This book presents original mathematical models of phase-transformation
stresses in composite materials, along with mathematical models of phase-
transformation induced micro-/macro-strengthening and intercrystalline or
transcrystalline crack formation. The mathematical determination results
from mechanics of an isotropic elastic continuum. The materials consist of
an isotropic matrix with isotropic ellipsoidal inclusions. These stresses are a
consequence of the difference between dimensions of crystalline lattices,
which are mutually transformed during the phase-transformation process
in the inclusions or the matrix.

The mathematical models include microstructural parameters of a real
matrix-inclusion composite, and are applicable to composites with
ellipsoidal inclusions of different morphology (e.g., dual-phase steel,
martensitic steel). In case of a real matrix-inclusion composite, such
numerical values of the microstructural parameters can be
determined,which result in maximum values of the micro- and macro-
strengthening, and which define limit states with respect to the
intercrystalline or transcrystalline crack formation in the matrix and the
ellipsoidal inclusion.
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Introduction

This book"? presents original mathematical models of phase-transformation stresses
in composite materials, along with mathematical models of phase-transformation
micro-/macro-strengthening and phase-transformation intercrystalline or transcrys-
talline crack formation. The materials consist of an isotropic matrix with isotropic
ellipsoidal inclusions. These stresses originate during a cooling process at the phase-
transformation temperature 774, and are a consequence of the difference between di-
mensions of crystalline lattices, which are mutually transformed during the phase-
transformation process in the inclusions (¢ = IN) or the matrix (g = M).

The mathematical models are determined for a suitable model system. The model
system is required to correspond to real isotropic matrix-inclusion composites. The
phase-transformation stresses are derived within a suitable coordinate system. The
coordinate system is required to correspond to a shape of the ellipsoidal inclusions.

The mathematical determination results from mechanics of an isotropic elastic
continuum, and result in different-mathematical solutions for the phase-transfor-
mation stresses, i.e., 19 and 2 mathematical solutions for the matrix and the ellip-
soidal inclusion, respectively. ‘Due to these different mathematical solutions, the
principle of minimum elastic energy is considered.

The mathematical models of the phase-transformation stresses, micro-/macro-
strengthening and crack formation include microstructural parameters of a real ma-
trix-inclusion composite, i.e., the inclusion dimensions ay, a;, az, the inclusion vo-
lume fraction vyy, as well as the inter-inclusion distance d = d (a1, a2, a3, viy).

Consequently, the mathematical models are applicable to composites with el-
lipsoidal inclusions of different morphology, i.e., a; = a» ~ a3 (dual-phase steel),
aj; > ar ~ ay (martensitic steel).

In case of a real matrix-inclusion composite, such numerical values of the mi-
crostructural parameters can be determined,

! This book was reviewed by the following reviewers:
Assoc. Prof. Ing. Robert Bidulsky, PhD., visiting professor, Politecnico di Torino, Torino, Italy.

Prof. Ing. Daniel Kottfer, PhD., Alexander Dubéek University of Trenéin, Faculty of Special Technology,
Department of Mechanical Engineering, Trenéin, Slovak Republic.
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1



e which result in maximum values of the micro- and macro-strengthening,

e which define limit states with respect to the intercrystalline or transcrystalline
crack formation in the matrix and the ellipsoidal inclusion.

This numerical determination is performed by a programming language. The
mathematical procedures in this book are analysed in Appendix.



Chapter 1

Matrix-Inclusion Composite

1.1 Model System

Figure 1.1 shows a model system, corresponding to real matrix-inclusion com-
posites, which is considered within the mathematical models of the phase-transformation
stresses. This model system consists of an infinite isotropic matrix and isotropic el-
lipsoidal inclusions with the dimensions aj, a3, a3 and the inter-inclusion distance
d along the axes xi, xp, x3 of the Cartesian system (Ox;x)x3), respectively, where O
represents a centre of the ellipsoidal inclusion.

ay| matrix
/
o - ® e
OEX3

cil e

inclusion

--‘--

Figure 1.1: The matrix-inclusion system with an infinite isotropic matrix and
isotropic ellipsoidal inclusions with the dimensions ay, as, a3 and the inter-inclusion
distance d along the axes x|, xp, x3 of the Cartesian system (Oxjxpx3), respectively,
where O represents a centre of the ellipsoidal inclusion.

As presented in [1]-[22], the phase-transformation stresses are determined in the
cubic cells with the dimension d along the axes x1, x2, x3 and with central ellipsoidal
inclusions (see Figure 1.2). Due to the infinite matrix, the phase-transformation
stresses, which are determined for one of the cubic cells, are identical with those,
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which are determined for any of the cubic cells [1]-[22]. With regard to the volume
Vin =4may,ayaz [23] and Ve = d? of the ellipsoidal inclusion and the cubic cell,
the inter-inclusion distance d as a function of the inclusion volume fraction vy is
derived as

Vin  4maiazas ( T draaras 173
— — S —— E 07 _) s d = _— 5 1.1
VIN Ve 3d? 6 3vin (1.1)

where the value viymqx = T/6 results from the condition a; — d/2 (i=1,2,3). Ac-
cordingly, the phase-transformation stresses are functions of the material parameters
ai, az, az, vin, d.

Figure 1.2: The cubic cells with the dimension d along the axes x1, x», x3 of the
Cartesian system (Oxjxpx3) and with the plane x;x3, where O represents a centre of
the ellipsoidal inclusion, and (x12 C x1x2, x12Xx3 L x1x2.

1.2 Coordinate System

Figure 1.3 shows the ellipse E with the dimensiions a, b along the axes x, y, respec-
tively. The ellipse E is described by the function

G-

Any point P of the ellipse E is described by the coordinates [23]
4



x=acoso, y=hsina, oc (0,2m), (1.3)

where the normal 7 of the ellipse E at the point P is derived [23]

ox ay Lo
E(x—acosot)—i—a(x—bsmoc)—o. (1.4
n
Y E
P
b
(04 X

Figure 1.3: The ellipse E with the dimensions a, b along the axes x, y of the Cartesian
system (Oxy), respectively, and the point P related to the angle .

With regard to Equations (1:3), (1.4), we get

xatano,  (a®—b?)sino s
y=—"3 b : (1.5)

The phase-transformation stresses are determined by the spherical coordinates
(r,ov) (see Figure 1.4). The model system in Figures (1.1), (1.2) is symmetric,
and then the phase-transformation stresses are determined within the intervals ¢ €
(0,m/2), v € (0,t/2) [1]-[22].

Figure 1.4 shows the ellipsoidal inclusion for @,v € (0,m/2) with the centre O
and with the dimensions a; = O1, a, = 02, a3 = O3 along the axes x|, X2, x3 of the
Cartesian system (O,xy,x2,x3) (see Figures (1.1), (1.2)), respectively. With regard
to Equation (1.3), any point of the ellipse E1» in the plane x1x; is described by the
coordinates

X| =ajcos®, xp=azsin@, @€ <O,g>. (1.6)

Similarly, any point P of the ellipse E1»3 in the plane xj,x3 is described by the
coordinates



Xipp = ap2sinv, x3p=azcosVv, ajpp=04= a% cosz(p—i—a% sin? o0,
Y
o.ve(0.7). (1.7)

Finally, (P, xn,xq,,xv) is a Cartesian system at the point P, where the axes x; and
Xy represents a normal and a tangent of the ellipse Ej3 at the point P, respectively,
x12x3 L x1x2, (x12 C X1X2, X L X12.

Figure 1.5 shows the cross section 0567 of the cubic cell in the plane x12x3 (see
Figures 1.2, 1.4). The angle v € (0,m/2) defines a position of the point P with
the Cartesian system (P,x,,,x(P,xv) (see Figure 1.4) for v = v (see Figure 1.5a),
v € (0,vg) (see Figure 1.5b), v € (vo,mt/2) (see Figure 1.5¢). The points Pj, P;
represent intersections of the normal x,, with 0O567.

X3
X0 Xn
3
Ei23 Xo
P
\%
(0] X2
2
P
1 4
Epp
X]
X12

Figure 1.4: The inclusion with the centre O and with the dimensions a; = O1,
ay = 02, a3 = O3 along the axes xj, X3, x3 of the Cartesian system (O, x,x2,X3), re-
spectively. The ellipses E12, E123 in the planes x1x7, x12x3 (see Figure 1.4) are given
by Equations (1.6), (1.7), respectively, where x12x3 L x1x2, (x12 C X1x2, X¢ L X12.
The point P on the inclusion surface is defined by @,v € (0,7/2), v € (0,m/2), and
(P,xn,x(p,xv) is a Cartesian system at the point P, where P C Ej»3. The axes x, and
Xy represents a normal and a tangent of the ellipse E1»3 at the point P, respectively.



With regard to Equation (1.5), the normal x;, at the point P of the ellipse Ej23 in
the plane x,x3 is derived as

v b
= cos ((11'le2 +a§—a%2> . ve <07_>_ (1.8)
as sinv 2

With regard to Equation (1.8), the coordinates xy,, ,, x3,1 of the point P; have the
forms

_ (a}, —aj)sinv B n
xlzl—T, x31 =0, V€<07§>~ (1.9)
X3 le X3
7 6:P2 7
N
DN
3 ~
P=x, 3
V=V
E1—\'\ Xn
/== N X2
0,/? 4 5 o Jp,
a b
X3

Figure 1.5: The angle v € (0,m/2)
7 6 defines a position of the point P with the

Xé\ xp  Cartesian system (P,x,,xg,xy) (see Fig-

/ ure 1.4) for (a) v =vq, (b) v € (0,v),

(c) v € (vo,m/2), where Vg is given by

3 P Equation (1.8). The points Py, P> repre-

Eixs sent intersections of the normal x, with

0567, where 0567 is a cross section of

the cubic cell in the plane xj,x3 (see Fig-

X12  ures 1.2, 1.4). The angle 6/ (x,,x3) is
Py 4 5 given by Equation (1.12).

