
1
2
+ lnxn

)
, (5.6)

εnϕ = s44σnϕ =

(
4
3
− lnxn

)
∂C1
∂ϕ
+ xc3−1n

∂C2
∂ϕ
+
1
xn

(
1
2
+ lnxn

)
∂C3
∂ϕ

, (5.7)
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εnθ = s44σnθ =Θ
[(
4
3
− lnxn

)
∂C1
∂ν
+ xc3−1n

∂C2
∂ν
+
1
xn

(
1
2
+ lnxn

)
∂C3
∂ν

]
, (5.8)

σn =C1

[
c1−7c2
3

− (c1− c2) lnxn

]
+C2 [(c1+ c2)c3−2c2]xc3−1n

+
C3
xn
(c1−2c2 lnxn) , (5.9)

σϕ = σθ =C1

[
4c1− c2
3

− (c1− c2) lnxn

]
+C2 (c1− c2 c3)x

c3−1
n

+
C3
xn

(
c1−2c2
2

+ c1 lnxn

)
, (5.10)

σ1 = η1+η2 lnxn+η3 xc3−1n +
η4+η5 lnxn

xn
, (5.11)

w=C21 κ1+C22 κ2+C23 κ3+C1C2κ4+C1C3κ5+C2C3κ6

+
χ1
s44

[(
∂C1
∂ϕ

)2
+Θ2

(
∂C1
∂ν

)2]
+

χ2
s44

[(
∂C2
∂ϕ

)2
+Θ2

(
∂C2
∂ν

)2]

+
χ3
s44

[(
∂C3
∂ϕ

)2
+Θ2

(
∂C3
∂ν

)2]
+

χ4
s44

(
∂C1
∂ϕ

∂C2
∂ϕ

+Θ2
∂C1
∂ν

∂C2
∂ν

)

+
χ5
s44

(
∂C1
∂ϕ

∂C3
∂ϕ

+Θ2
∂C1
∂ν

∂C3
∂ν

)
+

χ6
s44

(
∂C2
∂ϕ

∂C3
∂ϕ

+Θ2
∂C2
∂ν

∂C3
∂ν

)
, (5.12)

where Θ is given by Equation (1.15), and ηi κ j, χ j (i= 1, . . . , 4; j = 1, . . . , 6) are
derived as

η1 =
1
3

[
C1 (γ1+4γ2)+

4
s44

(
γ3

∂C1
∂ϕ
+ γ4

∂C1
∂ν

)]
,

η2 =−
[
C1 (γ1+ γ2)+

1
s44

(
γ3

∂C1
∂ϕ
+ γ4

∂C1
∂ν

)]
,

η3 =C2 (γ1 c3+ γ2)+
1
s44

(
γ3

∂C2
∂ϕ
+ γ4

∂C2
∂ν

)
,

η4 =C3
(

γ1+
γ2
2

)
+

1
2s44

(
γ3

∂C3
∂ϕ
+ γ4

∂C3
∂ν

)
,

η5 =C3 γ2+
1
s44

(
γ3

∂C3
∂ϕ
+ γ4

∂C3
∂ν

)
,
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κ1 =
c2− c1
2

ln2 xn+
c1− c2
3

lnxn+
17c1+ c2
18

,

κ2 =
[
c23 (c1+ c2)

2
+ c1 (1−2c3)

]
x2(c3−1)n ,

κ3 =
c1 ln2 xn

x2n
− c1 lnxn

x2n
+
c2−2c1
4x2n

,

κ4 = c3 (c1− c2) x
c3−1
n lnxn+

[
2c1+

c3 (c2−7c1)
3

]
xc3−1n ,

κ5 = (3c1− c2)
lnxn
xn
− 4c1− c2

3xn
,

κ6 = 2c1 (1− c3) x
c3−2
n lnxn+(c2 c3− c1) x

c3−2
n ,

χ1 = ln2 xn− 83 lnxn+
16
9

, χ2 = x2(c3−1)n ,

χ3 =
ln2 xn
x2n

+
lnxn
x2n
+

1
4x2n

, χ4 =
8
3
xc3−1n −2xc3−1n lnxn,

χ5 =
4
3xn

+
5lnxn
3xn

− 2ln
2 xn
xn

, χ6 = 2xc3−2n lnxn+ xc3−2n . (5.13)

With regard to Equations (4.14), (5.14), we get

Φ1 =
c2− c1
6

{
x3M

[(
lnxM− 13

)2
+
1
9

]
− x3IN

[(
lnxIN− 13

)2
+
1
9

]}

+
c1− c2
9

[
x3M

(
lnxM− 13

)
− x3IN

(
lnxIN− 13

)]
+
17c1+ c2
54

(
x3M− x3IN

)
,

Φ2 =
1

2c3+1

[
c23 (c1+ c2)

2
+ c1 (1−2c3)

](
x2c3+1M − x2c3+1IN

)
,

Φ3 = c1
[
xM
(
ln2 xM−2lnxM+2

)
− xIN

(
ln2 xIN−2lnxIN+2

)]
− c1 [xM (lnxM−1)− xIN (lnxIN−1)]+ c2−2c1

4
(xM− xIN) ,

Φ4 =
c3 (c1− c2)
c3+2

[
xc3+2M

(
lnxM− 1

c3+2

)
− xc3+2IN

(
lnxIN− 1

c3+2

)]

+
1

c3+2

[
2c1+

c3 (c2−7c1)
3

](
xc3+2M − xc3+2IN

)
,

Φ5 =
3c1− c2
2

[
x2M

(
lnxM− 12

)
− x2IN

(
lnxIN− 12

)]
− 4c1− c2

6

(
x2M− x2IN

)
,

Φ6 =
2c1 (1− c3)

c3+1

[
xc3+1M

(
lnxM− 1

c3+1

)
− xc3+1IN

(
lnxIN− 1

c3+1

)]
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+
c2 c3− c1
c3+1

(
xc3+1M − xc3+1IN

)
,

Ψ1 =
x3M
3

[
(lnxM−3)

(
lnxM− 13

)
+
17
9

]
− x3IN
3

[
(lnxIN−3)

(
lnxIN− 13

)
+
17
9

]
,

Ψ2 =
x2c3+1M − x2c3+1IN

2c3+1
,

Ψ3 = xM lnxM (lnxM−1)− xIN lnxIN (lnxIN−1)+ 5(xM− xIN)
4

,

Ψ4 =
2

c3+2

{
xc3+2M

[
4c3+11
3(c3+2)

− lnxM
]
− xc3+2IN

[
4c3+11
3(c3+2)

− lnxIN
]}

,

Ψ5 =
2
(
x2M− x2IN

)
3

+
5
6

[
x2M

(
lnxM− 12

)
− x2IN

(
lnxIN− 12

)]

− x2M

(
ln2 xM− lnxM+ 12

)
+ x2IN

(
ln2 xIN− lnxIN+ 12

)
,

Ψ6 =
2

c3+1

[
xc3+1M

(
lnxM− 1

c3+1

)
− xc3+1IN

(
lnxIN− 1

c3+1

)]

+
1

c3+1

(
xc3+1M − xc3+1IN

)
, (5.14)

where xIN , xM are given by Equations (1.16), (1.17), respectively. The integrals
(4.14), which consider Equation (5.14), are determined by the formulae in Chapter 10
(see Equations (10.10)–(10.12)).

In case of the ellipsoidal inclusion, we get (unIN)xn→0 −→ ± ∞, (εIN)xn−→0−→± ∞, (σIN)r→0 −→±∞ due to (lnxn)xn→0 −→ ± ∞ and (xc3n )xn→0 −→ ± ∞ for
c3 < 0 (see Equations (2.18), (5.4)–(5.10)). Accordingly, the mathematical solutions
(5.4)–(5.10) are suitable for the matrix.

5.2 Matrix

The integration constants C1M, C2M, C3M for the matrix (see Equation (4.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)–(2.32). The boundary
conditions result in the following combinations of C1M, C2M, C3M. Finally, such a
combination is considered to exhibit a minimum value of the elastic energy WC of
the cubic cell (see Equation (2.27)).
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Conditions C1M �= 0, C2M �= 0, C3M = 0. With regard to Equations (2.30), (2.31),
(5.4)–(5.12), (2.21), (2.26), (2.27), we get

εnM =− pn
ζ

[
1
3
− lnxn− c3M

(
4
3
− lnxM

)(
xn
xM

)c3M−1
]

, (5.15)

εϕM = εθM =− pn
ζ

[
4
3
− lnxn−

(
4
3
− lnxM

)(
xn
xM

)c3M−1
]

, (5.16)

εnϕM = s44M σnϕM =

(
lnxn− 43

)
∂

∂ϕ

(
pn
ζ

)
+ xc3M−1n

∂
∂ϕ

[
pn

ζ xc3M−1M

(
4
3
− lnxM

)]
,

(5.17)

εnθM = s44M σnθM =Θ
{(

lnxn− 43
)

∂
∂ϕ

(
pn
ζ

)

+ xc3M−1n
∂

∂ϕ

[
pn

ζ xc3M−1M

(
4
3
− lnxM

)]}
, (5.18)

σnM =
pn
ζ

{
7c2M− c1M

3
+(c1M− c2M) lnxn

+[(c1M+ c2M)c3M−2c2M]
(
4
3
− lnxM

)(
xn
xM

)c3M−1
}

, (5.19)

σ1M = η1M+η2M lnxn+η3M xc3M−1n , (5.20)

σϕM = σθM =
pn
ζ

[
c2M−4c1M

3
+(c1M− c2M) lnxn

+(c1M− c2M c3M)

(
4
3
− lnxM

)(
xn
xM

)c3M−1
]

, (5.21)

wM =

(
pn
ζ

)2⎧⎨
⎩κ1M+κ2M

(
4−3lnxM
3xc3M−1M

)2
+

κ4M (3lnxM−4)
3xc3M−1M

⎫⎬
⎭

+
χ1M
s44M

{[
∂

∂ϕ

(
pn
ζ

)]2
+Θ2

[
∂

∂ν

(
pn
ζ

)]2}
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+
χ2M
s44M

⎛
⎝{ ∂

∂ϕ

[
pn (4−3lnxM)
3ζ xc3M−1M

]}2
+Θ2

{
∂

∂ν

[
pn (4−3lnxM)
3ζ xc3M−1M

]}2⎞⎠

+
χ4M
s44M

∂
∂ϕ

(
pn
ζ

)
∂

∂ϕ

[
pn (3lnxM−4)
3ζ xc3M−1M

]

+
χ4M Θ2

s44M

∂
∂ν

(
pn
ζ

)
∂

∂ν

[
pn (3lnxM−4)
3ζ xc3M−1M

]
, (5.22)

WM = 4

π/2∫
0

π/2∫
0

(
pn
ζ

)2⎧⎨
⎩Φ1M+Φ2M

(
4−3lnxM
3xc3M−1M

)2
+

Φ4M (3lnxM−4)
3xc3M−1M

⎫⎬
⎭ dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

{[
∂

∂ϕ

(
pn
ζ

)]2
+Θ2

[
∂

∂ν

(
pn
ζ

)]2}
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

⎛
⎝{ ∂

∂ϕ

[
pn (4−3lnxM)
3ζ xc3M−1M

]}2⎞⎠ dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M Θ2
⎛
⎝{ ∂

∂ν

[
pn (4−3lnxM)
3ζ xc3M−1M

]}2⎞⎠ dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ4M
∂

∂ϕ

(
pn
ζ

)
∂

∂ϕ

[
pn (3lnxM−4)
3ζ xc3M−1M

]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ4M Θ2
∂

∂ν

(
pn
ζ

)
∂

∂ν

[
pn (3lnxM−4)
3ζ xc3M−1M

]
dϕ dν, (5.23)

where Θ, xM, s44M, ciM (i= 1,2,3) and κ jM, χ jM; Φ jM, Ψ jM ( j = 1,2,4) are given
by Equations (1.15), (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and ζ, ζ i
(i= 1,2), η jM ( j = 1,2,3; see Equation (5.13)) have the forms

ζ= ζ2−ζ1
(
4
3
− lnxM

)
, ζ1 = [(c1M+ c2M)c3M−2c2M]

(
xIN
xM

)c3M−1
,

ζ2 =
c1M−7c2M

3
− (c1M− c2M) lnxIN,

η1M =− 1
3

{
pn (γ1M+4γ2M)

ζ
+

4
s44M

[
γ3M

∂
∂ϕ

(
pn
ζ

)
+ γ4M

∂
∂ν

(
pn
ζ

)]}
,
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η2M =
pn (γ1M+ γ2M)

ζ
+

1
s44M

[
γ3M

∂
∂ϕ

(
pn
ζ

)
+ γ4M

∂
∂ν

(
pn
ζ

)]
,

η3M =C2 (γ1M c3M+ γ2M)+
γ3M
s44M

∂
∂ϕ

[
pn

ζ xc3M−1M

(
4
3
− lnxM

)]

+
γ4M
s44M

∂
∂ν

[
pn

ζ xc3M−1M

(
4
3
− lnxM

)]
, (5.24)

The normal stress pn is given by Equation (2.33). With regard to Equation (5.16),
the coefficient ρM in Equation (2.33) is derived as

ρM =
1
ζ

[
4
3
− lnxIN−

(
4
3
− lnxM

)(
xIN
xM

)c3M−1
]