Similarly, the coordinates x,,, ,, x3 > of the point P; in Figure 1.5b for v € (0, vo)
are derived as



sinv [ dcosv d
X122:—< —}—a%z—a%), x32:§, V€<07V0>. (1.10)

ain 2(13

The coordinates x,,,, x32 of the point P in Figure 1.5¢ for v € (vo,/2) have
the forms

d
22 = S iy
T n
f((P):COS(p, (P€<072>, ((p)—SIH(pa (P€<4 2>
- CcosV alZd ) E
327 as {Zf((p) sinv tas au} » VE <V07 2>' (L.11)

The coordinate x2 > of the point P in Figure 1.5a for v = vy is given by Equa-
tion (1.11), where x3, = d/2. With regard to Equation (1.8), the angle v represents
a root of the following equation

COSVy a12d 2 2 _g_
as [Zf( ) sinvg a3 alz} 2_07

/(@) =coso, (P€< > (o) =sing, <pe<4 §> (1.12)

and this root is determined by a numerical method. The angle 6 = £ (x,,x3) is de-
rived as

X3p 1
cosO = = ,
\/(XI2P_)C121)2+X%P \/1+(a3 tanv/a»)?
sin@ = ! . (1.13)
\/1 + (a2 cotv/a3)2
Consequently, we get [23]
a [0\ 'a d
—==] -=0— 1.14
99 <8<p> do~ Oag (19

where the function © = © (@) has the form

. 2
0— <ﬂ> [(“3 va) +cos2v] . (1.15)
as arn
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As analysed in [1]-[20], due to the symmetry of the model system, any point P on
the matrix-inclusion boundary exhibits the displacement u,, along x,. Consequently,
any point P of the normal x, exhibits u,, along x;, i.e., up = uy = 0 [1]-[20], where
ug, uy are displacements along the axes xg, xv, respectively.

As presented in [1]-[22], the phase-transformation stresses, which are determined
along the axes x;, x¢, x¢ of the Cartesian system (R xn,x(p,xe), represent function of
the spherical coordinates (x,,®,0) for ¢,0 € (0,t/2). The intervals x, € (0,xy)
and x, € (x;y,xp) are related to the ellipsoidal inclusion and the cell matrix, where
P =P, PCEjpand P =P, for x, =0, x,, = x;y and x,, = xps (see Figure 1.5),
respectively. Finally, we get

N2
asz sinv
xiv = PP = \/(Xlzp—X121)2+x§P=as\/( 3a ) +cos?v, (1.16)
12

xy = PP, = \/(X122 —161219)2 +(x32 —XSP)2

. 2 2 2 2
sinv dcosv 5 ap» cosv d
= - — — . (1.17
\/( ap ) ( 2as a3> * < as ) [2f((P) sinv alz} (17

1.3 Phase-Transformation Strain

The phase-transformation stresses, which are a consequence of a phase-transformation
strain, are determined for<a cubic crystalline lattice (CCL). This lattice exhibits [24]

e a simple modification (K6), which is characterized by atoms at corner points
of CCL,

e a body-centered modification (K8), which is, besides atoms at corner points of
CCL, characterized by an atom at an intersection point of diagonals of CCL,
i.e., at the geometrical center of CCL,

e a face-centered modification (K12), which is, besides atoms at corner points
of CCL, characterized by a central atom on each of surfaces of CCL.

Let the phase transformation originate at the temperature 7;, € <Tf, Tr> in the
ellipsoidal inclusion (g = IN) or the matrix (¢ = M) during a cooling process, when

. . . K K K12
CCL with the dimension ag; C {a(ql 6),aél 8>,afﬂ )
dimension agy; C {aéﬁé),atgﬁg),aéﬁu)}, i.e., ag — agqy at the temperature T = T;,

} is transformed to one with the

9



1 /
P1igm

X1gqm X1

Figure 1.6: The cubic crystal lattice (K6, K8, K12) in the ellipsoidal inclusion

(g =IN) or the matrix (¢ = M), where ag, C {aé§,6),a£1[fn8)7 aé’fn 12)} represents a di-

mension of CCL along the axis xjg, (i=1,2,3) at the temperature T € <7}q,T,>
(m=I) and T € <Tf, T,q> (m=1II). The beginning O of the Cartesian system
(Oxlq,,,xgqu3qm) represents a corner of the cubic crystal lattice. A position of the
Cartesian system (0x1qu2qu3qm) with respect to (Oxjxx3) (see Figure 1.4) is
defined by the angles @;jzm = £ (x,qm,x ]) (i,j=1,2,3). As an example, the angles
PLigms ©22gm> P33gm are shown. Py, represents an intersection point of x, with one
of the surfaces 1456, 2754, 3657,-and anm = Oqu is a vector along the normal x;,
(see Figure 1.4), which represents a radial direction with respect to the spherical co-
ordinates (r,,V). The point Pj> represents a projection of P, onto the plane xx;

(see Figure 1.4).

where Ty is final temperature of the cooling process, 7, = (0.35—0.4) x T, [24] is
relaxation temperature, and 7;, is melting temperature of a real composite.

Let a position of CCL with respect to the Cartesian system (Oxjxpx3) (see Fig-
ure 1.4) be defned by the angle ©; 4, which is formed by the axes x;gm, x; (i, j=1,2,3;
q=IN,M; m=LII). As an example, the angles @114, P22gm> P33¢m are shown in Fig-
ure 1.6. Consequently, the coefficient a;jg,, which represents a direction cosine of
©; jgms 1s derived as [4, 23]

a;qu:cos(p,-qu:cos[Z(x;qm,xj)], i,j=1,2,3; gq=IN,M; m=1,11. (1.18)
10



Let P, represent an intersection point of the normal x;, (see Figure 1.6) with one
of the surfaces 1456, 2754, 3657, where x;, represents a radial direction with respect
to the spherical coordinates (7, @, V) (see Figure 1.4), and the point P}; is a projection
of Py onto the plane xjx;. The length ‘xn}}m‘ = ‘qu’ of the vector Xyg;, = Of’qm,
which represents length of the axis x, in CCL with the dimension ag, along the
axis Xjgm (1=1,2,3; g =IN,M; m = LII), is determined by ay,, @, v (see Figure 1.4).
The point P, is determined by the coordinates (x,x2,x3) in the Cartesian system
(Ox1x2x3) or (xlqm,xgqm,x3qm) in (Oxlqugqugqm). Consequently, we get [4, 23]

3
Xign = Y, GijgmXj, i=123; q=IN.M; m=L1I, (1.19)
j:l
3
where Z (x,qm) = Z xl , Z i jgm Qikgm = Ojk (j,k=1,2,3), and j; is Kronecker’s
=1

symbol ie, O = 0 and 8 jk = 1 for j # k and j = k [23], respectively. The unit
vector ¢, along the normal x,,, which is derived in (Oxjx,x3), has the form [4, 23]

w

oy = Zanié}, ay) = cos [£ (xp,x1)}= cos@sinv,
i=1
anp = €08 [£ (Xp,x2)] = sin@sinv, a,3 = cos[£ (xp,x3)] = cosv. (1.20)

Let ey, represent a unit vector along the axis Xjg, (i=1,2,3; m=LII). Conse-
quently, the unit vector ¢y, which is derived in (Oxlqm X2gm x3qm) ,1s derived as [4, 23]

- (n) -
en = Zaiqmeiqmy
i=1

w

al((;lr)n = Cos (pl(;l;m = C0s [4 (xiqmaxn)] = z Anjdijgm,

i=1,2,3; g=INM; m=11II, (1.21)

If Py, with the coordinates (anm,xzqm,x3qm) represents a point of the surface

1456, i.e., Py, C 1456, then the length |Xugm| = ‘Of’qm’ of the vector Xugm = OPyy
along x, has the form [4]

i = f’;z L q=INM; m=L1II, (1.22)

lqm

where Xngm = agm. Xogm = Agm anm/ aglc:)m < Agms Xvgm = Agm ag,;)m/ “Ez)m < agm [4].
The surface /456 with the normal x, is defned by each of the following condi-
tions [4]

11



a(”) a(n)
<1 and <2 <1 q=pem m=LIL (1.23)

alqm 1gm

Consequently, if Py, C 2754, then we get [4]

o] = “(‘i'? . q=INM; m=11I, (1.24)

anm

where Xpgm = agm ag’;)m / ag;)m < dgms> Xogm = Agms Xvgm = Agm ag’;)m / ag;)m < agm [4].
The surface 2754 with the normal x5, is defned by each of the following condi-
tions [4]

a(n) a(")

a2qm 2gm
Accordingly, if Py, C 3657, then we get [4]

. a
|anm|:%, g=IN,M; ‘m=11I, (1.26)
a

3gm
(n) , (n) (n) 4 (n)
where Xngm = aqmalqm/a3qm < Agms> Xogm = Agm a2qm/a3qm < Agms> Xvgm = Agm [4].

The surface 3657 with the normal x34, is defned by each of the following condi-
tions [4]

(1) 0

lgm < 2gm <
OB <1 and OB <1,

a3qm a3qm

q = p,e,m; m=1]1I. (1.27)

Finally, the surface with the normal x;4, is defned by each of the following con-
ditions [4]

B0 N

jam <1 _kqm <1
W = and w =b
igm igm

Lj,k=1,23; i#j#k, q=IN,M; m=1]II. (1.28)
The phase-transformation induced radial strain €,,4 (¢ = IN,M) is derived as [4]

_ |ngur| — gt

€ntg , q=1IN,M, (1.29)

gt

12



7
where ‘xlql

x’l_{;[ [‘ are related to the temperature T = T;,. In case of K6, K8, K12,

the dimension agy, in Equations (1.22), (1.24) is replaced by aé’,{f), a,(ll,ff), aéﬁ,lz)

(q=IN,M; m = LII), respectively. If T € (T, Ty). then |x,5| in Equation (1.26) is
replaced by the following formula

s

Tq
o] = vizn| (1=By). By = [ oa.
Ty
T e(Ty,Tyy), q=INM. (1.30)

where o, = 0, (T) is a thermal expansion coefficient of the ellipsoidal inclusion
(g =IN) or the matrix (g = M).
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Chapter 2