. (5.25)

Conditions C1M �= 0, C3M �= 0, C2M = 0. With regard to Equations (2.30), (2.31),
(5.4)–(5.12), (2.21), (2.26), (2.27), we get

εnM =− pn
ζ

[(
1
2
+ lnxM

)(
1
3
− lnxn

)
− xM

xn

(
4
3
− lnxM

)]
, (5.26)

εϕM = εθM =− pn
ζ

[(
1
2
+ lnxM

)(
4
3
− lnxn

)
− xM

xn

(
4
3
− lnxM

)(
1
2
+ lnxn

)]
,

(5.27)

εnϕM = s44M σnϕM =

(
lnxn− 43

)
∂

∂ϕ

[
pn
ζ

(
1
2
+ lnxM

)]

+
1
xn

(
1
2
+ lnxn

)
∂

∂ϕ

[
pn xM

ζ

(
lnxM− 43

)]
, (5.28)

εnνM = s44M σnϕM =Θ
{(

lnxn− 43
)

∂
∂ϕ

[
pn
ζ

(
1
2
+ lnxM

)]

+
1
xn

(
1
2
+ lnxn

)
∂

∂ϕ

[
pn xM

ζ

(
lnxM− 43

)]}
, (5.29)

σnM =
pn
ζ

{(
1
2
+ lnxM

)[
c1M−7c2M

3
− (c1M− c2M) lnxn

]

+
xM
xn

(
4
3
− lnxM

)
(c1M−2c2M lnxn)

}
, (5.30)

47



σ1M = η1M+η2M lnxn+
η4M+η5M lnxn

xn
, (5.31)

σϕM = σθM =
pn
ζ

{(
1
2
+ lnxM

)[
4c1M− c2M

3
− (c1M− c2M) lnxn

]

+
xM
xn

(
4
3
− lnxM

)(
c1M− c2M

2
+ c3M lnxn

)}
, (5.32)

wM =

(
pn
ζ

)2[
κ1M

(
1
2
+ lnxM

)
+κ3M x2M

(
4
3
− lnxM

)2

+ κ5M xM

(
1
2
+ lnxM

)(
4
3
− lnxM

)]

+
χ1M
s44M

({
∂

∂ϕ

[
pn
ζ

(
1
2
+ lnxM

)]}2
+Θ2

{
∂

∂ν

[
pn
ζ

(
1
2
+ lnxM

)]}2)

+
χ3M
s44M

({
∂

∂ϕ

[
pn xM

ζ

(
4
3
− lnxM

)]}2
+Θ2

{
∂

∂ν

[
pn xM

ζ

(
4
3
− lnxM

)]}2)

+
χ5M
s44M

∂
∂ϕ

[
pn
ζ

(
1
2
+ lnxM

)]
∂

∂ϕ

[
pn xM

ζ

(
4
3
− lnxM

)]

+
χ5M Θ2

s44M

∂
∂ν

[
pn
ζ

(
1
2
+ lnxM

)]
∂

∂ν

[
pn xM

ζ

(
4
3
− lnxM

)]
, (5.33)

WM = 4

π/2∫
0

π/2∫
0

(
pn
ζ

)2[
Φ1M

(
1
2
+ lnxM

)
+Φ3M x2M

(
4
3
− lnxM

)2

+ Φ5M xM

(
1
2
+ lnxM

)(
4
3
− lnxM

)]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

({
∂

∂ϕ

[
pn
ζ

(
1
2
+ lnxM

)]}2

+ Θ2
{

∂
∂ν

[
pn
ζ

(
1
2
+ lnxM

)]}2)
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

(
Ψ3M

{
∂

∂ϕ

[
pn xM

ζ

(
4
3
− lnxM

)]}2
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+ Θ2
{

∂
∂ν

[
pn xM

ζ

(
4
3
− lnxM

)]}2)
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ5M
∂

∂ϕ

[
pn
ζ

(
1
2
+ lnxM

)]
∂

∂ϕ

[
pn xM

ζ

(
4
3
− lnxM

)]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Φ5M Θ2
∂

∂ν

[
pn
ζ

(
1
2
+ lnxM

)]
∂

∂ν

[
pn xM

ζ

(
4
3
− lnxM

)]
dϕ dν,

(5.34)

where Θ, xM, s44M, ciM (i= 1,2,3) and κ jM, χ jM; Φ jM, Ψ jM ( j = 1,3,5) are given
by Equations (1.15), (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and ζ, ζi
(i= 1,2), η jM ( j = 1,2,4,5; see Equation (5.13)) have the forms

ζ=
ζ2
xM

(
1
2
+ lnxM

)
−ζ1

(
4
3
− lnxM

)
, ζ1 =

xM
xIN
(c1M−2c2M lnxIN) ,

ζ2 = xM

[
c1M−7c2M

3
− (c1M− c2M) lnxIN

]
,

η1M =− pn (γ1M+4γ2M)
3ζ

(
1
2
+ lnxM

)
− 4γ3M
3s44M

∂
∂ϕ

[
pn
ζ

(
1
2
+ lnxM

)]

− 4γ4M
3s44M

∂C1
∂ν

[
pn
ζ

(
1
2
+ lnxM

)]
,

η2M =
pn (γ1M+ γ2M)

ζ

(
1
2
+ lnxM

)
+

γ3M
s44M

∂
∂ϕ

[
pn
ζ

(
1
2
+ lnxM

)]

+
γ4M
s44M

∂
∂ν

[
pn
ζ

(
1
2
+ lnxM

)]
,

η4M =
pn xM (2γ1M+ γ2M)

2ζ

(
lnxM− 43

)
+

γ3M
2s44M

∂
∂ϕ

[
pn xM

ζ

(
lnxM− 43

)]

+
γ4M
2s44M

∂
∂ν

[
pn xM

ζ

(
lnxM− 43

)]
,

η5M =
pn xM γ2M

ζ

(
lnxM− 43

)
+

γ3M
s44M

∂
∂ϕ

[
pn xM

ζ

(
lnxM− 43

)]

+
γ4M
s44M

∂
∂ν

[
pn xM

ζ

(
lnxM− 43

)]
. (5.35)

The normal stress pn is given by Equation (2.33). With regard to Equation (5.27),
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the coefficient ρM in Equation (2.33) is derived as

ρM =
1
ζ

[(
1
2
+ lnxM

)(
4
3
− lnxIN

)
− xM
xIN

(
4
3
− lnxM

)(
1
2
+ lnxIN

)]
. (5.36)

Conditions C2M �= 0, C3M �= 0, C1M = 0. With regard to Equations (2.30), (2.31),
(5.4)–(5.12), (2.21), (2.26), (2.27), we get

εnM =− pn
ζ

[
c3M

(
1
2
+ lnxM

)
xc3M−1n − xc3MM

xn

]
, (5.37)

εϕM = εθM =− pn
ζ

[(
1
2
+ lnxM

)
xc3M−1n − xc3MM

xn

(
1
2
+ lnxn

)]
,

(5.38)

εnϕM = s44M σnϕM =
1
xn

(
1
2
+ lnxn

)
∂

∂ϕ

(
pn x

c3M
M

ζ

)

− xc3M−1n
∂

∂ϕ

[
pn
ζ

(
1
2
+ lnxM

)]
, (5.39)

εnνM = s44M σnνM =Θ
{
1
xn

(
1
2
+ lnxn

)
∂

∂ν

(
pn x

c3M
M

ζ

)

− xc3M−1n
∂

∂ν

[
pn
ζ

(
1
2
+ lnxM

)]}
, (5.40)

σnM =− pn x
c3M−1
n

ζ

×
{
[c3M (c1M+ c2M)−2c2M]

(
1
2
+ lnxM

)
− xM

xn
(c1M−2c2M lnxn)

}
,

(5.41)

σϕM = σθM =

− pn x
c3M−1
n

ζ

[
(c1M− c2M c3M)

(
1
2
+ lnxM

)
− xM

xn

(
c1M−2c2M

2
+ c1M lnxn

)]
,

(5.42)

σ1M = η3M xc3M−1n +
η4M+η5M lnxn

xn
, (5.43)

wM =

(
pn
ζ

)2[
κ2M

(
1
2
+ lnxM

)2
+κ3M x2c3MM +κ6M xc3MM

(
1
2
+ lnxM

)]
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+
χ2M
s44M

{
∂

∂ϕ

[
pn
ζ

(
1
2
+ lnxM

)]2
+Θ2

∂
∂ν

[
pn
ζ

(
1
2
+ lnxM

)]2}

+
χ3M
s44M

[
∂C3M

∂ϕ

(
pn x

c3M
M

ζ

)2
+Θ2

∂C3M
∂ν

(
pn x

c3M
M

ζ

)2]

− χ6M Θ
s44M

{
∂

∂ϕ

[
pn
ζ

(
1
2
+ lnxM

)]
∂

∂ϕ

(
pn x

c3M
M

ζ

)

+
∂

∂ν

[
pn
ζ

(
1
2
+ lnxM

)]
∂

∂ν

(
pn x

c3M
M

ζ

)}
, (5.44)

WM = 4

π/2∫
0

π/2∫
0

(
pn
ζ

)2[
Φ2M

(
1
2
+ lnxM

)2
+Φ3M x2c3MM

+ Φ6M xc3MM

(
1
2
+ lnxM

)]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

{
∂

∂ϕ

[
pn
ζ

(
1
2
+ lnxM

)]2
+Θ2

∂
∂ν

[
pn
ζ

(
1
2
+ lnxM

)]2}
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M

[
∂C3M

∂ϕ

(
pn x

c3M
M

ζ

)2
+Θ2

∂C3M
∂ν

(
pn x

c3M
M

ζ

)2]
dϕ dν

− 4
s44M

π/2∫
0

π/2∫
0

Ψ6M Θ
{

∂
∂ϕ

[
pn
ζ

(
1
2
+ lnxM

)]
∂

∂ϕ

(
pn x

c3M
M

ζ

)

+
∂

∂ν

[
pn
ζ

(
1
2
+ lnxM

)]
∂

∂ν

(
pn x

c3M
M

ζ

)}
dϕ dν, (5.45)

where Θ, xM, s44M, ciM (i= 1,2,3) and κ jM, χ jM; Φ jM, Ψ jM ( j = 1,3,5) are given
by Equations (1.15), (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and ζ, ζi
(i= 1,2), η jM ( j = 3,4,5; see Equation (5.13)) have the forms

ζ=
ζ2
xM

(
1
2
+ lnxM

)
−ζ1 xc3M−1M , ζ1 =

xM
xIN
(c1M−2c2M lnxIN) ,

ζ2 = xM [c3M (c1M+ c2M)−2c2M]xc3M−1IN ,

η3M =
pn x

c3M
M (γ1M c3M+ γ2M)

ζ
+

γ3M
s44M

∂
∂ϕ

(
pn x

c3M
M

ζ

)

+
γ4M
s44M

∂
∂ν

(
pn x

c3M
M

ζ

)
,
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η4M =
pn (2γ1M+ γ2M)

2ζ

(
1
2
+ lnxM

)
+

γ3M
2s44M

∂
∂ϕ

[
pn
ζ

(
1
2
+ lnxM

)]

+
γ4M
2s44M

∂
∂ν

[
pn
ζ

(
1
2
+ lnxM

)]
,

η5M =
pn γ2M

ζ

(
1
2
+ lnxM

)
+

γ3M
s44M

∂
∂ϕ

[
pn
ζ

(
1
2
+ lnxM

)]

+
γ4M
s44M

∂
∂ν

[
pn
ζ

(
1
2
+ lnxM

)]
. (5.46)

The normal stress pn is given by Equation (2.33). With regard to Equation (5.38),
the coefficient ρM in Equation (2.33) is derived as

ρM =
1
ζ

[(
1
2
+ lnxM

)
xc3M−1IN − xc3MM

xIN

(
1
2
+ lnxIN

)]
. (5.47)

Conditions C1M �= 0, C2M �= 0, C3M �= 0. With regard to Equations (2.30)–(2.32),
(5.4)–(5.12), (2.21), (2.26), (2.27), we get

εnM =− pn
ζ

[
ζ1
(
1
3
− lnxn

)
+ζ2 c3M xc3M−1n +

ζ3
xn

]
, (5.48)

εϕM = εθM =− pn
ζ

[
ζ1
(
4
3
− lnxn

)
+ζ2 xc3M−1n +

ζ3mI
xn

(
1
2
+ lnxn

)]
, (5.49)

εnϕM = s44M σnϕM =−
[(
4
3
− lnxn

)
∂

∂ϕ

(
pnζ1

ζ

)
+ xc3M−1n

∂
∂ϕ

(
pnζ2

ζ

)

+
1
xn

(
1
2
+ lnxn

)
∂

∂ϕ

(
pnζ3

ζ

)]
, (5.50)

εnνM = s44M σnϕM =−Θ
[(
4
3
− lnxn

)
∂

∂ϕ

(
pnζ1

ζ

)
+ xc3M−1n

∂
∂ν

(
pnζ2

ζ

)

+
1
xn

(
1
2
+ lnxn

)
∂

∂ν

(
pnζ3

ζ

)]
, (5.51)

σnM =− pn
ζ

{
ζ1
[
c1M−7c2M

3
− (c1M− c2M) lnxn

]