Mechanics of Elastic Solid
Continuum

2.1 Fundamental Equations

As analysed in [1]-[20], any point P of the normal x, exhibits the displacement
uy along x,,. The phase-transformation stresses are determined along the axes x,, x¢,
xg of the Cartesian system (P, xn,xq),xe). Fundamental equations of mechanics of a
solid continuum are represented by Cauchy’s equations, the equilibrium equations
and Hooke’s law. Cauchy’s equations represent-functions of strains and displace-
ments. With respect to the normal displacement u,, Cauchy’s equations have the
forms [1]-[20, 22]

duy,
=" 2.1
en BXn7 ( )
ul’l
€p==¢€y= P 2.2)
n
1 ou
En(p - Sq)n - _x_n a_(;:7 (23)
® Jdu
€ = 00 = — =, (2.4)
n

where €, is a normal strain along the axis x,, and © is given by Equation (1.15).
Consequently, €¢ and €g are tangential strains along the axes x and xg, respectively.
Finally, €, €0 and €¢;, €9, represent shear strains along the axes x, and xg, xq,
respectively. Due to ugy = uy = 0, we get €py = €y = 0 [1]-[22], where uq, uy
are displacements along the axes x¢, Xy, respectively, and €4y is a shear strain. As
presented in [1]-[22], the equilibrium equations are derived as

96, J0yug
T a0 Oy

15

90 _ (2.5)

26, —0¢p— Oy + X,



JG, fole]
-2 + 3011(0 + Xy - = — 0, (2.6)

foL0) ox,
869 aGne o
ew-":icne +on =0, 2.7)

where G, is a normal stess along the axis x,,. Consequently, Gy and Gy are tangen-
tial stresses along the axes x, and xg, respectively. Finally, 6,4, G, and Ggy, Gp,
represent shear stresses along the axes x, and x¢, xg, respectively, where G,¢ = Gy,
Gup = Ogy. Due to g9y = &yp = 0, we get Ggy = Oy = 0 [1]-[22], where Oy is a
shear stress. With regard to € = 0, G = 0, Hooke’s law has the form [1]-[20, 22]

€ = 5110, + 512 (Gg +0p) , (2.8)
€p =512 (0, +Cp) + 51100, (2.9)
€9 = 512 (O + Gg) + 51100, (2.10)
€10 = 54400, (2.11)
€np = S440ng, (2.12)

where 511, $12, S44 are derived as [25]

L =t =208 2.13)

Finally, £ and u are Young’s modulus and Poisson’s ratio, respectively. In case of
the ellipsoidal inclusion and the cell matrix, we get E = Ejy, u = yyy and E = Eyy,
U = up, respectively.  With regard to Equations (2.1)—-(2.4), (2.8)—(2.12), we get

[11-[22]

S11 =

ou, u
On = (c1He2) 3= =202 =, (2.14)
n n
0
Gy =0g= —C2 a—zn-l-q?, (2.15)
n n
1 Oduy,
Opp = —— = 2.16
"0 s4axy 0@ (10
® Ju,
Cg=— , 2.17
no 4470 v ( )
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where ¢, ¢z, c3 (see Equation (2.24)) have the forms

__E . ___ HE
(I+u) (=20 2" (+u)(1-20)

and ¢3 < 0 due to u < 0.5 for real isotropic components [24].

Letay; =cos[Z (x1,x;)] (i =n,@,0) represent a direction cosine of an angle formed
by the axes x1, x; (see Figures 1.4, 1.5). With regard to Figures 1.4, 1.5, the coefficient
ay; = cos[Z (x1,x;)] (i = n,¢,0) is derived as

o = —4(1—u) <0, (2.18)

ajp =cosQsin®, ajp=sin@Qsin®, ajg=cos6,
ag) = —sinQ, agy = —cosPcoso, (2.19)

where cos 0, sin0 are given by Equation (1.13). The stress ¢ along the axis x; has
the form

O1 =a1nOn+a19C¢ +a190p +ain (Gn(p + Gne) +a19O¢n +a1606n- (2.20)

With regard to Equations (2.14)-(2.17) and due to G, = Ogn, Ong = Opp [25], we
get

a Un 1 Bu,, au
— — 2.21
=N3,, +an+s4xn< 8(p+48v) (2:21)
where y; (i=1,...,4) is derived as

Y1 =ai(c1+c2) — (arp+aw) c2, V2= (arp+awp)c1—2amcs,
V3 =am+ag, Y4=0(ai,+ap), (2.22)

and O is given by Equation (1.15). As presented in Chapter 8, the analytical models
of the micro-strengthening G5, = Gy (x1) and the macro-strengthening Gy, result from
the stress 61 (see Equations (2.21), (2.22)).

Let Equations (2.14)—(2.17) be substituted to Equation (2.18) and to [0Eq.(2.6)/0¢]
+ © [dEq.(2.7) /9v]. Consequently, Equations (2.5)—(2.7) are derived as

5 %uy, ou U,

2 n_ 2 P —— 2.23
n ox? + 2% 0xy, Hat sa4(c1+¢2) ’ (2.23)
U,
Xn 87" =c3U,, (2.24)
n
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where U, is derived as
azun + @2 azun
0¢? ov2’

The system of the differential equations (2.23), (2.25) is solved by the mathemat-
ical procedures in Sections 3.1, 4.1, 5.1, 6.1, 7.1.

U,=

(2.25)

2.2 Elastic Energy

As analysed in [1]-[22] with respect to the different mathematical procedures (see
Sections 3.1, 4.1, 5.1, 6.1, 7.1), such a mathematical solution, which exhibits a min-
imum value of the elastic energy W of the cubic cell, is considered, where Wy and
Wy is elastic energy, which is accumulated in the volume Vyy and V), of the ellip-
soidal inclusion and the cell matrix, respectively. The elastic energy density w is
derived as [25]

1
w=3 (€40n +€¢Op + €900) + EnpOngp + ExOne, (2.26)

and Wy, Wy, and W have the forms

/2 /2 xy
Wiy = /W[NdV[N =8 / / / WINx,%dx,, d([) d\/7
Vin 0 0 O
/2 /2 xy
Wit = /deVMz 8/ / / w2 dn do dv,
Vu 0 0 xw
We = Wiy + Wy 2.27)

2.3 Boundary Conditions

The mathematical solutions of the system of the differential equations (2.23), (2.25)
include integration constants. As presented in [1]-[22], these constants are deter-
mined, using Cramer’s rule (see Chapter 8) [23], by the following boundary con-
ditions for the ellipsoidal inclusion and the cell matrix. In case of the ellipsoidal
inclusion we get [1]-[22]

(ttn)y, _o =0, (2.28)
18



(GnlN)xn:x,N = —Pn; (229)

where xzy is given by Equation (1.16). Additionally, the conditions (”nlN)x,,—@ -+
o0, (SIN)anO ~+— oo, (O1n),_¢ 7 oo are required to be fulfilled [1]-[22].
In case of the cell matrix we get [1]-[22]

(OnM) =y = —Pn> (2.30)

(tnm) 5, —x,, = O- (2.31)

As analysed in [1]-[22], the following boundary condition can be considered

(&), —xyy = O- (2.32)
With regard to (€<PM) = —DPnPM, (S(PIN)X,, = —papin [1]-[22], the nor-

X=Xy Z=XIN )
mal stress p, on the matrix-inclusion boundary, 1.e., for x, = P|P = x;y (see Fig-

ure 1.5), which acts along the axis x, (see Figures (1.4), (1.5)), has the form [1]-[22]

EntM = EntIN
b pm+piv @33)
where €, (¢ =IN,M) is given by Equations (1.30), (2?).

As mentioned in Section (2.2), the different mathematical procedures in Sec-
tions 3.1, 4.1, 5.1, 6.1, 7.1 resultin 19 and 2 mathematical solutions for the phase-
transformation stresses in the matrix and the ellipsoidal inclusion, respectively.

The normal stress p;, is included in formulae for the phase-transformation stresses.
Consequently, the coefficients pys and pyy are given by Equations (3.29), (4.26),
(4.37), (4.48), (4.59), (5.25), (5.36), (5.47), (5.58), (6.24), (6.35), (6.46), (6.57),
(7.25), (7.36), (7.47), (7.58), (7.69), (7.80) and (3.37), (6.65), respectively. Conse-
quently, such a combination of pys and pjy is considered to result in a minimum
value of the elastic energy W of the cubic cell (see Equation (2.27)).

19



20



Chapter 3

Mathematical Model 1

3.1 Mathematical Procedure

Let the mathematical procedure x, [0Eq.(2.24)/dx,] be performed, and then we
get [1]-[22]

0°U, o,

2 n n

X — =0, (3.1)
" ox? 0xp,

where ¢3 < 0 and U,, = U, (x, ,0) are given by Equations (2.18) and (2.25), re-

spectively. Let Equation (2.24) be substituted to, Equation (3.1), and then we get
[11-[22]

+(1—c3)xy

, 9%U,
" Ox2

Let U, be assumed in the formU,, = x,);, then we get [1]-[22]

X +c3(l—e3)U, =0. (3.2)

U, =CixM +Cyx2, (3.3)

where Ci, C, are integration constants, which are determined by the boundary con-
ditions in Section 2.3, and A, A, with respect to u < 0.5 for a real isotropic material
[24], have the forms [1]-[22]

M :%[l+\/l+l6(1—,u)[1+4(l—,u)]} >3,

M:%[1_¢1+16(1_y)[1+4(1—u)1} <2 (3.4)

Let Equation (3.3) be substituted to Equation (2.23), and then we get [1]-[22]

u Ju

2 A A

x; ax%” +2xng:—2un:C1x”‘ +Crx2. (3.5)
The mathematical solution of Equation (3.5), which is determined by Wron-

skian’s method (see Chapter 10) [23], is derived as

21



Uy = C1xM +Cyx2, (3.6)
With regard to Equations (2.1)-(2.4), (2.14)—(2.17), (2.21), (2.26), (3.6), we get

gy =Ci x4 Cyhgue (3.7)
£o=Crap 1+ Cxl ! (3.8)

ICt -1, 9C2 a1

€19 = 44 Onp = %x” 0 , 3.9)
€09 = 5440p9 = © (aail xhly %x321> ; (3.10)
on=Ci&1x  +CExy (3.11)
0p=0p=CiE3x)" ' +CrEax !, (3.12)
=nia e mpae (3.13)
w=K1x,3<7”71)+K xn(xz U—i——l—lcpc,i”“‘rz7 (3.14)

where O, s44 is given by Equations (1.15), (2.13), respectively, and §;, §244, E24it2),
M, Kj (i=1,2; j=1,2,3) are derived as

g, w2y E(+Aw)

T ) T T (-2
B[ —p) 4] 2]

§2+l+2] 2(1 +lu) (1 — 2/1) 3

=G (7‘in+¥2)+&114(¥3 aa((;+ 4%%)

=CPErusit

BCl 2 aC,
=G e ()
dCy 0C, 28C1 8C2>’ =12,

1
K3=C1C(E6+E7) + (a(p ¥ +0 = 3y (3.15)
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3.2 Matrix

With regard to Equations (2.30), (2.31), (3.6)—(3.14), (2.21), (2.26), (2.27), we get

et = —p My <x_”>le1+MM< )MM]
n n C_’l xM C2 XM k)
Cort — £ou = —pn | L <_> 1 <_)
¢ 18 \xm Co \xm '

€noM = S44M OnoM = B(p ( ClXMM 1

N’
<

J Pn n M=
E Cl)C,}ZLlM_l (X_>

€.0M = S44M Onpyt = — O

(o] = O = — §3M )\‘IM_I + ﬂ x_n )\‘ZM_I
oM oM C,l XM CZ X ’

A 1 A 1
O =Mimx,™ ™ + Moy x>,

2(Mm—1)

2y —1
WM = KM Xn +Kom ( 2w —1)

+ gy a2

n/21/2 hm+1_ 2Mm+1 2hom+1 2Mm+1
PR g (B a Bt ) gy ()

Wy =4
M / / 20y +1 + 2hom +1

AMmt+Aap+1 AMmt+Aap+1
K3M(XA41M oM _xH\l]M oM )

dodv,
My +hoy+1 ?
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3.17)

(3.18)

(3.19)
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(3.21)

(3.22)
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where ©, x7n, Xp1, Saapns, Mivgs ﬁjM (i=1,2;j=1,...,8) are given by Equations (1.15),
(1.16), (1.17), (2.13), (3.4), (3.15), respectively, and C;, Nips, Kjm (i=12; j=12,3;
see Equation (3.15)) have the forms

Xy Aiv—1 XIN Aa—im—1
Ci = éiM - - §37iM - )
XM XM

Niv = — Pn NivYim +Yam) M i Pn
i Cl’x%iM*I S44M a(p CileuiMfl

- Yam E Pn
Saam OV \ ixm ! )
2 1 3 2
Pn Pn
i = E243im + —
i +3i < iXA?:[uwl) S44M [a@ (Cix}l}i/wl)‘|
2
|
ov gix;;[w*l ’

S44M
AR T a( P a< P )

K3m

§1§2XA7>11M+?»2M—2 S44M% z;]x[l?\/-[w—l a(P szX;[zM—l

02 . ;
r o2 e & P ). i=12. (3.25)
s 90 \ iy L0 \ Gl

The normal stress p, is given'by Equation (2.33). With regard to Equation (3.17),
the coefficient pys in Equation (2.33) is derived as

(1+p) (1—2p) { 1 1 }
- . 3.26
P E M —@ 20 (- +2u (520

3.3 Inclusion

In case of the ellipsoidal inclusion, we get Coyy = 0, otherwise we get (u,7v) x,—0

4 oo, (SIN)x”HO — £ oo, (Ov),_g — Feodue to Ay < —2 (see Equations (3.4),
(3.6)—(3.12)). With regard to Equations (2.28), (2.29), (3.6)—(3.14), (2.21), (2.26),
(2.27), we get [1]-[22]

ey = — L2 <x—) o (3.27)
" E_,IIN XIN ’ '
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Pn Xn Maw—1
EpIN = EQIN = — <—) , (3.28)

Eun \xv

= __ 9 Pn M1 3.29
€ngIN = S44IN OroIN = — % W Xy (3.29)

1IN XN

d _

€vIN = S44INOryIN = —O v (#) xZ‘l”N t (3.30)

1IN Xjn

Xy Miv—1
G11IN = —Dn (E) ) (3.31)

Miv—1
Gory = Guy = — L gij;” ()%) , (3.32)
GlN = nllMx,?”Mfl, (3.33)
wiy = Ky xa ) (3.34)
4 n/2m/2
2 M+l

Win = ———— K UNTE do dv 3.35
N = 0/ 0/ LN Xy Qdv, (3.35)

where ©, x7y, s441v, My and’ € 17v, E31n, E sy are given by Equations (1.15), (1.16),
(2.13), (3.4) and M7nv x17n (see Equation (3.15)) has the form

 po(MunYuN +Y2N) V3N O ( Pn >
NN = — - 5=
Eiw

éller}L\mHl S44IN 0@ xr)lVIIN*I
_ Yaw O P
S44IN OV aller)z\”Nil ’

_ Pn 1
Kiv = Esiv el s as
Eun X7y IN

@2
S44IN

2
1( >]
a(p E—’”NXI}{/IN 1

2
88C1< L _lﬂ , (3.36)
vV A\ Euw "

The normal stress p, is given by Equation (2.33). With regard to Equation (3.28),
the coefficient pyy in Equation (2.33) is derived as
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_ (M4 pw) (1= 2uw)
Emn My (1= pin) 4 2uv]

pIN (3.37)
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Chapter 4

Mathematical Model 2

4.1 Mathematical Procedure

Let the mathematical procedure 9°Eq.(2.24)/dx2 be performed, and then we get
[1]-[22]

23U, U,
£ 32 =0, 4.1

where ¢3 < 0 and U,, = U, (x,, 9, V) are given by Equations (2.18) and (2.25), respec-
tively. Let U, be assumed in the form U,, = x,z‘, and then we get

Xn

+(276‘3)

U,=Cix,+Cox;? +Cs, 4.2)

where C1, C>, C3 are integration constants, which are determined by the boundary
conditions in Section 2.3. Let Equation (2.28) be substituted to Equation (2.23), and
then we get

2 Pty ot N o Cn 4 Oy 43
X, ax,% + anf u, =C1x,+Crx,;* +Csx;,. 4.3)

The mathematical solution of Equation (4.3), which is determined by Wron-
skian’s method (see Chapter 10) [23], is derived as

1
u, = C1x, (5 - lnxn) +Corxf? +Cs. (4.4)
With regard to Equations (2.1)—-(2.4), (2.14)—-(2.17), (2.26), (4.4), we get
2 C;—l
g, =—C 3 +Inx, | +Cac3x3 ™, 4.5)
1 . C
€p=¢€p=0C (——lnxn> +C2x,§371—|——3, 4.6)
3 Xn
1 aC| _10C; 1 0C3
— = (=1 Tyl ey - T 4.7
€np = 544 Ong <3 H)Cn) a(P +x, a([) X, 8([) , 4.7)
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1 dC _,0C, 1 aC3
€,0 = 54409 = © |:<3 - 1nxn> W +x,i3 ! W +— X aV 4.8)

2(c1t2c 2C5¢
on=—C {¥+(Cl—cz)lnxn] +C[(c1+ca)ez —2c) x5 - x3 27
n
4.9)
c1+2c CiEac
%Zﬁezclﬁl{ L (01—02)111?%} + 8 (1 —cae3) xS 73)%3 L
n
(4.10)
— 0371 114
o1 =M1 +M2 Inx, +M3x,"" +—, 4.11)

n

w= C12K1 +C22K2+C32K3+C1C2K4 +C1C3K5 +C2C3K6
2 2
aﬂ +@2 E ng @2 8C2
o1} av o) oV

saa
L1 (3G g2 (3G5)| | 4 (9€19C: | (p3C1 3G
S44 d P v S44

E)(p% v ov

Xs (9C19Cs | 29C19Gs) | %o (9C29Cs | 202 9Cs

where O, ¢; (i=1,2,3), s44 are given by Equations (1.15), (2.18), (2.13), respectively,
and M, &, xx (j=1,...,4;k=1,...,6) are derived as

. 1 dCy dCy
ni = [Cl(Y22Y1)+S44< % +74 a\/)}

. 1 dJCy dCy
N2=— [Cl (Y1+Yz)+a <Y3 30 +has )]

W] =

113=C2(YIC3+Y2)+L<Y3%?:+ 485/2)
T]4C372+&1‘4< aaC(er 43;\'}3)

= 2y 2y T2
K2:[C%(0124+C2)+c1(1—2c3)} 2es=1), ngfc—%,
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c3(2ci+c
K4 =3 (cl—cz)x,?*l Inx,+2|c; — w x1

3 no

2

K5 = xCI: Ko =0,
n
2 1 2eao1 1

XlzlnzxnfglnxnﬂLga XZZXn(C3 )7 X3:27

2 . _ 2 2Inx, _
X4:§x53 l_zxr? llnxm X5:§_ X ., X6 = Xp* g (4.13)

n n

The integrals @;, ¥; of the ¥; = K; (x,), xj = % (xa) (i=1,...,6), respectively,
have the forms

XM Xm
D, = / X2 dx,, W= /Xix,%dxm i=1,...,6, (4.14)
XIN XIN

where x7y, xp are given by Equations (1.16), (1.17), respectively. The integrals
are determined by the formulae in Chapter 10 (see Equations (10.10)—(10.12)) and

consequently, we get
1\ 1
3
- 1 _Z Z
XIN [( nxy 3) 9 }

c—C1 | 3 1\? 1

(O . {xM l(lnx - §) + 9
2(cr— 1 1

+ w [x;,, (lan — §> —x;N (lnxm — gﬂ

N (Te1+2¢p) (x?u —x;N)

27 ’
1 C%(Cl‘*‘cz) 2e3+l 2c3+1
(D2:203+1[ 5 tall=2a) (xMC3 — iy’ )

D3 =y (xpr —x1n)

cslci—c2) [ eyt 1 et2 1
Oy = 22 et () xS gy —
AP [xM ( M) T IV T T

2 c3(2c1+ )
ETCIER)
c3+2 3
@5 =C1 (szw—x%N) 5 (I)6 = 07
3 3
_Yu _ SV 2w _ Sy, 2
Y, = 3 [(lan 1) (lan 3>—|—9:| 3 (Inxzy — 1) ( Inxgzy 3 +9 ,

2c3+1 2c3+1
X —X
\};2 _ M IN

2¢3+1

c3+2 c3+2
‘v XN )v

. W3 =xm—x,
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2 c3+5 2| c3+5
N7 c3+2 1 c;+ |
4= C3+2{x 3(c312) M TN 3(ep2) N

5 5 C\“Fl c3+1
¥ =12, (8 —1an> -y <8 —lnx1N> W= x’”@% (4.15)

In case of the ellipsoidal inclusion, we get (unm)xnﬁo — & oo, (SIN)X”—>0
+ oo, (Ov), 9 — Feodueto (Inx,), o — +ooand (x'), o — =+ oofor
¢3 < 0 (see Equations (2.18), (4.4)—(4.10)). Accordingly, the mathematical solutions
(4.4)—(4.10) are suitable for the matrix.