+ ζ2 [(c1M+ c2M)c3M−2c2M]xc3M−1n +
ζ3mI (c1M−2c2M lnxn)

xn

}
,

(5.52)
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σϕM = σθM =− pn
ζ

{
ζ1
[
4c1M− c2M

3
− (c1M− c2M) lnxn

]

+ ζ2 (c1M− c2M c3M)x
c3M−1
n +ζ3mI

(
c1M−2c2M

2
+ c1M lnxn

)}
,

(5.53)

σ1M = η1M+η2M lnxn+η3M xc3M−1n +
η4M+η5M lnxn

xn
, (5.54)

wM =

(
pn
ζ

)2(
κ1M ζ21+κ2M ζ22+κ3M ζ23+κ4M ζ1ζ2+κ5M ζ1ζ3+κ6M ζ2ζ3

)

+
χ1M
s44M

{[
∂

∂ϕ

(
pnζ1

ζ

)]2
+Θ2

[
∂

∂ν

(
pnζ1

ζ

)]2}

+
χ2M
s44M

{[
∂

∂ϕ

(
pnζ2

ζ

)]2
+Θ2

[
∂

∂ν

(
pnζ2

ζ

)]2}

+
χ3M
s44M

{[
∂

∂ϕ

(
pnζ3

ζ

)]2
+Θ2

[
∂

∂ν

(
pnζ3

ζ

)]2}

+
χ4M
s44M

[
∂

∂ϕ

(
pnζ1

ζ

)
∂

∂ϕ

(
pnζ2

ζ

)
+Θ2

∂
∂ν

(
pnζ1

ζ

)
∂

∂ν

(
pnζ2

ζ

)]

+
χ5M
s44M

[
∂

∂ϕ

(
pnζ1

ζ

)
∂

∂ϕ

(
pnζ3

ζ

)
+Θ2

∂
∂ν

(
pnζ1

ζ

)
∂

∂ν

(
pnζ3

ζ

)]

+
χ6M
s44M

[
∂

∂ϕ

(
pnζ2

ζ

)
∂

∂ϕ

(
pnζ3

ζ

)
+Θ2

∂
∂ν

(
pnζ2

ζ

)
∂

∂ν

(
pnζ3

ζ

)]
, (5.55)

WM = 4

π/2∫
0

π/2∫
0

(
pn
ζ

)2(
Φ1M ζ21+Φ2M ζ22+Φ3M ζ23

+ Φ4M ζ1ζ2+Φ5M ζ1ζ3+Φ6M ζ2ζ3
)
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ1M

{[
∂

∂ϕ

(
pnζ1

ζ

)]2
+Θ2

[
∂

∂ν

(
pnζ1

ζ

)]2}
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ2M

{[
∂

∂ϕ

(
pnζ2

ζ

)]2
+Θ2

[
∂

∂ν

(
pnζ2

ζ

)]2}
dϕ dν
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+
4

s44M

π/2∫
0

π/2∫
0

Ψ3M

{[
∂

∂ϕ

(
pnζ3

ζ

)]2
+Θ2

[
∂

∂ν

(
pnζ3

ζ

)]2}
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ4M

[
∂

∂ϕ

(
pnζ1

ζ

)
∂

∂ϕ

(
pnζ2

ζ

)

+ Θ2
∂

∂ν

(
pnζ1

ζ

)
∂

∂ν

(
pnζ2

ζ

)]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ5M

[
∂

∂ϕ

(
pnζ1

ζ

)
∂

∂ϕ

(
pnζ3

ζ

)

+ Θ2
∂

∂ν

(
pnζ1

ζ

)
∂

∂ν

(
pnζ3

ζ

)]
dϕ dν

+
4

s44M

π/2∫
0

π/2∫
0

Ψ6M

[
∂

∂ϕ

(
pnζ2

ζ

)
∂

∂ϕ

(
pnζ3

ζ

)

+ Θ2
∂

∂ν

(
pnζ2

ζ

)
∂

∂ν

(
pnζ3

ζ

)]
dϕ dν, (5.56)

where Θ, xM, s44M, ciM (i= 1,2,3) and κ jM, χ jM; Φ jM, Ψ jM ( j = 1,3,5) are given
by Equations (1.15), (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and ζ, ζi
(i= 1,2,3), η jM ( j = 1,. . . , 5; see Equation (5.13)) have the forms

ζ1 = xc3M−1M

[
c3M

(
1
2
+ lnxM

)
−1

]
,

ζ2 =
4
3
− lnxM−

(
1
2
+ lnxM

)(
1
3
− lnxM

)
,

ζ3mI = xc3MM

[
1
3
− lnxM− c3M

(
4
3
− lnxM

)]
,

ζ= xc3M−1M

[
c1M−7c2M

3
− (c1M− c2M) lnxIN

]

+ [(c1M+ c2M)c3M−2c2M]
(
1
2
+ lnxM

)(
1
3
− lnxM

)
xc3M−1IN

+ (c1M−2c2M lnxIN)
(
4
3
− lnxM

)
c3M xc3MM

xIN

−
{
c3M

[
c1M−7c2M

3
− (c1M− c2M) lnxIN

](
1
2
+ lnxM

)
xc3M−1M
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+ [(c1M+ c2M)c3M−2c2M]
(
4
3
− lnxM

)
xc3M−1IN

+
(c1M−2c2M lnxIN)xc3MM

xIN

(
1
3
− lnxM

)}
,

η1M =− pnζ1 (γ1M+4γ2M)
3ζ

− 4
3s44M

[
γ3M

∂
∂ϕ

(
pnζ1

ζ

)
+ γ4M

∂
∂ν

(
pnζ1

ζ

)]
,

η2M =
pnζ1 (γ1M+ γ2M)

ζ
+

1
s44M

[
γ3M

∂
∂ϕ

(
pnζ1

ζ

)
+ γ4M

∂
∂ν

(
pnζ1

ζ

)]
,

η3M =− pnζ2 (γ1M c3M+ γ2M)
ζ

− 1
s44M

[
γ3M

∂
∂ϕ

(
pnζ2

ζ

)
+ γ4M

∂
∂ν

(
pnζ2

ζ

)]
,

η4M =− pnζ3 (2γ1M+ γ2M)
2ζ

− 1
2s44M

[
γ3M

∂
∂ϕ

(
pnζ3

ζ

)
+ γ4M

∂
∂ν

(
pnζ3

ζ

)]
,

η5M =− pnζ3 γ2M
ζ

1
s44M

[
γ3M

∂
∂ϕ

(
pnζ3

ζ

)
+ γ4M

∂
∂ν

(
pnζ3

ζ

)]
. (5.57)

The normal stress pn is given by Equation (2.33). With regard to Equation (5.49),
the coefficient ρM in Equation (2.33) is derived as

ρM =
1
ζ

[
ζ1
(
4
3
− lnxIN

)
+ζ2 xc3M−1IN +

ζ3mI
xIN

(
1
2
+ lnxIN

)]
. (5.58)
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Chapter 6

Mathematical Model 4

6.1 Mathematical Procedure

The differential equation (2.23) is transformed to the form

Un =−s44 (c1+ c2)

(
x2n

∂2un
∂x2n

+2xn
∂un
∂xn

−2un
)

, (6.1)

where s44, ci (i= 1,2) andUn=Un (xn,ϕ,ν) are given by Equations (2.13), (2.18) and
(2.25), respectively. Let xn [∂Eq.(6.1)/∂xn] be performed, and then we get

xn
∂Un

∂xn
=−s44 (c1+ c2)

(
x3n

∂3un
∂x3n

+4x2n
∂2un
∂x2n

)
. (6.2)

Let Equations (6.1), (6.2 be substituted to Equation (2.24, and then we get

x3n
∂3un
∂x3n

+(4− c3)x
2
n

∂2un
∂x2n

−2c3xn ∂un
∂xn

+2c3un = 0. (6.3)

Let un be assumed in the form un = xλ
n , then we get [1]–[22]

un =C1 xn+C2 x
c3
n +

C3
x2n

, (6.4)

where c3 < 0 is given by Equation (2.18), and C1, C2, C3 are integration constants,
which are determined by the boundary conditions in Section 2.3. With regard to
Equations (2.1)–(2.4), (2.14)–(2.17), (2.26), (6.6), we get

εn =C1+C2 c3 x
c3−1
n − 2C3

x3n
, (6.5)

εϕ = εθ =C1+C2 x
c3−1
n +

C3
x3n

, (6.6)

εnϕ = s44σnϕ =
∂C1
∂ϕ
+ xc3−1n

∂C2
∂ϕ
+
1
x3n

∂C3
∂ϕ

, (6.7)

εnθ = s44σnθ =Θ
[

∂C1
∂ν
+ xc3−1n

∂C2
∂ν
+
1
x3n

∂C3
∂ν

]
, (6.8)
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σn =C1 (c1− c2)+C2 [(c1+ c2)c3−2c2]xc3−1n − 2C3 (c1+2c2)
x3n

, (6.9)

σϕ = σθ =C1 (c1− c2)+C2 (c1− c2 c3)x
c3−1
n +

C3 (c1+2c2)
x3n

, (6.10)

σ1 = η1+η2 xc3−1n +
η3
x3n

, (6.11)

w= κ1+κ2 x
2(c3−1)
n +

κ3
x6n
+κ4 xc3−1n +

κ5
x3n
+κ6 xc3−4n , (6.12)

where Θ is given by Equation (1.15), and η, κ j (i= 1,2,3; j = 1, . . . , 6) is derived as

η1 =C1 (γ1+ γ2)+
1
s44

(
γ3

∂C1
∂ϕ
+ γ4

∂C1
∂ν

)
,

η2 =C2 (γ1c3+ γ2)+
1
s44

(
γ3

∂C2
∂ϕ
+ γ4

∂C2
∂ν

)
,

η3 =C3 (γ2−2γ1)+
1
s44

(
γ3

∂C3
∂ϕ
+ γ4

∂C3
∂ν

)
,

κ1 =
3(c1− c2)C21

2
+
1
s44

[(
∂C1
∂ϕ

)2
+Θ2

(
∂C1
∂ν

)2]
,

κ2 =
[
(c1+ c2)c23

2
+ c1−2c2 c3

]
C22+

1
s44

[(
∂C2
∂ϕ

)2
+Θ2

(
∂C2
∂ν

)2]
,

κ3 = 3(c1+2c2)C23+
1
s44

[(
∂C3
∂ϕ

)2
+Θ2

(
∂C3
∂ν

)2]
,

κ4 = (c1− c2)(2+ c3)C1C2+
2
s44

(
∂C1
∂ϕ

∂C2
∂ϕ
+Θ2

∂C1
∂ν

∂C2
∂ν

)
,

κ5 =
2
s44

(
∂C1
∂ϕ

∂C3
∂ϕ
+Θ2

∂C1
∂ν

∂C3
∂ν

)
,

κ6 = [2c2 (1− c3)− c1]C2C3+
2
s44

(
∂C2
∂ϕ

∂C3
∂ϕ
+Θ2

∂C2
∂ν

∂C3
∂ν

)
. (6.13)

6.2 Matrix

The integration constants C1M, C2M, C3M for the matrix (see Equation (4.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)–(2.32). The boundary
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conditions result in the following combinations of C1M, C2M, C3M. Finally, such a
combination is considered to exhibit a minimum value of the elastic energy WC of
the cubic cell (see Equation (2.27)).

Conditions C1M �= 0, C2M �= 0, C3M = 0. With regard to Equations (2.30), (2.31),
(6.4)–(6.12), (2.21), (2.26), (2.27), we get

εnM =− pn
ζ

[
1− c3M

(
xn
xM

)c3M−1
]

, (6.14)

εϕM = εθM =− pn
ζ

[
1−

(
xn
xM

)c3M−1
]

, (6.15)

ε′nϕM = s44M σnϕM =−
[

∂
∂ϕ

(
pn
ζ

)
− xc3M−1n

∂
∂ϕ

(
pn

ζ xc3M−1M

)]
, (6.16)

ε′nθM = s44M σnθM =−Θ

[
∂

∂ν

(
pn
ζ

)
− xc3M−1n

∂
∂ν

(
pn

ζ xc3M−1M

)]
, (6.17)

σnM =− pn
ζ

{
c1M− c2M− [c3M (c1M+ c2M)−2c2M]

(
xn
xM

)c3M−1
}

, (6.18)

σϕM = σθM =− pn
ζ

[
c1M− c2M− (c1M− c2Mc3M)

(
xn
xM

)c3M−1
]

, (6.19)

σ1M = η1M+η2M xc3M−1n , (6.20)

wM = κ1M+κ2M x2(c3M−1)n +κ4M xc3M−1n , (6.21)

WM = 4

π/2∫
0

π/2∫
0

[
κ1M
3

(
x3M− x3IN

)
+

κ2M
2c3M+1

(
x2c3M+1M − x2c3M+1IN

)

+
κ4M

c3M+2

(
xc3M+2M − xc3M+2IN

)]
dϕdν, (6.22)

where Θ, xIN , xM and s44M, ciM (i= 1,2,3) are given by Equations (1.15)–(1.17) and
(2.13), (2.18), respectively, and ζ, ηiM, κ jM (i= 1,2; j = 1,2,4; see Equation (6.13))
have the forms
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ζ= c1M− c2M− [c3M (c1M+ c2M)−2c2M]
(
xIN
xM

)c3M−1
,

η1M =− pn (γ1M+ γ2M)
ζ

− 1
s44M

[
γ3M

∂
∂ϕ

(
pn
ζ

)
+ γ4M

∂
∂ν

(
pn
ζ

)]
,

η2M =
pn (γ1Mc3M+ γ2M)

ζ xc3M−1M

+
1

s44M

[
γ3M

∂
∂ϕ

(
pn

ζ xc3M−1M

)
+ γ4M

∂
∂ν

(
pn

ζ xc3M−1M

)]
,

κ1M =
3(c1M− c2M)

2

(
pn
ζ

)2
+

1
s44M

{[
∂

∂ϕ

(
pn
ζ

)]2
+Θ2

[
∂

∂ν

(
pn
ζ

)]2}
,

κ2M =
[
(c1M+ c2M)c23M

2
+ c1M−2c2M c3M

](
pn

ζ xc3M−1M

)2

+
1

s44M

⎧⎨
⎩
[

∂
∂ϕ

(
pn

ζ xc3M−1M

)]2
+Θ2

[
∂

∂ν

(
pn

ζ xc3M−1M

)]2⎫⎬
⎭ ,

κ4M =
(c2M− c1M)(2+ c3M)

xc3M−1M

(
pn
ζ

)2

− 2
s44M

[
∂

∂ϕ

(
pn
ζ

)
∂

∂ϕ

(
pn

ζ xc3M−1M

)
+Θ2

∂
∂ν

(
pn
ζ

)
∂

∂ν

(
pn

ζ xc3M−1M

)]
.