4.2 Matrix

The integration constants Cyy, Cop, Capyy for the matrix (see Equation (4.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)—(2.32). The boundary
conditions result in the following combinations of Cyps, Copr, C3p. Finally, such a
combination is considered to exhibit a minimum value of the elastic energy W of
the cubic cell (see Equation (2.27)).

Conditions Cyy; # 0, Cops # 0, C3pr = 0. With regard to Equations (2.30), (2.31),
(4.4)—(4.12), (2.21), (2.26), (2.27), we get

2 1 can—1

S+ InxgF e <3 — 1an> (;‘;) ] , (4.16)

1 1 et

3 Inx, — <§ —hlxM) (j—;) ] ) (4.17)
0

€noM = S44M OnoM = (hlxn _> 3 (pn)

¢
C3mM— a
+ x, E)— C3M — ——lan , (4.18)

8nM:%

S(pM:EeM:_%

8
1 0 1
4 x¢m—1 e [W <§ —lan>‘| } ) (4.19)



2(ciy+2c2
OuM = %{M‘F(CIM_CM’I)IHX"

1 X cay—1
+[(c1m +cam) c3m —2coum] <§_]an> <i> }7 (4.20)

Dn [01M+202M
3

CoM = Oom = — g
1 x, \ St
—(cim—cameam) (3 _lan) <—"> ] . (42D
XM

(4.22)

- (C 1M — CZM) lnxn

=1
Gim = Nim + Moy Inxy, +N3prx3 7

oy <%>2 {K1M+K2M (tiilnle): SB;MI_ 1)}
BT
} { l 31an)] }2>
3§xC%M 1

L tom ({ d [pn(l—3lan
Yam O ( ) pn(3lnxy —1)
t o 3 BT
saam 00\ § ) 00 | 3¢

saap \ | 00 | 3T xCm!

Xw® 0 (pn) 2 | pa(3lnsy—1)
* Sqapm OV < C) v 30 1 ) (4.23)

n/2 ©/2 ! 1 2 ® | |
Wi = 4/ / (””) {¢1M+<1>2M< = “le> 1 Qam (3103 - )}d(pdv
3xM 3x,"
2 /2
4 J (pn 2 2 9 ([ Pn 2
*0/.0/“’”4 HOIEEHGIIES

2
99 | 3LxM
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g PP ) 1-31 ?
c A e ({2 [ U
S44Mm ov 3g g
0 0

2 /2
77 9 pn 0 pn(3lan 1) J6 dv
S44M Fan a(P o 3CxM T i
75/ 75/
+i/ n 0 3(’7”) 9 p4,,(31anjl1) dg dv, (4.24)
Saapm ; ov\C /) ov 3L g

where ©, xp, s4am, iy (i=1,2,3) and Kjpg, Xjms Pims ¥y (j=1,2,4) are given
by Equations (1.15), (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and {, ;
(i=1,2),n;m (j=1,2,3; see Equation (4.13)) have the forms

C=0-G (- _lan> C1 = [(c1m+com) c3m —2com] (xm) CW_17

XM
2(C1M+2C2M)
Co=— - 3

1 [ pn (’YZmiZFYIM) 1 |: d (pn) ad (pn):| }
=—= + |- |+ — | — ,
Nim 3 { T St Y3m o\ T Yam v\ T
Pn (i +Yam) 1 { o <P ) d <Pn>}}
= + + ,
Nom { C Saant V3m 5= 30 \ ¢ Yam 5= v\ T
_ Pn(vimesm+vam) (1 ¢ Yam 0 Pn 1
N3y = CfoffWI <3 lan> + Sqapm 0P [CMX;;MI <3 lan)]

Yam d Pn 1
G (5_1an>]. (4.25)

S44M OV
The normal stress p, is given by Equation (2.33). With regard to Equation (4.20),
the coefficient pys in Equation (2.33) is derived as

11 1 ) !
PM = z [5 — IIIX[N — (g — 111XM> <E) . (426)

Conditions C1y; # 0, C3pr # 0, Copy = 0. With regard to Equations (2.30), (2.31),
(4.4)—(4.12), (2.21), (2.26), (2.27), we get

+(cim—com) Inxpw |

2
EaMt = ( —ann) : 4.27)
C xu
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1 /1 1 /1
EoM = Eop = — % LM (3 - lnx,,> - (3 - 1an)} , (4.28)
1 a n 1 a n 31
€noM = $44M OnoM = — <— —hlxn) % < P ) +— [w] )

3 Cxm Xn a(P 3C
(4.29)
B B 1 0 1 90 [pn(1—3Inxy)
€.0M = S44M OnoM = (9{ (3 lnxn> P <CXM> 30 {3C 7
(4.30)
oy = Lo L L [2emt2em) | =2 (L)L
C Lxm 3 Xp \3
4.31)
Gom = Oopm =
_Pn i M—(CIM—CQM)IH)@: _ M l_lan , (4.32)
¢ Lxm 3 X, \3
Nam
O1m = Nim + Moy Inx, + P (4.33)
n
2
P M Ksyr (3lnxpy — 1)
= (£ Z _] Bsm Oy — 1)
C [ 12” K-3M an) + 3xM
X

8
oo
a
S44M< 00

xM R(&L)F}
[ n(1—3lan ”2+92{% {p(l;—zlnw} }2>
P

Asm ) {pn (3Inxy; — 1)}
S44M 3(0 ¢ 3¢
XSMG i i P 3111)CM— 1)
S44M av ( > a |: 9 (434)
n/2 m/2 @ . ) ® 3 |
Wy = 4/ / (p,,) ﬂ—f—q)yu (——lan> —l—%] de dv
M
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4 n/2n[2 5 p 2 3 p 5
o £ — [ = +@2[—< ﬂ dod
S44M0/0/ IM{[&P(CXM” av \ §xu P
n/2 m/2

traa | [l [ o

n/2 n/2 3 (1 a1 ) 2
T 2} 0 |Pnll—>oInxy
+ Y44M/ /"I"3M@ {Bv [—3§ ]} dodv

4 e 3 3 [pnBlnxy—1)
Pn Pn(OINXp —
e A —(—)—{7} do dv
saam ) M3e \Cxu ) 99 3¢ ¢
g PR 3 3 [pw(Blnxy — 1)
2 Pn Pn nxy —
+ —0/ O/ \P5M® B_v( > _8v |: :| d(PdV, (4.35)

S44M € xm 38

where @, XM, S44M> CiM (i= 1,2,3) and KjM, XjM; q)jM, ‘PjM (]= 1,3,5) are given by
Equations (1.15), (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and &, Ny
(i=1,2,4; see Equation (4.13)) have the forms

1 (2 2 2 1
{=— |:—(CIM +2c2m) + (cipr—com) lnxm} + cam (— — lan> ,
XM 3 XIN 3

Lfpu(om—2vime) 1 [ 9 ( Pn > J < Pn )]}
= — — + + ,
i 3{ Cxm sam M 30 dp \{x M5y Cxm

pn(YlM‘l"YZM) 1 |: d ( Pn ) d ( Pn >:|
YBMa(p T +'Y4M Cxm

Moy =

Cxm S44Mm
Ny — pnYam (1=3Inxy)  y3m 0 [pa(l— 31HXM)]
3¢ S44m 09 | 3¢
Yam i Pn (1 - 3lan)
o [ it . (4.36)

The normal stress p,, is given by Equation (2.33). With regard to Equation (4.28),
the coefficient pys in Equation (2.33) is derived as

11 /1 1 /1
Pm :E |:XM <3 lnX1N> - m <3 1an>:| : (4.37)
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Conditions Cyy; # 0, C3p1 # 0, C1py = 0. With regard to Equations (2.30), (2.31),
(4.4)—(4.12), (2.21), (2.26), (2.27), we get

€M = —

PnC3m (-xn )
Cxm

C3m

Pn Xn \
EoM = oM = 1— (2 7
oM oM an{ <x> ]

Ul e 9 (_pn
EngM = $44M OnoM = — - M — Cac

® 3 [ pn 3 [,
cumtvrsaen- 253 () -3 ()]

M

_ Pn {C3M(01M+02M)—
Onm = — E

cay—1
_ Do leim—comcam (X \7M cim
OoM =OCpm = — & |[— | — - ,
C XM XM Xn
N4m
O =N x5,
Xn

e () (2
il

2M Pn
s | L9 cnz
{319_}
a9 \ ¢
d Pn
 Swm [TP( §4>

[§<c =)}
()]
<@) o5 (i) (%

2comf xn C3M71+2C2M
X Xn ’

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

ﬂ, (4.45)



)

A n/2 1/2 3 o NE o 2

v [ (cie)] 0 [av< tec)] } o

v [ e [ () o

i Tl () 2 ) o () () o

(4.46)

where @, XM, S44M > CiM (i= 1,2,3) and Kims X jMs q)jM, \I"jM (j=2,3,6) are given by
Equations (1.15), (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and , Ny
(i=2,3; see Equation (4.13)) have the forms

1 M

C_,:_{[C3M(C1M+02M) 2com] ( IN) +262M},

XIN XM
My = — P (imesm +vom) d [ pn o ( pn

3M = T Saant T3m a(p T —YaM 5= v CXCSM ’
e () a2 ()

=R e () + . 447

Nam = 2 san l:'YSM 9o \ € YVam = z (4.47)

The normal stress p, is given by Equation (2.33). With regard to Equation (4.39),
the coefficient pys in Equation (2.33) is derived as

(XI_N> " 1} , (4.48)

Conditions C1y; # 0, Copy # 0, C3pr # 0. With regard to Equations (2.30)—(2.31),
(4.4)-(4.12), (2.21), (2.26), (2.27), we get

-
M

€M = — % [Cl <§+lnxn) Cocamxy ™™ 1} ; (4.49)

1 _
Eq)M =Egpm = % |:C_,1 <§ — lIl.X'n) -+ C2X53M 1 + %] s (450)
n

36



1 0 pnql c3— 0 pnCZ
Sn(pM—S44MGn(pM—<31nxn>a(p< 7 )ern‘ 18(p< z

1 0
+ — : a(p ( > ) 4.51)
1 d pnCl 1 ) pnCZ
noM — noM — ——lInx, | — 53 —
€10M = S44M OnoM 9K3 nx, > av< r +x e
1 a nY.
o5 <p£;%>} , (4.52)
n 2(cim+2c
Onm = — %{Cl {M‘F(QM—QM)MX"}
2
— Col(cim +com) cam —2com) x5 + CZX—MQ}, (4.53)
n
n Cc +2c
GoM = Ogy = % {Cl [H — (C1M—02M)lnxn]
+ G (cim —comesm) xS+ le—@} (4.54)
Gy = Nin +MNawr I, + M3 l+n);ﬂ7 (4.55)

Wy = <&>2(K1M§%+K2MC%+K3MC§+K4MCIC2+K5MC1C3 +K6MC2§3)
_a nc 12 [ nc 1?
el e ()]

[0 (pn62\]? | o2[ 2 (Pa
*s%{_acp(pcz) ol (g

+%{% (7 :2“92 <p”z;C3> 2}

i be (") s (") v () ()
oo (") () o () ()
EECHI0H i)




n/2 /2

nes [

+ @5, 813 +¢6M§2C3) dodv

K
0o

218

Sl

+6?

+6?

K

av

)]

2
) (®1M§%+®2M§%+¢3MC%+‘D4MCI C2

dodv

dodv

dodv

{
(l5C2)
{_

(4.57)

(28] s

where O, Xy, Saap, cip (i=1,2,3) and Kipg, Yivts Ping, Y1y (i=1,...,6) are given by
Equations (1.15), ( (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and {;, {,
Nim (i=1,2,3; see Equation (4.13)) have the forms
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e 2 . 2 1
C_,] = C3MXX,ISM 17 CQ = nglan, C_,3 = 7)6;13}” |:_+IHXM+CSM (§ lan>:| ,

3
2(ciy+2c 2¢omx 1 _
§26‘3M M—I—(CU\/]—CQM)IHXIN o oMM — —Inxy xjf,;M !
3 XIN 3
B 2 C3m 2
- {[(61M+62M)C3M—262M]x,c§,’” 1+c2iu&} <§+lan> ,
IN

o= { PR g () o ()
n2M:_{pnC1(’Yl£/I+Y2M)+${%M%(pnCC’l)""'YélM%(p”él)}}v

G (vimes+vom) |1 J (pnl2 d (pnCa
N3y = Z +m[YBM%< q >+Y4M$< 4 )]7
- Pnz;3’Y2M 1 J pn§3 d pnC,S
M =" +S44,H[Y3Maq>< C )*Y“Mav( C )} 49

The normal stress p, is given by Equation (2.33). With regard to Equation (4.50),
the coefficient pys in Equation (2.33) is derived as

1 1
pPM = z {Cl (1HX1N = g) - CZXIC;/M_I - E} . (4.59)

XIN
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Chapter 5

Mathematical Model 3

5.1 Mathematical Procedure

Let the mathematical procedure 0”Eq.(2.23) /dx2 be performed, and then we get
[1]-[22]

Au, a2 %u, Xn U,

— = 1
" ox3 "OxE  sas(ci+cp) Oxy % SR

where s44, ¢; (i=1,2,3) and U, = U, (r,9,V) are given by Equations (2.13), (2.18)
and (2.25), respectively. With regard to Equations (2.24), (4.2), we get
U,

Xn g =3 (Cl Xn -|—C2x,f3 +C3) , (5.2)
n

where C, (>, C3 are integration constants, which are determined by the boundary
conditions in Section 2.3. Let Equation (5.2) be substituted to Equation (5.1), and
then we get

x3 8314,1 +4x2 azun
" ox3 " ox2

The mathematical solution of Equation (5.3), which is determined by Wron-
skian’s method (see Chapter 10) [23], is derived as

=C1 x4 xS+ Cs. (5.3)

4 1
U, = C1 X (5 — lnxn> +CoxP+Cs (5 —ann) . (5.4)
With regard to Equations (2.1)-(2.4), (2.14)—-(2.17), (2.26), (5.4), we get
1 C
e =C) <—lnxn> +Crezx iy 23 (5.5)
3 Xn
4 1
gp=29=Ci (5 —Inx, +c2x;3*1+9 —+lnx, |, (5.6)
3 X, \2
4 aC _,0C, 1 /1 dC3
Smp = S44 Gn(p = (§ — lnxn> % —|—x;3 1 % x_n (5 +1nxn> $7 (57)
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o . 4 aCy ey 18C2 1 /1 dC3
€0 = 5440, = © |:<3 1nxn> a + x5 v - (2 +1nxn> aV:| , (5.8

Xn

)

6, =C; [Cl — (1 —cz)lnxn] +C(c1+c2)e3—2c)x7 !

C
+ 23 (e —2c21nxy), (5.9)

n

401 —C2

6o =09 =Ci [ — (e —cz)lnxn] +Co(c1—cre3) x> !

n G (cl —2c

Xn

+c lnxn> , (5.10)

N4 +Ms Inx,
Xn ’

=1+ Inx, Fn3xC 4 (5.11)

W:C12K1+C22K2+C32K3+C1C2K4+C1C3K5+C2C3K6

aCc\? o, [9C\? 0C, 5 (0C,

(0) o <a> (&p) o (a)

L [(3GY, 0 (2GY ] 1 (369G 060G
S44 oL} oV S44 \ OQ 0@ ov ov

£s (960G | (20CIAC) | 1o (3C0Cr | (50C9Cy
s44 \ 0@ 0@ ov av sas \ 00 0 ov dv

S44 544

) . (5.12)

where © is given by Equation (1.15), and m; x;, x; (i=1,...,4; j=1,...,6) are
derived as

1 4 (0, 0
=3 [Cl ('Y1+4'Y2)+S44< %0 thss )]
_ Jeions )+L 9y, 9
M =— T1+72 73 90 Ya=— v
B 1/ G, G
113—C2(“{1€3+Y2)+Q<Y3 20 + Vs av>

_ Y2 1 dCs dC3
ﬂ4C3<Y1+2)+—< +48v>

2544 a(p
1 dC3 d0C;3
= C o _
Ns 3Yz+s44< 8(p+ 48\/)
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) —cCy 12 cl—czl 17¢c1+c2

K1 = Xn + nx, + 13 R
2
cz(c1+c _
K= [Blte) 12 2)+61(1263)} i,
_c 1n2x,, ciInx, c¢y—2c
K= 2 K2 4)c2 ’

n n

c3(cr— 701)} Lol

K4 =c3(c1—¢2) x’fJ*l Inx, + |:2C1 + 3 S

Inx, 4ci—c

Ks = (3¢; —

s =(3c1—¢2) . 3

K6*261(1763) €3 zlnxn+(626376‘1) ,23_2,
8 6 1

Xl:ln xn—glnxn‘i‘g, X2 = n(C3 ),

ln2xn Inx, 1 8 1
B="73 st M=%
xn xﬂ 4xn

4  5lnx, 2In%x,
+

—2x% Mnx,,

X5 =

3x, 3x, X

With regard to Equations (4.14), (5.14), we get

¢ —cy 121 N\? 1
q)l: 6 {xi,[ [(lnx —g) +§ —X;N [<lnxm—§) +§ }

c1— 1 1 17¢c14+c2
T {’“34 (1an—§) i (lnx'N‘gﬂ s ().

1 [&(ei+e) destl _ estl
O, — 3 1-2 ( 3+ c3+ )
2 2341 [ 3 +C1( 63) Xpm XIN >
D3 =y {XM (ln2xM — Zlan-|—2) — XIN (lnzxm — ZlanN—Q-Z)}
c—2c¢

—C1 [xM (lan — 1) — XIN (lanN — 1)] + (xM 7)611\1) s

3 (Cl - Cz) c3+2 1 c3+2 1
P {xM nxy ) Xy nxy 12
cs(ca=Te)| ( eyt est2
g e+ 2T (7).
3c)— 1 1 4e1—
D5 = 012 @ [xlzw (lan— 5) —x,N <lnx1N 2)} — 616 e (x,zw —x%N) ,

2c1(1=c3) [ ey 1 +1 1
D= ——— 2 [xO [ Inxy — —x 3 (Inxgy —
6 C3+1 Xpr nxy C3+1 XN nx;y C3+1

+

. X6 =2x572 Inx, + x5 72, (5.13)



€203 —C| (xqﬂ _x63+1)
)

c3+1 M IN
3 3
1 17 1 17
Y, = );—M [(lan -3) (lan - 5) + ?] - xg—N {(lnxm -3) (lanN - §> + ?} ,
=
2c3+1 ’
5 _
\1’3 = XM lan (lan — 1) — XIN lnx,N (lnxuv - 1) + M,
2 . 4e3+ 11 nin | 4ez+11
\I” _ 342 71 o 3+ o 71
a2 {XM 3t M 3y T T
2(x3,—xiy) 5 1 1
‘P5 = M + g |:x12\,1 <1an — 5) —X%N (lanN — §>:|
1 1
- x%,, <ln2xM —Inxy + 5) +x%N (lnleN —Inxy + 5) )
2 1 1
Wy, — a3+l R IO i o
6 c3+1 M e c3+1 v A a3+l
3+l o3t
i),

where x7y, xp are given by Equations (1:16), (1.17), respectively. The integrals
(4.14), which consider Equation (5.14); are determined by the formulae in Chapter 10
(see Equations (10.10)—(10.12)).