(6.23)

The normal stress pn is given by Equation (2.33). With regard to Equation (6.15),
the coefficient ρM in Equation (2.33) is derived as

ρM =
1
ζ

[
1−

(
xIN
xM

)c3M−1
]

. (6.24)

Conditions C1M �= 0, C3M �= 0, C2M = 0. With regard to Equations (2.30), (2.31),
(6.5)–(6.12), (2.21), (2.26), (2.27), we get

εnM =− pn
ζ

[
1− c3M

(
xM
xn

)3]
, (6.25)

εϕM = εθM =− pn
ζ

[
1−

(
xM
xn

)3]
, (6.26)

εnϕM = s44M σnϕM =−
[

∂
∂ϕ

(
pn
ζ

)
− 1
x3n

∂
∂ϕ

(
pn x3M

ζ

)]
, (6.27)
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εnθM = s44M σnθM =−Θ
[

∂
∂ν

(
pn
ζ

)
− 1
x3n

∂
∂ν

(
pn x3M

ζ

)]
, (6.28)

σnM =− pn
ζ

[
c1M− c2M+2(c1M+2c2M)

(
xM
xn

)3]
, (6.29)

σϕM = σθM =− pn
ζ

[
c1M− c2M− (c1M+2c2M)

(
xM
xn

)3]
, (6.30)

σ1M = η1M+
η3M
x3n

, (6.31)

wM = κ1M+
κ3M
x6n
+

κ5M
x3n

, (6.32)

WM = 4

π/2∫
0

π/2∫
0

[
κ1M
3

(
x3M− x3IN

)
+

κ3M
3

(
1

x3IN
− 1

x3M

)
+κ5M ln

(
xM
xIN

)]
dϕdν,

(6.33)

where Θ, xIN , xM and s44M, ciM (i= 1,2,3) are given by Equations (1.15)–(1.17) and
(2.13), (2.18), respectively, and ζ, η3M, κ jM ( j = 3,5; Equation (6.13)) have the forms

ζ= c1M− c2M+2(c1M+2c2M)

(
xM
xIN

)3
,

η3M =
pn x3M (γ2M−2γ1M)

ζ
+

1
s44M

[
γ3M

∂
∂ϕ

(
pn x3M

ζ

)
+ γ4M

∂
∂ν

(
pn x3M

ζ

)]
,

κ3M = 3(c1M+2c2M)
(
pn x3M

ζ

)2
+

1
s44M

[
∂

∂ϕ

(
pn x3M

ζ

)]2

+
Θ2

s44M

[
∂

∂ν

(
pn x3M

ζ

)]2
,

κ5M =− 2
s44M

[
∂

∂ϕ

(
pn
ζ

)
∂

∂ϕ

(
pn x3M

ζ

)
+Θ2

∂
∂ν

(
pn
ζ

)
∂

∂ν

(
pn x3M

ζ

)]
. (6.34)

The coefficients η1M, κ1M are given by Equation (6.23), where ζ in Equation (6.23)
is given by Equation (6.34). The normal stress pn is given by Equation (2.33). With
regard to Equation (6.26), the coefficient ρM in Equation (2.33) is derived as

ρM =
1
ζ

[
1−

(
xM
xIN

)−3]
. (6.35)
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Conditions C2M �= 0, C3M �= 0, C1M = 0. With regard to Equations (2.30), (2.31),
(6.5)–(6.12), (2.21), (2.26), (2.27), we get

εnM =− pn
ζ

[
c3M

(
xn
xM

)c3M−1
−2

(
xM
xn

)3]
, (6.36)

εϕM = εθM =− pn
ζ

[(
xn
xM

)c3M−1
−
(
xM
xn

)3]
, (6.37)

εnϕM = s44M σnϕM =−
[

∂
∂ϕ

(
pn

ζ xc3M−1M

)
xc3M−1n − 1

x3n

∂
∂ϕ

(
pn x3M

ζ

)]
, (6.38)

εnθM = s44M σnθM =−Θ

[
∂

∂ν

(
pn

ζ xc3M−1M

)
xc3M−1n − 1

x3n

∂
∂ν

(
pn x3M

ζ

)]
, (6.39)

σnM =− pn
ζ

{
[c3M (c1M+ c2M)−2c2M]

(
xn
xM

)c3M−1
−2(c1M+2c2M)

(
xM
xn

)3}
,

(6.40)

σϕM = σθM =− pn
ζ

[
(c1M− c2Mc3M)

(
xn
xM

)c3M−1
+(c1M+2c2M)

(
xM
xn

)3]
,

(6.41)

σ1M = η2M xc3M−1n +
η3M
x3n

, (6.42)

wM = κ2M x2(c3M−1)n +
κ3M
x6n
+κ6M xc3M−4n , (6.43)

WM = 4

π/2∫
0

π/2∫
0

[
κ2M

2c3M+1

(
x2c3M+1M − x2c3M+1IN

)
+

κ3M
3

(
1

x3IN
− 1

x3M

)

+
κ6M

c3M−1
(
xc3M−1M − xc3M−1IN

)]
dϕdν, (6.44)

where Θ, xIN , xM and s44M, ciM (i= 1,2,3) are given by Equations (1.15)–(1.17) and
(2.13), (2.18), respectively, and ζ has the form
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ζ=

{
[c3M (c1M+ c2M)−2c2M]

(
xIN
xM

)c3M+2

+2(c1M+2c2M)

}(
xM
xIN

)3
,

κ6M =−
x3M [2c2M (1− c3M)− c1M]

xc3M−1M

(
pn
ζ

)2
− 2

s44M

∂
∂ϕ

(
pn

ζ xc3M−1M

)
∂

∂ϕ

(
pn x3M

ζ

)

− 2Θ2

s44M

∂
∂ν

(
pn

ζ xc3M−1M

)
∂

∂ν

(
pn x3M

ζ

)
. (6.45)

The coefficients η2M, κ2M and η3M, κ3M are given by Equations (6.23) and (6.34),
respectively, where ζ in Equations (6.23), (6.34) is given by Equation (6.45). The
normal stress pn is given by Equation (2.33). With regard to Equation (6.37), the
coefficient ρM in Equation (2.33) is derived as

ρM =
1
ζ

[(
xIN
xM

)c3M−1
−
(
xM
xIN

)3]
. (6.46)

Conditions C1M �= 0, C2M �= 0, C3M �= 0. With regard to Equations (2.30)–(2.32),
(6.5)–(6.12), (2.21), (2.26), (2.27), we get

εnM =− pn
ζ

{
1− 1

c3M+2

[
3c3M

(
xn
xM

)c3M−1
−2(c3M−1)

(
xM
xn

)3]}
, (6.47)

εϕM = εθM =− pn
ζ

{
1− 1

c3M+2

[
3

(
xn
xM

)c3M−1
+(c3M−1)

(
xM
xn

)3]}
,

(6.48)

εnϕM = s44M σnϕM =−
{

∂
∂ϕ

(
pn
ζ

)

− 1
c3M+2

[
3

∂
∂ϕ

(
pn

ζ xc3M−1M

)
xc3M−1n +

c3M−1
x3n

∂
∂ϕ

(
pn x3M

ζ

)]}
,

(6.49)

εnθM = s44M σnθM =−Θ
{

∂
∂ν

(
pn
ζ

)
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− 1
c3M+2

[
3

∂
∂ν

(
pn

ζ xc3M−1M

)
xc3M−1n +

c3M−1
x3n

∂
∂ν

(
pn x3M

ζ

)]}
,

(6.50)

σnM =− pn
ζ

{
c1M− c2M− 3

c3M+2
[c3M (c1M+ c2M)−2c2M]

(
xn
xM

)c3M−1

+
2(c1M+2c2M)

c3M+2

(
xM
xn

)3}
, (6.51)

σϕM = σθM =− pn
ζ

{
c1M− c2M− 3(c1M− c2Mc3M)

c3M+2

(
xn
xM

)c3M−1

− c1M+2c2M
c3M+2

(
xM
xn

)3}
, (6.52)

σ1M = η1M+η2M xc3M−1n +
η3M
x3n

, (6.53)

wM = κ1M+κ2M x2(c3M−1)n +
κ3M
x6n
+κ4M xc3M−1n +

κ5M
x3n
+κ6M xc3M−4n , (6.54)

WM = 4

π/2∫
0

π/2∫
0

[
κ1M
3

(
x3M− x3IN

)
+

κ2M
2c3M+1

(
x2c3M+1M − x2c3M+1IN

)

+
κ3M
3

(
1

x3IN
− 1

x3M

)
+

κ4M
c3M+2

(
xc3M+2M − xc3M+2IN

)

+ κ5M ln
(
xM
xIN

)
+

κ6M
c3M−1

(
xc3M−1M − xc3M−1IN

)]
dϕdν, (6.55)

where Θ, xIN , xM and s44M, ciM (i= 1,2,3) are given by Equations (1.15)–(1.17) and
(2.13), (2.18), respectively, and ζ, κ jM ( j = 2 . . . , 6; Equation (6.13)) have the forms

ζ= c1M− c2M+
1

c3M+2

(
xM
xIN

)3{
2(c3M−1)(c1M+2cMm)

−3 [c3M (c1M+ c2M)−2c2M]
(
xIN
xM

)c3M+2
}

,

64



η2 =
3

c3M+2

{
pn (γ1c3+ γ2)

ζ xc3M−1M

+
1
s44

[
γ3

∂
∂ϕ

(
pn

ζ xc3M−1M

)
+ γ4

∂
∂ν

(
pn

ζ xc3M−1M

)]}
,

η3 =
c3M−1
c3M+2

{
pn x3M (γ2−2γ1)

ζ
+
1
s44

[
γ3

∂
∂ϕ

(
pn x3M

ζ

)
+ γ4

∂
∂ν

(
pn x3M

ζ

)]}
,

κ2M =
(

3
c3M+2

)2⎛⎝[(c1M+ c2M)c23M
2

+ c1M−2c2M c3M

](
pn

ζ xc3M−1M

)2

+
1

s44M

⎧⎨
⎩
[

∂
∂ϕ

(
pn

ζ xc3M−1M

)]2
+Θ2

[
∂

∂ν

(
pn

ζ xc3M−1M

)]2⎫⎬
⎭
⎞
⎠ ,

κ3M =
(
c3M−1
c3M+2

)2(
3(c1M+2c2M)

(
pn x3M

ζ

)2

+
1

s44M

{[
∂

∂ϕ

(
pn x3M

ζ

)]2
+Θ2

[
∂

∂ν

(
pn x3M

ζ

)]2})
,

κ4M =
3(c2M− c1M)

xc3M−1M

(
pn
ζ

)2

− 6
s44M (c3M+2)

[
∂

∂ϕ

(
pn
ζ

)
∂

∂ϕ

(
pn

ζ xc3M−1M

)
+Θ2

∂
∂ν

(
pn
ζ

)
∂

∂ν

(
pn

ζ xc3M−1M

)]
,

κ5M =
2(1− c3M)

s44M (c3M+2)

[
∂

∂ϕ

(
pn
ζ

)
∂

∂ϕ

(
pn x3M

ζ

)
+Θ2

∂
∂ν

(
pn
ζ

)
∂

∂ν

(
pn x3M

ζ

)]
,

κ6M =
3(c3M−1) [2c2M (1− c3M)− c1M]

xc3M−4M

[
pn

ζ(c3M+2)

]2

+
6(c3M−1)

s44M (c3M+2)
2

∂
∂ϕ

(
pn

ζ xc3M−1M

)
∂

∂ϕ

(
pn x3M

ζ

)

+
6Θ2 (c3M−1)
s44M (c3M+2)

2

∂
∂ν

(
pn

ζ xc3M−1M

)
∂

∂ν

(
pn x3M

ζ

)
. (6.56)