In case of the ellipsoidal inclusion, we get (unIN)anO — 4 oo, (811\/))%_)0 —
+ oo, (Ov), 9 — Feodueto (Inx,), o — +eoand (x'), o — =+ oofor
¢3 < 0 (see Equations (2.18), (5.4)—(5.10)). Accordingly, the mathematical solutions
(5.4)—(5.10) are suitable for the matrix.

5.2 Matrix

The integration constants Cyy, Capy, Capy for the matrix (see Equation (4.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)—(2.32). The boundary
conditions result in the following combinations of Cyys, Copr, C3py. Finally, such a
combination is considered to exhibit a minimum value of the elastic energy W of
the cubic cell (see Equation (2.27)).
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Conditions C1y; # 0, Copy # 0, C3py = 0. With regard to Equations (2.30), (2.31),
(5.4)—(5.12), (2.21), (2.26), (2.27), we get

1 4 el
ey = — p_C” [g —Inx, — cay <§ —1an> (;‘—M) 1 , (5.15)
4 4 can—1
EoM = Eop = — % [3 I, — (3 1an) (;Z) ] , (5.16)
_ _ 4\ 9 Pn cay—1 d Pn 4
o == (152=3) 55 () 05 5 | = (S ) |
(5.17)

0
B 1 )

Tcom —cim
OnM = % { + (cim — com) Inx;,

€10M = S44M OnoM = 9{ (lnxn )
1 0
+ X;SM —(p

3
4 Xn c3y—1
+[(cim+€am) cam —2com] <3—lan) () , (5.19)
Xy
Oy =Ny +MNow Iy, + a1, (5.20)

comy —4c
Pn [M + (C]M —czM)lnxn

O = 0 = —
oM oM C 3

4 - cay—1
+(cim —camcsm) <§—1an> (x—) ] (5.21)

M

2 2
Pn 4 —3lnxy Kapm (3 Inxy —4)
WM =\ & Kim + Kom ; +
<C> < 3xCam! ) lef/;’”’l

(R e
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/—’H

2 2
0 | pn(4—3lnxy) 0 | pu(4—3lnxy)
a(p[ 300 cm—1 } +®2{8v[3€ a1 ]} )

DPn i pn(3lnxy —4)
| g

3
n d n(31nx, 4
( z > Py l%l : (5.22)

) 2
WM=4/ / (&) {cI>1M+CD2M (43ln_le) +c1>4M(31nxin 4)}dwV
g 3x M 3x; M
0 0 M M
/2 ©/2 5 2
4 d ([ pau 2[ 0 (P
Sl [l (B)] e (2)] oo
S44M0 ) lM{ 90 \ § v\ § ¢
4 T 0 4-31 ’
—l——/ /‘PzM {B_ lM%WmiM)}} dodv
Saam ) ¢ 3Cxy
g P) 431 ?
o] T ({3 [act2] ) aon
S44M ov | BLxM
0 0

/2 /2

4 0 Pi 0 | pn(3lnxy —4)
Wam —

Saam ) ) o\ T/ oo | 3rxim

n/2 /2 [

4 2 jzﬁ Ihl) Aéi
S44M-0/.0/ Fanr © aV(C ov

where ©, xp, s4am, cim (i=1,2,3) and Kjpg, Xjms Pjm, ¥im (j=1,2,4) are given
by Equations (1.15), (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and {, ;
(i=1,2),n;m (j=1,2,3; see Equation (5.13)) have the forms

] dodv

pn(3lnxy —4)

* 3Cx1f,,3M71

] dodv, (5.23)

C= C2—§1<——IHXM> &1 = [(cim+cam) c3m —2cam] <23>63M17

cim—"Tcom
Co= — 3 (c1m — cam) Inxpy,

= %{,, (Wg e o [WM aaq> ( . ) o, (ljcﬂ }
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Pn (Yim +Yom) 1 { 9 (pn> d <Pn)]
p— e o 3
Nom C saa Y3m 30 \ C + Yam Iv _C

Y3m ) Pn 4
N3y = C (Yim c3m +Yom) + Sar 90 L; ror] <— — lan>]

Dn 4 |
g xcm! 37D
M

(5.24)

Yam O
Saam OV

The normal stress p, is given by Equation (2.33). With regard to Equation (5.16),

the coefficient pys in Equation (2.33) is derived as
1[4 4 x| e
=_|=-1 - =—1 — . 5.25
pMm ¢ l?’ nxy <3 an) (XM> (5.25)

Conditions Cyy; # 0, C3ps # 0, Copy = 0. With regard to Equations (2.30), (2.31),

(5.4)~(5.12), (2.21), (2.26), (2.27), we get
_ P [(1 n 1an) <1 - lnxn> il <‘—l - 1an>] , (5.26)
3 X, \3

€M = C )
1 4 4 1
S(pM =€Eop = — % |:<§ +1an> (§ = lnxn> — );—M (5 — lan> <§ +lnxn>] s
n
(5.27)

a[p”x’” <1nx 4)}, (5.28)

0 [pn (1
EnvM = S44M OnoM = 6{ <1nxn - g) gp |:% (E +1IIXM>:|
1 /1 0 [pnxm 4

) 1 -7
OnM = % { <§ +1an> [M - (ClM _CZM) lnxn:|

4
u (§ - lan) (cim—2com lnxn)} , (5.30)

4+
Xn
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+ Inx,
O1m =MNim +MNom Inx, + w, (5.31)
n

1 ey —c¢
GoM = Opm = % { <§ +1HXM> [% —(c1m—cam) 1nxn]

4 _
M ( 1an> <CWCZM +C3M1nxn> } . (532)
X \ 3 2

Pn 2 1 5 4 2
Wy = Z Kim §+IHXM + K3p Xy g—lan
! | 4 1
+ Kspxm §+ nxy g— nxy
8 2 2 d [pn (1 2
(e Grma [} o Rz G}
8

4 Xam PnXM ——lnx ﬂ} +@2{ [P’ZXM (i—lnx )}}2
S44M a(P " ¢ 3 "
L Xsm d [pn PnX
m%[i (E““xf”ﬂ 8@[ (5‘1““)}
2
xz::;) aav {% <%+1an)] % [ ngM G_lnw)], (5.33)

n/2 T/2

Wiy = 4//(”")

1 4 2
Dy ( +11‘1)CM> —l—(I)zMxM (g —lan)

1 4
+ Dsprxm <2 —|—1an> <3 — lan>:| dopdv

v [en (Gl o]}
+ez{§{%<;+w>]r>dw




rer{ g |2 (5o )| | ) do dv
4 n/2 m/2 5 4
Pn PnXMm _
] [ roraal 2 )] 7 (5] e

n/2 n/2

s44M/ /¢5M®2 [%( +lan>} %[% (g_lan)] dodv,

(5.34)

where @, XM> S44M,> CiM (i= 1,2,3) and KjM, XjM; (I)jM’ \PjM (]= 1,3,5) are given
by Equations (1.15), (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and , {;
(i=1,2),m;m (j=1,2,4,5; see Equation (5.13)) have the forms

L= Cz( +1HXM) C1<——1HXM> Cl— (ClM 2comInxpy),

ciy—Tc
Co=xy {u —(c1m—cam) 1lelN} )

3
_ pnrim+4rm) (1 dysm 0
Nim = —3C <2 +1Inxy " san atp C 3 +lan
4y OCy [pa (1
* Bsaay oV {C <2+1HXM)}’
_ Pn(vim+tvom) (1 Yau 0 [pa (1
T]zM—iC (2+lan)+S4Ma(p C 2—|—lan
Yam ad Pn l
+S44M8V|:C <2+IHXM>:|,
n Pnxm (2Y1m +V2m) _i Ysm O [pnXm Iy 4
= 2 3  sam a0 | € M=3

i Yam O anM
2S44M aV e
PnXMmY2Mm V3m a PnXm 4>:|
="—""""" | Inx + N
flsm g < i 3) Saam 00 [ g < T3
L Yaw O [WM (1an _ ‘_‘)} _ (5.35)

Saam oV | G 3

The normal stress p, is given by Equation (2.33). With regard to Equation (5.27),
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the coefficient pys in Equation (2.33) is derived as

_ L 4 w4 !
Pm = C [(2 +lan> (3 lanN> Yy (3 lan> (2 +1I1)C1N>:| . (5.36)

Conditions Cyy; # 0, C3ps # 0, C1py = 0. With regard to Equations (2.30), (2.31),
(5.4)—(5.12), (2.21), (2.26), (2.27), we get

1 L xGm
o= % [CW (E +1an> xgm ! — —1;; } : (5.37)
P 1 S XM/
son sy == | (5 mneJapt = 5 ()
(5.38)
1 /1 ) anAC/;M
Enoht = suan Ongnt = 0 5 I ) 50\ T
J 1
x,‘,wfl Em [p_Cn <§—|—1an>} , (5.39)
1 /1 3y
Xn \2 av C
J 1
(L)L 540
xC3M*1
Onm = — pn%
1 XM
X {[C3M (c1m +cam) —2cam] <§ +lan> - (cim—2com lnx,,)} ,
n
(5.41)
Gom = Opm =
xCam—1 1 N .
- IJ”"T [(ClM —c2mC3m) (2 +lan> - )TM <1M22M +cim lnxﬂﬂ )
n
(5.42)
: 1
e B k| AL (5.43)

Xn

2 2
1 1
Wy = (%) |f<2M (E + 1an) + K3Mx1%,lc3M + K6Mx1f,13M <§ +1an>‘|
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e Lo (o) 02 2 (o)}

x3m | 9C3um <pnx1f,13M>2 @23C3M (Pn Cw)zl

Saam | 0@ g av g
s [ G 5 ()
S 3eE) o

n/2 T/2 2 | 2
Wy =4 / / (%) Doy (E +1an) —|—<I)3Mx1%,f3’”
0 0

1
+ d)éMme (2 +]an>] dodv

g p) 1 2 p) 2
4 O [p(1 29 [Pn
S| O/“’W{a(p[c (e )| o 2 (3w }d“’dv

s aC FLANC: To z
4 _/ /\{ISM M (pan > 92 M <pan > do dv
S44M0 5 99 g av g
n/2 m/2