The coefficients η1M, κ1M are given by Equation (6.23), where ζ in Equation (6.23)
is given by Equation (6.56). The normal stress pn is given by Equation (2.33). With
regard to Equation (6.48), the coefficient ρM in Equation (2.33) is derived as

ρM =
1
ζ

{
1− 1

c3M+2

[
3

(
xIN
xM

)c3M−1
+(c3M−1)

(
xM
xIN

)3]}
. (6.57)
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6.3 Inclusion

In case of the ellipsoidal inclusion, we get C2IN = C3IN = 0, otherwise we get
(unIN)xn→0 −→ ± ∞, (εIN)xn−→0 −→ ± ∞, (σIN)r→0 −→ ±∞ due to c3 < 0 (see
Equations (2.18), (6.4)–(6.10)). With regard to Equations (2.28), (2.29), (6.4)–
(6.12), (2.21), (2.26), (2.27), we get [1]–[22]

εnIN = εϕIN = εθIN =−pnρIN, (6.58)

εnϕIN = s44IN σnϕIN =−ρIN
∂pn
∂ϕ

, (6.59)

εnθIN = s44IN σnθIN =−Θ ρIN
∂pn
∂ν

, (6.60)

σnIN = σϕIN = σθIN =−pn, (6.61)

σ1IN =− ρIN
[
pn (γ1+ γ2)+

1
s44

(
γ3

∂pn
∂ϕ
+ γ4

∂pn
∂ν

)]
, (6.62)

wIN = ρ2IN

{
3p2n
2ρIN

+
2

s44IN

[(
∂pn
∂ϕ

)2
+

(
∂pn
∂ν

)2]}
, (6.63)

WIN =
4ρ2IN
3

π/2∫
0

π/2∫
0

x3IN

{
3p2n
2ρIN

+
2

s44IN

[(
∂pn
∂ϕ

)2
+

(
∂pn
∂ν

)2]}
dϕdν, (6.64)

where Θ, s44IN are given by Equations (1.15), (2.13), respectively. The normal stress
pn is given by Equation (2.33). With regard to Equation (6.58), the coefficient ρIN
in Equation (2.33) is derived as

ρIN =
1−2μIN
EIN

. (6.65)
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Chapter 7

Mathematical Model 5

7.1 Mathematical Procedure

Let the mathematical procedures ∂Eq.(2.24)/∂r, Eq.(6.2)/r be performed, and then
we get

xn
∂2Un

∂x2n
+(1− c3)

∂Un

∂xn
= 0, (7.1)

∂Un

∂xn
=−s44 (c1+ c2)

(
x2n

∂3un
∂x3n

+4xn
∂2un
∂x2n

)
, (7.2)

where s44 and c1, c2, c3 < 0 are given by Equations (2.13) and (2.18), respectively.
Let the mathematical procedure ∂Eq.(7.2)/∂r be performed, and then we get

∂2Un

∂x2n
=−s44 (c1+ c2)

(
x2n

∂4un
∂x4n

+6xn
∂3un
∂x3n

+4
∂2un
∂x2n

)
. (7.3)

Let Equations (6.2), (6.3) be substituted to (7.1), and then we get

x2n
∂4un
∂x4n

+(7− c3)xn
∂3un
∂x3n

+4(2− c3)
∂2un
∂x2n

= 0. (7.4)

Let un be assumed in the form un = xλ
n, then we get

un =C1 xn+C2 x
c3
n +

C3
x2n
+C4, (7.5)

where C1 . . . ,C4 are integration constants, which are determined by the boundary
conditions in Section 2.3. With regard to Equations (2.1)–(2.4), (2.14)–(2.17), (2.26),
(7.6), we get

εn =C1+C2 c3 x
c3−1
n − 2C3

x3n
, (7.6)

εϕ = εθ =C1+C2 x
c3−1
n +

C3
x3n
+
C4
xn

, (7.7)

εnϕ = s44σnϕ =
∂C1
∂ϕ
+ xc3−1n

∂C2
∂ϕ
+
1
x3n

∂C3
∂ϕ
+
1
xn

∂C4
∂ϕ

, (7.8)
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εnθ = s44σnθ =Θ
[

∂C1
∂ν
+ xc3−1n

∂C2
∂ν
+
1
x3n

∂C3
∂ν
+
1
xn

∂C4
∂ν

]
, (7.9)

σn =C1 (c1− c2)+C2 [(c1+ c2)c3−2c2]xc3−1n − 2C3 (c1+2c2)
x3n

− 2c2C4
xn

, (7.10)

σϕ = σθ =C1 (c1− c2)+C2 (c1− c2 c3)x
c3−1
n +

C3 (c1+2c2)
x3n

+
c1C4
xn

, (7.11)

σ1 = η1+η2 xc3−1n +
η3
x3n
+

η4
xn

, (7.12)

w= κ1+κ2 x
2(c3−1)
n +

κ3
x6n
+

κ4
x2n
+(κ5+κ9)xc3−1n +

κ6
x3n
+κ7 xc3−4n +

κ8
xn
+

κ10
x4n

,

(7.13)

where Θ and ηi (i= 1,2,3) are given by Equations (1.15) and (6.13), respectively, and
η4, κ j ( j = 4,5,6) are derived as

η4 =C4 γ2+
1
s44

(
γ3

∂C4
∂ϕ
+ γ4

∂C4
∂ν

)
,

κ4 = c1C
2
4+

1
s44

[(
∂C4
∂ϕ

)2
+Θ2

(
∂C4
∂ν

)2]
,

κ5 = (c1− c2)(2+ c3)C1C2+
2
s44

(
∂C1
∂ϕ

∂C2
∂ϕ
+Θ2

∂C1
∂ν

∂C2
∂ν

)
,

κ6 =
2
s44

(
∂C1
∂ϕ

∂C3
∂ϕ
+Θ2

∂C1
∂ν

∂C3
∂ν

)
,

κ7 = [2c2 (1− c3)− c1]C2C3+
2
s44

(
∂C2
∂ϕ

∂C3
∂ϕ
+Θ2

∂C2
∂ν

∂C3
∂ν

)
,

κ8 = (c1− c2)C1C4+
1
s44

(
∂C1
∂ϕ

∂C4
∂ϕ
+Θ2

∂C1
∂ν

∂C4
∂ν

)
,

κ9 = (c1− c2 c3)C2C4+
1
s44

(
∂C2
∂ϕ

∂C4
∂ϕ
+Θ2

∂C2
∂ν

∂C4
∂ν

)
,

κ10 = (c1+2c2)C3C4+
1
s44

(
∂C3
∂ϕ

∂C4
∂ϕ
+Θ2

∂C3
∂ν

∂C4
∂ν

)
. (7.14)

The coefficient κi (i= 1,2,3) is given by Equation (6.13). In case of the ellipsoidal
inclusion, we get C2IN = C3IN = C4IN = 0, otherwise we get (unIN)xn→0 −→ ± ∞,
(εIN)xn−→0 −→± ∞, (σIN)r→0 −→±∞ due to c3 < 0 (see Equations (2.18), (6.4)–
(6.10)). In case of C1IN �= 0 (see Equations (6.4), (7.5)), the mathematical solutions
for the ellipsoidal inclusion is presented in Section 6.3.
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7.2 Matrix

The integration constantsC1M,C2M,C3M,C4M for the matrix (see Equation (4.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)–(2.32). The bound-
ary conditions result in the following combinations of C1M, C2M, C3M, C4M, where
the combinations of C1M, C2M, C3M are presented in Section (6.2). Finally, such a
combination is considered to exhibit a minimum value of the elastic energy WC of
the cubic cell (see Equation (2.27)).

Conditions C1M �= 0, C4M �= 0, C2M =C3M = 0. With regard to Equations (2.30),
(2.31), (7.5)–(7.13), (2.21), (2.26), (2.27), we get

εnM =− pn
ζ

, (7.15)

εϕM = εθM =− pn
ζ

(
1− 1

xn

)
, (7.16)

εnϕM = s44M σnϕM =−
(
1− 1

xn

)
∂

∂ϕ

(
pn
ζ

)
, (7.17)

εnθM = s44M σnθM =−Θ
(
1− 1

xn

)
∂

∂ν

(
pn
ζ

)
, (7.18)

σnM =− pn
ζ

(
c1M− c2M+

2cMm

xn

)
, (7.19)

σϕM = σθM =− pn
ζ

(
c1M− c2M− c1M

xn

)
, (7.20)

σ1M = η1M+
η4M
xn

, (7.21)

wM = κ1M+
κ4
x2n
+

κ8
xn

, (7.22)

WM = 4

π/2∫
0

π/2∫
0

[κ1M
3

(
x3M− x3IN

)
+κ4M (xM− xIN)+

κ8M
2

(
x2M− x2IN

)]
dϕdν,

(7.23)

where Θ, xIN , xM and s44M, ciM (i= 1,2) are given by Equations (1.15)–(1.17) and
(2.13), (2.18), respectively, and ζ, η4M, κ jM ( j = 4,8; see Equation (7.14)) have the
forms
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ζ= c1M− c2M+
2c2M xM
xIN

,

η4M =
pn γ2M

ζ
+

1
s44M

[
γ3M

∂
∂ϕ

(
pn
ζ

)
+ γ4M

∂
∂ν

(
pn
ζ

)]
,

κ4M = c1M

(
pn
ζ

)2
+

1
s44M

{[
∂

∂ϕ

(
pn
ζ

)]2
+

[
∂

∂ν

(
pn
ζ

)]2}
,

κ8m = (c2M− c1M)

(
pn
ζ

)2
− 1

s44M

{[
∂

∂ϕ

(
pn
ζ

)]2
+

[
∂

∂ν

(
pn
ζ

)]2}
. (7.24)

The coefficients η1M, κ1M are given by Equation (6.23), where ζ in Equation (6.23)
is given by Equation (7.32). The normal stress pn is given by Equation (2.33). With
regard to Equation (7.16), the coefficient ρM in Equation (2.33) is derived as

ρM =
1
ζ

(
1− 1

xIN

)
. (7.25)

Conditions C2M �= 0, C4M �= 0, C1M =C3M = 0. With regard to Equations (2.30),
(2.31), (7.5)–(7.13), (2.21), (2.26), (2.27), we get

εnM =− pn c3M
ζ

(
xn
xM

)c3M−1
, (7.26)

εϕM = εθM =− pn
ζ

[(
xn
xM

)c3M−1
− 1
xn

]
, (7.27)

εnϕM = s44M σnϕM =−
[

∂
∂ϕ

(
pn

κxc3M−1M

)
− ∂

∂ϕ

(
pn
ζ

)]
, (7.28)

εnθM = s44M σnθM =−Θ

[
∂

∂ν

(
pn

κxc3M−1M

)
− ∂

∂ν

(
pn
ζ

)]
, (7.29)

σnM =− pn
ζ

{
[c3M (c1M+ c2M)−2c2M]

(
xn
xM

)c3M−1
+
2c2M
xn

}
, (7.30)

σϕM = σθM =− pn
ζ

[
(c1M− c2Mc3M)

(
xn
xM

)c3M−1
− c1M

xn

]
, (7.31)
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σ1M = η2M xc3M−1n +
η4M
xn

, (7.32)

wM = κ2M x2(c3M−1)n +
κ4M
x2n
+κ9M xc3M−1n , (7.33)

WM = 4

π/2∫
0

π/2∫
0

[
κ2M

2c3M+1

(
x2c3M+1M − x2c3M+1IN

)
+κ4M (xM− xIN)

+
κ9M

c3M+2

(
xc3M+2M − xc3M+2IN

)]
dϕdν, (7.34)

where Θ, xIN , xM and s44M, ciM (i= 1,2,3) are given by Equations (1.15)–(1.17)
and (2.13), (2.18), respectively, and ζ, κ2M (see Equation (6.13)), κ9M (see Equa-
tion (7.14)) have the forms

ζ= [c3M (c1M+ c2M)−2c2M]
(
xIN
xM

)c3M−1
+
2c2M xM
xIN

,

κ2M =
[
c23M (c1M+ c2M)

2
+ c1M−2c2Mc3M

](
pn

ζ xc3M−1M

)2

+
1

s44M

⎧⎨
⎩
[

∂
∂ϕ

(
pn

ζ xc3M−1M

)]2
+Θ2

[
∂

∂ν

(
pn

ζ xc3M−1M

)]2⎫⎬
⎭ ,

κ9M =− c1M− c2M c3M

xc3M−1M

(
pn
κM

)2
− 1
s44M

∂
∂ϕ

(
pn

κM xc3M−1M

)
∂

∂ϕ

(
pn
κM

)

− Θ2

s44M

∂
∂ν

(
pn

κM xc3M−1M

)
∂

∂ν

(
pn
κM

)
. (7.35)

The coefficients η2M and η4M, κ4M are given by Equations (6.23) and (7.24),
respectively, where ζ in Equations (6.23), (7.24) is given by Equation (7.44). The
normal stress pn is given by Equation (2.33). With regard to Equation (7.27), the
coefficient ρM in Equation (2.33) is derived as

ρM =
1
ζ

[(
xIN
xM

)c3M−1
− 1
xIN

]
. (7.36)
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Conditions C3M �= 0, C4M �= 0, C1M =C2M = 0. With regard to Equations (2.30),
(2.31), (7.5)–(7.13), (2.21), (2.26), (2.27), we get

εnM =
2pn
ζ

(
xIN
xn

)3
, (7.37)

εϕM = εθM =− pn
ζ

[(
xIN
xn

)3
− 1
xn

]
, (7.38)

εnϕM = s44M σnϕM =−
[(

xIN
xn

)3
− 1
xn

]
∂

∂ϕ

(
pn
ζ

)
, (7.39)

εnθM = s44M σnθM =−
[(

xIN
xn

)3
− 1
xn

]
∂

∂ν

(
pn
ζ

)
, (7.40)

σnM =
2pn
ζ

[
(c1M+2c2M)

(
xIN
xn

)3
− c2M

xn

]
, (7.41)

σϕM = σθM =− pn
ζ

[
(c1M−2c2M)

(
xIN
xn

)3
− c1M

xn

]
, (7.42)

σ1M =
η3
x3n
+

η4
xn

, (7.43)

wM =
κ3M
x6n
+

κ4M
x2n
+

κ10M
x4n

, (7.44)

WM = 4

π/2∫
0

π/2∫
0

[
κ3M
3

(
1

x3IN
− 1

x3M

)
+κ4M (xM− xIN)+κ10M

(
1
xIN
− 1
xM

)]
dϕdν,

(7.45)

where Θ, xIN , xM and s44M, ciM (i= 1,2) are given by Equations (1.15)–(1.17) and
(2.13), (2.18), respectively, and ζ, κ3M (see Equation (6.13)), κ10M (see Equation (7.14))
have the forms

ζ=−
[
2(c1M+2c2M)+2c2M

(
xIN
xM

)2]
,

κ3M = 3(c1M+2c2M)
(
pn x3IN

ζ

)2
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+
1

s44M

{[
∂

∂ϕ

(
pn x3IN

ζ

)]2
+Θ2

[
∂

∂ν

(
pn x3IN

ζ

)]2}
,

κ10M =−x3IN (c1M+2c2M)
(
pn
ζ

)2
− 1

s44M

[
∂

∂ϕ

(
pn x3IN

ζ

)
∂

∂ϕ

(
pn
ζ

)]

− Θ2

s44M

[
∂

∂ν

(
pn x3IN

ζ

)
∂

∂ν

(
pn
ζ

)]
. (7.46)

The coefficients η3M and η4M, κ4M are given by Equations (6.34), (7.24), respec-
tively, where ζ in Equations (6.34), (7.24) is given by Equation (7.46). The normal
stress pn is given by Equation (2.33). With regard to Equation (7.38), the coefficient
ρM in Equation (2.33) is derived as

ρM =
xIN−1
ζ xIN

. (7.47)

ConditionsC1M �= 0,C2M �= 0,C4M �= 0,C3M = 0. With regard to Equations (2.30)–
(2.32), (7.5)–(7.13), (2.21), (2.26), (2.27), we get

εnM =− pn
ζ

[
1−

(
xn
xM

)c3M−1
]

, (7.48)

εϕM = εθM =− pn
ζ

{
1− 1

c3M

[(
xn
xM

)c3M−1
+
(c3M−1)xM

xn

]}
, (7.49)

εnϕM = s44M σnϕM =

−
{

∂
∂ϕ

(
pn
ζ

)
− 1
c3M

[
xc3M−1n

∂
∂ϕ

(
pn

ζ xc3M−1M

)
+
c3M−1
xn

∂
∂ϕ

(
pn xM

ζ

)]}
, (7.50)

εnθM = s44M σnθM =

−
{

∂
∂ν

(
pn
ζ

)
− 1
c3M

[
xc3M−1n

∂
∂ν

(
pn

ζ xc3M−1M

)
+
c3M−1
xn

∂
∂ν

(
pn xM

ζ

)]}
, (7.51)

σnM =− pn
ζ

(
c1M− c2M− 1

c3M

{
[c3M (c1M+ c2M)−2c2M]

(
xn
xM

)c3M−1

+
2c2M (c3M−1)xM

c3M xn

})
, (7.52)
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σϕM = σθM =− pn
ζ

{
c1M− c2M− 1

c3M

[
(c1M− c2Mc3M)

(
xn
xM

)c3M−1

+
c1M (c1M−1) xM

xn

]}
, (7.53)

σ1M = η1M+η2M xc3M−1n +
η4M
xn

, (7.54)

wM = κ1M+κ2M x2(c3M−1)n +
κ4M
x2n
+(κ5M+κ9M)xc3M−1n +

κ8M
xn

, (7.55)

WM = 4

π/2∫
0

π/2∫
0

[
κ1M
3

(
x3M− x3IN

)
+

κ2M
2c3M+1

(
x2c3M+1M − x2c3M+1IN

)
+κ4M (xM− xIN)

+
κ5M+κ9M
c3M+2

(
xc3M+2M − xc3M+2IN

)
+

κ8M
2

(
x2M− x2IN

)]
dϕdν, (7.56)

where Θ, xIN , xM and s44M, ciM (i= 1,2,3) are given by Equations (1.15)–(1.17) and
(2.13), (2.18), respectively, and ζ, κiM (i= 1,2; see Equation (6.13)), κ jM ( j = 4,5,8,9;
see Equation (7.14)) have the forms

ζ= (c1M− c2M)− [c3M (c1M+ c2M)−2c2M]
c3M

(
xIN
xM

)c3M−1
+
2c2M (c3M−1) xM

c3M xIN
,

κ4M = c1M

[
pn xM (c3M−1)

ζ c3M

]2
+

1
s44M

{
∂

∂ϕ

[
pn xM (c3M−1)

ζ c3M

]}2

+
Θ2

s44M

{
∂

∂ν

[
pn xM (c3M−1)

ζ c3M

]}2
,

κ5M =− (c1M− c2M)(2+ c3M)

c3M xc3M−1M

(
pn
ζ

)2
− 2
s44M

∂
∂ϕ

(
pn
ζ

)
∂

∂ϕ

(
pn

ζ c3M xc3M−1M

)

− 2Θ2

s44M

∂
∂ν

(
pn
ζ

)
∂

∂ν

(
pn

ζ c3M xc3M−1M

)
,

κ8M =− (c1M− c2M)

(
pn
ζ

)[
pn xM (c3M−1)

ζ c3M

]

− 1
s44M

∂
∂ϕ

(
pn
ζ

)
∂

∂ϕ

[
pn xM (c3M−1)

ζ c3M

]
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− Θ2

s44M

∂
∂ν

(
pn
ζ

)
∂

∂ν

[
pn xM (c3M−1)

ζ c3M

]
,

κ9M =
(c1M− c2M c3M)(c3M−1)

xc3M−2M

(
pn

ζ c3M

)2

+
(c3M−1)
s44M c23M

∂
∂ϕ

(
pn

ζ xc3M−1M

)
∂

∂ϕ

(
pn xM

ζ

)

+
Θ2 (c3M−1)
s44M c23M

∂
∂ν

(
pn

ζ xc3M−1M

)
∂

∂ν

(
pn xM

ζ

)
. (7.57)

The coefficients ηiM, κiM (i= 1,2) and η4 are given by Equations (6.23) and
(7.24), respectively, where ζ in Equations (6.23) and (7.24) is given by Equation (7.57).
The normal stress pn is given by Equation (2.33). With regard to Equation (7.49),
the coefficient ρM in Equation (2.33) is derived as

ρM =
1
ζ

{
1− 1

c3M

[(
xIN
xM

)c3M−1
+
(c3M−1)xM

xIN

]}
. (7.58)

ConditionsC1M �= 0,C3M �= 0,C4M �= 0,C2M = 0. With regard to Equations (2.30)–
(2.32), (7.5)–(7.13), (2.21), (2.26), (2.27), we get

εnM =− pn
ζ

[
1− 3

2

(
xM
xn

)3]
, (7.59)

εϕM = εθM =− pn
ζ

[
1+

1
2

(
xM
xn

)3
− 3xM
2xn

]
, (7.60)

εnϕM = s44M σnϕM =−
[

∂
∂ϕ

(
pn
ζ

)
+

1
2x3n

∂
∂ϕ

(
pn x3M

ζ

)
− 3
2xn

∂
∂ϕ

(
pn xM

ζ

)]
,

(7.61)

εnθM = s44M σnθM =−
[

∂
∂ν

(
pn
ζ

)
+

1
2x3n

∂
∂ν

(
pn x3M

ζ

)
− 3
2xn

∂
∂ν

(
pn xM

ζ

)]
,

(7.62)

σnM =− pn
ζ

[
c1M− c2M− (c1M+2c2M)

(
xM
xn

)3
+
3c2M xM

xn

]
, (7.63)
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σϕM = σθM =− pn
ζ

[
c1M− c2M+

c1M+2c2M
2

(
xM
xn

)3
− 3c1M xM

2xn

]
, (7.64)

σ1M = η1M+
η3M
x3n
+

η4M
xn

, (7.65)

wM = κ1M+
κ3M
x6n
+

κ4M
x2n
+

κ6M
x3n
+

κ8M
xn
+

κ10M
x4n

, (7.66)

WM = 4

π/2∫
0

π/2∫
0

[
κ1M
3

(
x3M− x3IN

)
+

κ3M
3

(
1

x3IN
− 1

x3M

)
+κ4M (xM− xIN)

+ κ6M ln
(
xM
xIN

)
+

κ8M
2

(
x2M− x2IN

)
+κ10M

(
1
xIN
− 1
xM

)]
dϕdν,

(7.67)

where Θ, xIN , xM and s44M, ciM (i= 1,2) are given by Equations (1.15)–(1.17) and
(2.13), (2.18), respectively, and ζ, κ3M (see Equation (6.13)), κiM (i= 4,6,8,10; see
Equation (7.14)) have the forms

ζ= (c1M− c2M)− (c1M+2c2M)
(
xM
xIN

)3
+
3c2M xM
xIN

,

κ3M = 3(c1M+2c2M)
(
pn x3M
2ζ

)2
+
1
s44

{[
∂

∂ϕ

(
pn x3M
2ζ

)]2
+Θ2

[
∂

∂ν

(
pn x3M
2ζ

)]2}
,

κ4M = c1M

(
3pn xM
2ζ

)2
+
1
s44

{[
∂

∂ϕ

(
3pn xM
2ζ

)]2
+Θ2

[
∂

∂ν

(
3pn xM
2ζ

)]2}
,

κ6M =
2
s44

[
∂

∂ϕ

(
pn
ζ

)
∂

∂ϕ

(
pn x3M
2ζ

)
+Θ2

∂
∂ν

(
pn
ζ

)
∂

∂ν

(
pn x3M
2ζ

)]
,

κ8M =− 3xM (c1M− c2M)
2

(
pn
ζ

)2

− 3
2s44

[
∂

∂ϕ

(
pn
ζ

)
∂

∂ϕ

(
pn xM

ζ

)
+Θ2

∂
∂ν

(
pn
ζ

)
∂

∂ν

(
pn xM

ζ

)]
,

κ10M =− 3x4M (c1M+2c2M)
4

(
pn
ζ

)2

− 3
4s44

[
∂

∂ϕ

(
pn x3M

ζ

)
∂

∂ϕ

(
pn xM

ζ

)
+Θ2

∂
∂ν

(
pn x3M

ζ

)
∂

∂ν

(
pn xM

ζ

)]
. (7.68)
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The coefficients η1M, η3M, κ1M and η4M are given by Equations (6.23) and (7.24),
respectively, where ζ in Equations (6.23) and (7.24) is given by Equation (7.78). The
normal stress pn is given by Equation (2.33). With regard to Equation (7.60), the
coefficient ρM in Equation (2.33) is derived as

ρM =
1
ζ

[
1+

1
2

(
xM
xIN

)3
− 3xM
2xIN

]
. (7.69)

ConditionsC2M �= 0,C3M �= 0,C4M �= 0,C1M = 0. With regard to Equations (2.30)–
(2.32), (7.5)–(7.13), (2.21), (2.26), (2.27), we get

εnM =− pn
ζ

[
c3M

(
xn
xM

)c3M−1
− c3M

(
xM
xn

)3]
, (7.70)

εϕM = εθM =− pn
ζ

[(
xn
xM

)c3M−1
+
c3M
2

(
xM
xn

)3
− (c3M+2)xM

2xn

]
, (7.71)

εnϕM = s44M σnϕM =−
[
xc3M−1n

∂
∂ϕ

(
pn

ζ xc3M−1M

)
+
c3M
2x3n

∂
∂ϕ

(
pn x3M

ζ

)

+
(c3M+2)
2xn

∂
∂ϕ

(
pn xM

ζ

)]
, (7.72)

εnθM = s44M σnθM =−
[
xc3M−1n

∂
∂ν

(
pn

ζ xc3M−1M

)
+
c3M
2x3n

∂
∂ν

(
pn x3M

ζ

)

+
(c3M+2)
2xn

∂
∂ν

(
pn xM

ζ

)]
, (7.73)

σnM =− pn
ζ

{
[c3M (c1M+ c2M)−2c2M]

(
xn
xM

)c3M−1

− (c3Mc1M+2c2M)
(
xM
xn

)3
+
c2M (c3M+2)xM

xn

}
, (7.74)

σϕM = σθM =
pn
ζ

[
(c1M− c2Mc3M)

(
xn
xM

)c3M−1
+
c3M (c1M+2c2M)

2

(
xM
xn

)3

− c1M (c3M+2)xM
2xn

]
, (7.75)
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σ1M = η2M xc3M−1n +
η3M
x3n
+

η4M
xn

, (7.76)

wM = κ2M x2(c3M−1)n +
κ3M
x6n
+

κ4M
x2n
+κ7M xc3M−4n +κ9Mxc3M−1n +

κ10M
x4n

, (7.77)

WM = 4

π/2∫
0

π/2∫
0

[
κ2M

2c3M+1

(
x2c3M+1M − x2c3M+1IN

)
+

κ3M
3

(
1

x3IN
− 1

x3M

)

+ κ4M (xM− xIN)+
κ7M

c3M−1
(
xc3M−1M − xc3M−1IN

)
+

κ9M
c3M+2

(
xc3M+2M − xc3M+2IN

)
+κ10M

(
1
xIN
− 1
xM

)]
dϕdν, (7.78)

where Θ, xIN , xM and s44M, ciM (i= 1,2) are given by Equations (1.15)–(1.17) and
(2.13), (2.18), respectively, and ζ, κiM (i= 2,3; see Equation (6.13)), κ jM ( j = 4,7,9,10;
see Equation (7.14)) have the forms

ζ= xc3M−1M

{
[c3M (c1M+ c2M)−2c2M]

(
xIN
xM

)c3M−1

− c3M (c1M+2c2M)

(
xM
xIN

)3
+
c2M (c3M+2)xM

xIN

}
,

κ2M =
[
(c1M+ c2M)c23M

2
+ c1M−2c2M c3M

](
pn

ζ xc3M−1M

)2

+
1

s44M

⎧⎨
⎩
[

∂C2
∂ϕ

(
pn

ζ xc3M−1M

)]2
+Θ2

[
∂C2
∂ν

(
pn

ζ xc3M−1M

)]2⎫⎬
⎭ ,

κ3M = 3(c1M+2c2M)
(
pn c3M x3M
2ζ

)2

+
1

2s44M
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∂

∂ϕ

(
pn c3M x3M

ζ

)]2
+Θ2

[
∂

∂ν

(
pn c3M x3M

ζ

)]2}
,

κ4M = c1M

[
pn xM (c3M+2)

2ζ

]2

+
c3M+2
s44M

{[
∂

∂ϕ

(
pn xM
2ζ

)]2
+Θ2

[
∂

∂ν

(
pn xM
2ζ

)]2}
,
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κ7M = [2c2M (1− c3M)− c1M]

(
pn

ζ xc3M−1M

)(
pn c3M x3M
2ζ

)

+
c3M
s44M

∂
∂ϕ

(
pn

ζ xc3M−1M

)
∂

∂ϕ

(
pn x3M

ζ

)

+
Θ2c3M
s44M

∂
∂ν

(
pn

ζ xc3M−1M

)
∂

∂ν

(
pn x3M

ζ

)
,

κ9M =− xM (c1M− c2M c3M)(c3M+2)

2xc3M−1M

(
pn
ζ

)2

− c3M+2
2s44M

∂
∂ϕ

(
pn

ζ xc3M−1M

)
∂

∂ϕ

(
pn xM

ζ

)

− Θ2 (c3M+2)
2s44M

∂
∂ν

(
pn

ζ xc3M−1M

)
∂

∂ν

(
pn xM

ζ

)

κ10M =− c3M (c1M+2c2M)(c3M+2)

(
pn x2M
2ζ

)2

− c3M (c3M+2)
4s44M

∂
∂ϕ

(
pn x3M

ζ

)
∂

∂ϕ

(
pn xM

ζ

)

− Θ2 c3M (c3M+2)
4s44M

∂
∂ν

(
pn x3M

ζ

)
∂

∂ν

(
pn xM

ζ

)
. (7.79)

The coefficients η2, η4 and η4 are given by Equations (6.23) and (7.24), respec-
tively, where ζ in Equations (6.23), (7.24) is given by Equation (7.79). The normal
stress pn is given by Equation (2.33). With regard to Equation (7.71), the coefficient
ρM in Equation (2.33) is derived as

ρM =
1
ζ

[(
xIN
xM

)c3M−1
+
c3M
2

(
xM
xIN

)3
− (c3M+2)xM

2xIN

]
. (7.80)
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Chapter 8

Strengthening

The analytical model of the micro-strengthening σst = σst (x1) and the macro-stren-
gthening σst results from the following analysis [3, 4, 12, 13, 21]. Figures 8.1
and 8.2 shows the plane x′2x

′
3 in the cubic cell (see Figure 1.2) for x1 ∈ 〈0,a1〉 and

x1 ∈ 〈a1,d/2〉, respectively, where [x1,x2,x3] are coordinates of the point P ⊂ x′2x
′
3.

The plane O′P1P2 with the ellipse E23 (see Figure 8.2) represents a cross section
of the ellipsoid inclusion in the plane x′2x

′
3. With regard to Figures (8.1), (8.2), the

goniometric functions in Equations (1.8)–(1.17) have the forms

Figure 8.1: The plane x′2x
′
3 in the cubic cell (see Figure 1.2) for x1 ∈ 〈0,a1〉, where

[x1,x2,x3] are coordinates of the point P ⊂ x′2x
′
3. The plane O

′P1P2 with the ellipse
E23 represents a cross section of the ellipsoid inclusion in the plane x′2x

′
3 (see Fig-

ure 1.2).
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Figure 8.2: The plane x′2x
′
3 in the cubic cell (see Figure 1.2) for x1 ∈ 〈a1,d/2〉, where

[x1,x2,x3] are coordinates of the point P⊂ x′2x
′
3.

sinϕ=
x2√
x21+ x22

, cosϕ=
x1√
x21+ x22

, tanϕ=
1
cot
=
x2
x1

,

sinν=

√
x21+ x22

x21+ x22+ x23
, cosν=

x3√
x21+ x22+ x23

, xn =
x3
cosθ

, (8.1)

where cosθ is given by Equation (1.13). With regard to Equation (1.2), the param-
eters b2, b3 of the ellipse E23 along the axes x′2, x

′
3, respectively, are derived as (see

Figure 8.1)

b2 = O′P1 =
a2
√
a21− x21
a1

, b3 = O′P2 =
a3
√
a21− x21
a1

, (8.2)

and then we get

b4 = P4P5 =
a3
√
b22− x22
a2

. (8.3)
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The micro-strengthening σst = σst (x1) represents a stress along the axis x1, which
is homogeneous at each point of the plane x′2x

′
3 with the area S = d2/4, i.e., σst �=

f (x2,x3).
If x1 ∈ 〈0,a1〉, then the elastic energy surface densityWst , which is induced by σst

and accumulated within the area SIN = πb2b3/4 of the plane O′P1P2 and within the
area SM = (d/2)

2−SIN of the plane x′2x
′
3 (see Figure 8.1), has the form

Wst = ωσ21st , (8.4)

where σ1st is related to x1 ∈ 〈0,a1〉. The coefficient ω is derived as

ω=
1
8

[
πb2b3

(
1
EIN

− 1
EM

)
+

d2

EM

]
, (8.5)

where EIN and EM is Young’s modulus for the ellipsoidal inclusion and the ma-
trix, respectively. The elastic energy surface density W1S, which is induced by the
stress σ1= σ1 (x1) (see Equations (3.22), (4.22), (4.33), (4.44), (4.55), (5.20), (5.31),
(5.43), (5.54), (6.20), (6.31), (6.42), (6.53), (7.21), (7.32), (7.43), (7.54), (7.65),
(7.76)), has the form

W1S =
1
2

(
WINS

EIN
+
W1MS

EM

)
,

WINS =

b2∫
0

⎛
⎝ b4∫

0

σ21 dx3

⎞
⎠dx2,

W1MS =

b2∫
0

⎛
⎝ d/2∫

b4

σ21 dx3

⎞
⎠dx2+

d/2∫
b2

⎛
⎝ d/2∫

0

σ21 dx3

⎞
⎠dx2, x1 ∈ 〈0,a1〉 . (8.6)

The micro-strengthening σ1st = σ1st (x1) for x1 ∈ 〈0,a1〉, which results from the
conditionWst =W1S [3, 4, 12, 13, 21], is derived as

σ1st =

√
1
2ω

(
WINS

EIN
+
W1MS

EM

)
, x1 ∈ 〈0,a1〉 . (8.7)

If x1 ∈ 〈a1,d/2〉, then the elastic energy surface densityWst , which is induced by
σst and accumulated within the area SM = d2/4 of the plane x′2x

′
3 (see Figure 8.2),

has the form

Wst =
σ22st d

2

8 EM
, (8.8)
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where σ2st is related to x1 ∈ 〈a1,d/2〉. Similarly, we get

W2S =
W2MS

2EM
, W2MS =

d/2∫
0

d/2∫
0

σ21 dx2dx3, x1 ∈
〈
a1,

d
2

〉
. (8.9)

With regard to the conditionWst =W2S [3, 4, 12, 13, 21], we get

σ2st =
2
√
W2S
d

. (8.10)

Finally, the macro-strengthening σst is derived as [3, 4, 12, 13, 21]

σst =
2
d

⎛
⎝ a1∫

0

σ1st dx1+
d/2∫

a1

σ2st dx1

⎞
⎠ . (8.11)

If αIN < αM or αIN > αM, the strengthening exhibits a resistive effect against
compressive or tensile mechanical loading, respectively.
The macro-strengthening σst = σst (v,a1,a2,a3) is a function of the inclusion vol-

ume fraction vIN and the dimensions a1, a2, a3 of the ellipsoidal inclusion. In case
of a real inclusion-matrix composite, such values of the microstructural parameters
vIN , a1, a2, a3 can be numerically determined to result in a maximum value of |σst |.
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Chapter 9

Crack Formation

The analytical model of the crack formation in the matrix results from the following
analysis [3, 4, 5, 19]–[22]. Figures 9.1, 9.3 show the ellipse E123 in the plane x12x3
of the cubic cell (see Figures (1.4), (1.5)), where a12 = O4, x122 = O5 are given by
Equations (1.7), (1.11), and a3 = O3.
With regard to the plane x12x3 for ϕ ∈ 〈0,π/2〉 (see Figures 1.4, 1.5), the elastic

energy density w = w(xn,ϕ,ν) (see Equations (3.23), (3.34), (4.23), (4.34), (4.45),
(4.56), (5.22), (5.33), (5.44), (5.55), (6.21), (6.32), (6.43), (6.54), (6.63), (7.22),
(7.33), (7.44), (7.55), (7.66), (7.77)) is determined as a function of the coordi-
nates xn, ν ∈ 〈0,π/2〉 (see Equations (1.6)–(1.17)). The elastic energy density w =
w(x12,ϕ,x3,a1,a2,a3,vIN) as a function of the coordinates x12, x3 is determined by
the following transformations

xn =
x3
cosθ

, sinν=
x12√
x212+ x23

, cosν=
x3√

x212+ x23

, tanν=
1
cotν

=
x12
x3

, (9.1)

where cosθ is given by Equation (1.13).

Matrix. The curve integral WcM of wM = wM (x12,ϕ,x3,a1,a2,a3,vIN) along the
abscissa P1P2 (see Figure 9.1) in the plane x12x3 of the matrix (see Figures 1.4, 1.5)
has the form

WcM =
∫

P1P2

wM dx3 =

d/2∫
0

wM dx3. (9.2)

Let f12M = f12M (x12,ϕ,a1,a2,a3,vIN) represent a decreasing function of the vari-
able x12 ∈ 〈a12,x0M〉, which describe a shape of the matrix crack in the plane x12x3
(see Figure 1.4), where ϕ ∈ 〈0,π/2〉, a1, a2, a3, vIN are parameters of this decreasing
function. As presented in [3, 4, 5, 19]–[22], we get

∂ f12M
∂x12

=−

√
W 2
cM−ϑ2M
ϑM

, (9.3)
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Figure 9.1: The ellipse E123 and the abscissa P1P2 in the plane x12x3 of the cubic cell
(see Figures (1.4), (1.5)), where a12 = O4, x122 = O5 are given by Equations (1.7),
(1.11), and a3 = O3.

Figure 9.2: The decreasing function f12M = f12M (x12,ϕ,a1,a2,a3,vIN) of the vari-
able x12 ∈ 〈a12,x0M〉, which describes a shape of the matrix crack in the plane x12x3
(see Figure 1.4) for a12 > a(IC)12M or a12 > a(TC)12M (see Equations (9.8), (9.9)), where
x0M = x0M (ϕ) defnes a position of the crack tip in the matrix, and ϕ ∈ 〈0,π/2〉, a1,
a2, a3, vIN are parameters of this decreasing function.

where ϑM is energy per unit length in the matrix. In case of intercrystalline crack
formation, we get
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ϑM =
K2ICM
EM

, (9.4)

where KICM is fracture toughness of the matrix. In case of transcrystalline crack
formation, we get

ϑM = ϑgbM, (9.5)

where the energy ϑgbM per unit length is related to the inter-atomic bonding of
boundaries of crystalline grain in the matrix.
As presented in [3, 4, 5, 19]–[22], the condition

(WcM)x12=a12−ϑM = 0, (9.6)

is a transcendental equation with the variable a12 and the parameters ϕ ∈ 〈0,π/2〉,
a1, a2, a3, vIN (see Figure 1.4.

The roots a(IC)12M = a(IC)12M (ϕ,a1,a2,a3,vIN) and a
(TC)
12M = a(TC)12M (ϕ,a1,a2,a3,vIN) (see

Equation (1.7)) of Equation (9.3) for ϑM, which is given by Equations (9.4) and (9.5),
represents such a dimension of the ellipsoidal inclusion along the axis x12⊂ x1x2 (see
Figures 1.4, 1.5), which is critical with respect to the intercrystalline and transcrys-

talline crack formation in the plane x1x2, respectively. Accordingly, if a
(IC)
12M > a(TC)12M

or a(IC)12M < a(TC)12M , then the intercrystalline or transcrystalline matrix crack is formed
in the plane x1x2, respectively.

Let the function a(X)12M = a(X)12M (ϕ,a1,a2,a3,vIN) (X=IC,TC) of the variable ϕ ∈
〈0,π/2〉 exhibit the minimum a(X)minM for ϕ= ϕ(X)minM. The critical dimension a

(X)
minM =

a(X)minM (a1,a2,a3,vIN) (X=IC,TC) along the axis x12 ⊂ x1x2 (see Figures 1.4, 1.5)
defnes a limit state with respect to the formation of the intercrystalline matrix crack
(X=IC) and the transcrystalline matrix crack (X=TC) in the plane x1x2 at the mi-
crostructural parameters a1, a2, a3, vIN (see Equation (1.1)). Accordingly, if a12 >

a(X)12M (X=IC,TC), the condition [3, 4, 5, 19]–[22]

WcM−ϑM = 0, a12 > a(X)12M, X = IC,TC (9.7)

represents a transcendental equation with the variable x12 and with the root x0M =
x0M (ϕ,a2,a3,vIN), which defnes a position of the crack tip in the matrix (see Fig-
ure 9.2). Consequently, the decreasing function f12M = f12M (x12,ϕ,a1,a2,a3,vIN)
with the variable x12 ∈ 〈a12,x0M〉 and with the parameters ϕ ∈ 〈0,π/2〉, a1, a2, a3,
vIN (see Figures 1.4, 1.5), which describes a shape of the matrix crack in the plane

x12x3 for a12 > a(X)12M ((X=IC,TC)), has the form [3, 4, 5, 19]–[22]
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f12M =
1

ϑM

[
CM−

∫ (√
W 2
cM−ϑ2M

)
dx12

]
, x12 ∈ 〈a12,x0M〉 , (9.8)

whereCM =CM (ϕ,a1,a2,a3,vIN) is derived as [3, 4, 5, 19]–[22]

CM =

[∫ (√
W 2
cM−ϑ2M

)
dx12

]
x12=x0M

. (9.9)

Inclusion. The curve integral WcIN of wIN = wIN (x12,ϕ,x3,a1,a2,a3,vIN) along
the abscissa P1P2 (see Figure 9.3) in the plane x12x3 of the ellipsoidal inclusion (see
Figures 1.4, 1.5) has the form

Figure 9.3: The ellipse E123 and the abscissa P1PP2 in the plane x12x3 of the cubic cell
(see Figures (1.4), (1.5)), where a12 = O4, x122 = O5 are given by Equations (1.7),
(1.11), and a3 = O3.

WcIN =
∫
P1P

wIN dx3+
∫
PP2

wM dx3 =

b1∫
0

wIN dx3+

d/2∫
b1

wM dx3, (9.10)

where a12 = O4 (see Equation (1.7)), a3 = O3, and b1 is derived as (see Equa-
tion (1.2))

b1 = P1P=
a3
√
a212− x212
a12

, x12 ∈ 〈0,a12〉 . (9.11)
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With regard to the intercrystalline and transcrystalline inclusion cracks (see Fig-
ure 9.4), the sign ’-’ and the subscript M in Equations (9.3) and (9.3)–(9.7) are re-
placed by the sign ’+’ and the subscript IN, respectively.

Figure 9.4: The increasing function f12IN = f12IN (x12,ϕ,a1,a2,a3,vIN) of the vari-
able x12 ∈ 〈a12,x0IN〉, which describes a shape of the inclusion crack in the plane
x12x3 (see Figure 1.4) for a12 > a(IC)12IN or a12 > a(TC)12IN (see Equations (9.8), (9.9)),
where x0IN = x0IN (ϕ) defnes a position of the crack tip in the inclusion, and
ϕ ∈ 〈0,π/2〉 is a parameter of this increasing function.

Consequently, the increasing function f12IN = f12IN (x12,ϕ,a1,a2,a3,vIN) with
the variable x12 ∈ 〈a12,x0IN〉 and with the parameters ϕ ∈ 〈0,π/2〉, a1, a2, a3, vIN
(see Figures 1.4, 1.5), which describes a shape of the inclusion crack in the plane

x12x3 for a12 > a(IC)12IN or a12 > a(TC)12IN , has the form [3, 4, 5, 19]–[22]

f12IN =
1

ϑIN

[∫ (√
W 2
cIN−ϑ2IN

)
dx12−CIN

]
, x12 ∈ 〈a12,x0IN〉 , (9.12)

whereCIN =CIN (ϕ,a1,a2,a3,vIN) is derived as [3, 4, 5, 19]–[22]

CIN =

[∫ (√
W 2
cIN−ϑ2IN

)
dx12

]
x12=x0IN

. (9.13)

89



90



Chapter 10

Appendix

Cramer’s Rule. The system of n linear algebraic equations is derived as

a11 x1+a12 x2+ . . . +a1n xn = b1,

a11 x1+a12 x2+ . . . +a1n xn = b2,
... ... ... ...

an1 x1+an2 x2+ . . . +ann xn = bn. (10.1)

The root xi (i= 1, . . . , n) is determined by Cramer’s rule [23]

xi =
D(n)i
D(n)

, i= 1, . . . , n, (10.2)

where the determinant D(n) with n rows and n columns has the form

D(n) =

∣∣∣∣∣∣∣∣
a11, a12, . . . a1n
a21, a22, . . . a2n
... ... ... ...

an1, an2, . . . ann

∣∣∣∣∣∣∣∣
=

n

∑
i=1
(−1)1+i a1iD(n−1)1i =

n

∑
i=1
(−1)1+i ai1D(n−1)i1 . (10.3)

The subdeterminant D(n)i is created from D(n), i.e., the i-th column of D(n) is
replaced by

b1
b2
...
bn

⎫⎪⎪⎬
⎪⎪⎭ n rows. (10.4)

Similarly, the subdeterminantD(n−1)i j (i, j = 1, . . . , n) with (n−1) rows and (n−1)
columns is created from D(n), i.e., the i-th row and the j-th column of D(n) are omit-
ted. If n= 2, then we get
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D(2) =

∣∣∣∣ a11, a12
a21, a22

∣∣∣∣= a11a22−a12a21. (10.5)

Consequently, if n= 3, then we get

D(4) =

∣∣∣∣∣∣
a11, a12, a13
a21, a22, a23
a31, a32, a33

∣∣∣∣∣∣
= a11

∣∣∣∣ a22, a23
a32, a33

∣∣∣∣−a12

∣∣∣∣ a21, a23
a31, a33

∣∣∣∣+ a13

∣∣∣∣ a21, a22
a31, a32

∣∣∣∣ . (10.6)

Integrals. The derivatives of the functions f = xλ, f = lnx and the constant C are
derived as [23]

(
xλ
)′
= λxλ−1, (lnx)′ =

1
x
, C′ = 0, (10.7)

The indefinite integrals of f = xλ, f = lnx and the constantC have the forms [23]

∫
xλdx=

xλ+1
λ+1

, λ �=−1;
∫

dx
x
= lnx,

∫
Cdx=Cr. (10.8)

In case of the product f g of the functions f = f (x), g= g(x), we get [23]

( f g)′ = f ′g+ f g ′. (10.9)

and then the integral of f g has the form [23]∫
f ′gdx= f g−

∫
f g′dx. (10.10)

With regard to Equation (10.17), the following integrals are derived as [23]

∫
xλ lnxdx=

xλ+1

λ+1
lnx−

∫
xλ+1

λ+1
× 1
x
dx=

xλ+1

λ+1
lnx− 1

λ+1

∫
xλdx

=
xλ+1

λ+1

(
lnx− 1

λ+1

)
, λ �=−1,∫

lnxdx=
∫
1× lnxdx= x lnx−

∫
x× 1

x
dx= x lnx−

∫
1×dx= x(lnx−1) ,∫

xλ ln2 xdx=
1

λ+1

[
xλ+1 ln2 x−2

∫
xλ lnxdx

]
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=
xλ+1

λ+1

[(
lnx− 1

λ+1

)2
+

1

(λ+1)2

]
, λ �=−1. (10.11)

Let F = F (x) be a primitive function of f = f (x) in the interval x ∈ 〈a,b〉, i.e.,
f = dF/dx. The definite integral

b∫
a
f dx is defined by Newton-Leibniz’s formula

[23], which has the form

b∫
a

f dx= F (b)−F (a) . (10.12)

Wronskian’s Method. The differential equation (4.3) with a non-zero right-hand
side [23] is derived as

∂2un
∂x2

+
2
xn

∂un
∂xn

− 2un
x2n
= g, g=

3

∑
i=1

Ci x
κi−2, (10.13)

where the integration constantsC1,C2,C3 are determined by the boundary conditions
in Section 2.3. If g= 0, we get

∂2un
∂x2

+
2
xn

∂un
∂xn

− 2un
x2n
= 0. (10.14)

If un = xλ, then the solutions u1n, u2n of Equation (10.24) have the forms

u1n = xn, u2n =
1
x2n

. (10.15)

The solution un of Equation (10.22) is derived as [23]

un =
2

∑
i=1

ai uin, ai =
∫ W (2)

i

W (2)
dxn, i= 1,2. (10.16)

Wronskian’s determinants W (2), W (2)
i (i= 1,2) with 2 rows and 2 columns are

have the forms [23]

W (2) =

∣∣∣∣∣∣
u1n, u2n

∂u1n
∂xn ,

∂u2n
∂xn

∣∣∣∣∣∣ , W (2)
1 =

∣∣∣∣∣∣
0, u2n

g,
∂u2n
∂xn

∣∣∣∣∣∣ , W (2)
2 =

∣∣∣∣∣∣
u1n, 0

∂u1n
∂xn , g

∣∣∣∣∣∣ . (10.17)

The determinantW (2)
i (i= 1,2) is created fromW (2), i.e., the i-th column ofW (2)

is replaced by the following one [23]
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0
g

}
2 rows. (10.18)

Let f1, . . . , fn represent n solutions of a differential equation of the n-th rank with
zero right-hand side. Let the functions f1, . . . , fn of the variable x exhibit continuous
derivatives to the (n−1)-th degree. The solution of this differential equation with a
non-zero right-hand side (i.e., g �= 0) is derived as [23]

f =
n

∑
i=1

ai fi, ai =
∫ W (n)

i

W (n)
dx. (10.19)

With respect to f1, . . . , fn, Wronskian’s determinantW (n) (i= 1, . . . , n) with n rows
and n columns have the form [23]

W (n) =

∣∣∣∣∣∣∣∣∣∣∣∣

f1, f2, . . . fn
∂ f1
∂x ,

∂ f2
∂x , . . .

∂ fn
∂x

... ... ... ...

∂n−1 f1
∂xn−1 ,

∂n−1 f2
∂xn−1 , . . .

∂n−1 fn
∂xn−1

∣∣∣∣∣∣∣∣∣∣∣∣
, (10.20)

where W (n)
i (i= 1, . . . , n) with n rows and n columns is created from W (n), i.e., the

i-th column ofW (n) is replaced by the following one [23]

0
0
...
g

⎫⎪⎪⎬
⎪⎪⎭ n rows. (10.21)

Numerical Determination. Numerical values of the phase-transformation stresses
in a real matrix-inclusion composite include integrals and derivatives, which are de-
termined by a programming language. If f = f (x), then a numerical value of the
derivative ∂ f/∂x is determined by [23]

∂ f
∂x
≈ f (x+Δx)− f (x)

Δx
. (10.22)

In case of the angles ϕ, ν (see Figure 1.4), the step Δx = Δϕ = Δν = 10−6 [deg]
is sufficient [3, 4, 5, 19]–[22].
Let F represent a definite integral of the function f = f (ϕ,ν) with the variables

ϕ,ν ∈ 〈0,π/2〉. Let n, m be integral parts of the real numbers π/(2Δϕ), π/(2Δν)
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[3, 4, 5, 19]–[22], respectively. Numerical values of the definite integral F are deter-
mined by the following formula [23], [3, 4, 5, 19]–[22]

F =

π/2∫
0

π/2∫
0

f (ϕ,ν)dϕ dν≈
m

∑
j=0

(
n

∑
i=0

f (i×Δϕ; j×Δν)Δϕ

)
Δν, (10.23)

where the steps Δϕ = Δν = 0.1 [deg] are sufficient. Finally, the average numerical
value f of the function f = f (ϕ,ν) with the variables ϕ,ν ∈ 〈0,π/2〉 is determined
by the following formula [23]

f =

(
2
π

)2 π/2∫
0

π/2∫
0

f (ϕ,ν) dϕdν≈
(
2
π

)2 m

∑
j=0

(
n

∑
i=0

f (i×Δϕ; j×Δν)Δϕ

)
Δν.

(10.24)
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