] [yl G |56 (")

d [pn /1 9 [ pnxy
+av [c <2+ln M)} E( T )} dodv, (5.45)

where O, xp, S4am, cip (i=1,2,3) and Kjpg, X Pjm, ¥im (j=1,3,5) are given
by Equations (1.15), (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and C, {;
(i=1,2),m;m (j=3.4,5; see Equation (5.13)) have the forms

C §2 (2+lan) Clxcw 1 Cl (CIM 262M1nx11v)

1
Co=xmcam (cim+com) — ZCZM]XIL}:/M ,

—_— poXp” (imcsm+vam) | Yam 0 <an;;M>
g S44pm 0@ g

+ Yam i (an;[w>
Saam OV ¢ ’
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. _ P (Cvimtyom) (1
wm="—r |3

v O [P (1
—l—lan> + 2531 99 { 4 (2 +1an)}
v 9 [pn (1
+ 2 saa OV l:z; (2+IIIXM>:| R
PnYom Yam 0 [ ( )}
oy ) + 2L 2 P
Nlsi =" <2 > sam 09 | G \2 M

Yau 9 k <2+1an>] (5.46)

saam OV
The normal stress p, is given by Equation (2.33). With regard to Equation (5.38),
the coefficient pys in Equation (2.33) is derived as

L, T L (5.47)
===z = X . .
pPm Z1\2 XM | Xy P IN
Conditions Cyy; # 0, Cops # 0, C3pr # 0. With regard to Equations (2.30)—(2.32),

(5.4)—(5.12), (2.21), (2.26), (2.27), we get

1 _
EnM = — p_cn |:C1 (§ _lnxn> +CZC3MX§3M l+%:| s (5.48)
n

4 . 1
EoM = Eom = — % |:§1 3 —lnxn> + x4+ Samt (5 +1nxn>] . (5.49)
n

EnoM = S44M OnoM = — Kg ) < > o] d (Png;z)
BB R 550

4 d (pnGi Cam— J (pul2
s sy =0 (5 ) 5 (2 ) o 5 (22
1 /1 d (pnGs3
+x—n<§—|—lnxn)§< T >:|, (5.51)

cimy—7Tc¢
O = — % {Cl [IM—W — (CIMC2M)1nxnj|

3
Camr (c1m —2cop Inx,)
Xn ’

+ Col(c1m+cam) cam —2cam) xS+
(5.52)
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46’1 —C)
CoM = Oom = — % {Cl {y - (CIM_CZM)lnxn}

_ cim—2c¢
+ Caleim—comesm) e 4 o <M +cim lnxn> } ,
(5.53)

. 1
O1mM =MNim +MNom 1nxn+n3Mx§3M71+ w, (5.54)
n

K1M§1+K2MC2+K3MC3+K4MC1C2+K5MC1C3+K6MC2§3)

L]l

=
<
Il
7 N
~
[\
/N

)
saane | [0\ € (7))
e () () e () ()
= 5503 ()05
e () 5 () o () m ()] o9
e
WM:4/ / (’2) (PG +omG+owm
o + @apr 61 o+ Dswr §1 La + PeuLaCs) dg dv
/

Z\PW{L)@ <p,.gc1>} . {av (pnccl)} } dody
cma] [ O o 3 () e
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!
STIERCORCS
o o5 (75 e (7)o
o | e () 56 (%)
o 05 (%) 5 ()] o
| o (78) 55 ()

+®28<9\} (Png@) 2 (PQE)} dodv, (5.56)

where ©, xp, Sqam, cim (i=1,2,3) and Wnr, Xjms Pjm, ¥y (j=1,3,5) are given
by Equations (1.15), (1.17), (2.13), (2.18) and (4.13); (4.15), respectively, and , {;
(i=1,2,3),mjm (j=1,...,5; see Equation (5.13)) have the forms

1
C_, = “M ! |:C3M (E-i-lan) — lj| ,
Cz = g —Inxpy — <% —‘rlan) (% — lan) s

1 4
Camr = 3 [3 —Inxy —c3m <3 - lanﬂ )

g = xem! |:C1M7C2M

M 3 —(c1m—cam) lnXIN:|

1 1
+ [(c1m +com) cam —2com] <§+1HXM> (5 —1HXM> !
C3m

4 c3mXx
+ (C‘]M—ZCQM IIIXIN) <§ —lan> BIZTM

ciu—Tc 1
—{C3M [M_(CIM—CZMMHXIN] <§+lnx >x;13M !
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+ [(c1m+cam) c3m —2cam] ( IHXM>X;13/M :

2 1
N (c1m —2com Inxgy) X7 (lan>}

XIN

mM:_p,,C1(Y1§4C+4YZM) 3Sj4M { ai( )+Y4M%(pn§1>}7
Nom = PaC1 (Y124+YZM) +S41M {Y aa ( ) +Vam Moy <p”é1>} ’

gy = P CZ(YIM£3M+'YZM) B &:W {Y acp (p;ééz) +y4M% <p"§2>} ;
My — — PnC3 (ZgléﬂrYzM) _ 2Si4M {Y "3 (p"é3) a5 (pné3ﬂ )
== P g (282 ) v (P2)] e

The normal stress p, is given by Equation (2.33). With regard to Equation (5.49),
the coefficient pys in Equation (2.33) is derived-as

pym = ! {Cl (— —lnxnv> +Cax Camt <l -HHXIN) (5.58)
z Xy \2
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Chapter 6

Mathematical Model 4

6.1 Mathematical Procedure

The differential equation (223) is transformed to the form
( ) 2 aZMn aMn (6.1)
U,=—s44(c1+2) | x; = +2x,— —2u, |, 6.
n 44 \C1 2 n J ’21 n ) ; n

where sa44, ¢; (i=1,2) and U, = U, (xn, @, V) are given by Equations (2.13), (2.18) and
(2.25), respectively. Let x, [0Eq.(6.1)/0x;,] be performed, and then we get

oU, 3 u, 2 o%uy,
Xn Tx" = —S44 (Cl +C2> <xn axg +4x;, ax% . (6.2)
Let Equations (6.1), (6.2 be substituted to Equation (2.24, and then we get
Au %u Jdu,
3 n 2 n n -
,la—x%‘i‘ (4—03)xna—x’% —2C3an+ZC3un =0. (63)

Let u, be assumed in the form u, = x,i‘, then we get [1]-[22]

. C
y = Cp xp + Ca xS + x—j (6.4)
n

where ¢3 < 0 is given by Equation (2.18), and Cy, C;, C3 are integration constants,
which are determined by the boundary conditions in Section 2.3. With regard to
Equations (2.1)-(2.4), (2.14)—(2.17), (2.26), (6.6), we get

2Cs

e =C1+Ceaxp ' — =2, (6.5)
xn
—gg= et 6.6
o =8 =C1+Cx,’ +x73’ (6.6)
n

dCy ] 0C, 1 aC5
Engp = 544 Onp = % —l—x,? % x—% %, (67)

aC, _10C; 1 9Cs
€40 = 5440,9 = © v +x° EREEE (6.8)
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2C3(c1+2¢2)

6, =Ci(c1—c2) +Ca(c1+c2) ez —2ea)x ! — 3 ; (6.9)
n
Cs(c1+2c¢
G =0 =C1(c1 —2) +Ca(c1 —cac3) x> 1+¥, (6.10)
n
=Mi+mxg n_33 (6.11)
w:K1+K2x3(C3*‘)+ 3 kaxg 1+x xS, (6.12)
Vl n

where © is given by Equation (1.15), and n, x; (i=1,2,3; j=1,...,6) is derived as

- 1/ e ac
M —C1(71+Yz)+s44<73 20 +v4 8v>

1 aC aC
112=C2(“{103+Y2)+§( =2 2)

b 8C3 8C3
av

s )
- 3(C1—6‘2)C% 1 E)C1 JdCy
K= 2 T on S44 aV
2 2
Ko = [7@1 te)a 41— 2czc3] C2 + L <8C2) <8C2>
2 S44 av
(%) o () )
dC1 0C , dC1 9C
30 90 O WW)

N3=C3(v2—2v1)+

1
K3—3(6‘1+262)C3+—

2
= (@) 24 e) IOt (
_ 2 (9C19Cs @2@%
" sus \ 0@ 0@ ov E)v

K6*[262(17C3)761]C2C3+ <

0C; 0C3 o2 G, 8C3> 6.13)

¢ 0¢p oV oV

6.2 Matrix

The integration constants Cyys, Copy, C3pyy for the matrix (see Equation (4.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)—(2.32). The boundary
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conditions result in the following combinations of Cyys, Copr, C3py. Finally, such a
combination is considered to exhibit a minimum value of the elastic energy W¢ of
the cubic cell (see Equation (2.27)).

Conditions Cyy; # 0, Copy # 0, C3pr = 0. With regard to Equations (2.30), (2.31),
(6.4)—(6.12), (2.21), (2.26), (2.27), we get

C3M71
e = — 20 |13y (x”) : (6.14)
g M
Pn Xn Can—1
ey —€ay — — 01— (2 , 6.15
oM = oM z [ <xM> ] (6.15)
d ([ pu 1 O Pn
/ _ __ |2 e w1 Y
En(pM = S44M0n(pM - la(P < C > Xn a(p <CX;;M_1>] ) (616)

a Pn C3M_li Pn
() a(ohm) o

Pn Xn csu~1
Onm = — 13 cim —cam — [eam(e v+ com) — 2¢om] (E) ,  (6.18)

p X\ !
GoM = Opm = — Zn [ClM—CzM— (c1m —came3m) (}i) ] . (6.19)
Gim =Ny +MNamxg !, (6.20)
war = King+ Ko pieaag 6.21)
n/2m/2
Kim [ 3 3 Kom 2c3m+1 2c3u+1
s 5 i)
00
Kam 32 +2
o (XZEM — XN )} dgdv, (6.22)

where O, x;n, xp and sqap, ciy (i=1,2,3) are given by Equations (1.15)—(1.17) and
(2.13), (2.18), respectively, and , N, Kjpm (i=1,2; j=1,2,4; see Equation (6.13))
have the forms
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C3m 1
XIN
C=cim—com—[cap (cim+cam) —2com] <XM> ;

w2 g (e ()]
Pn(Yimesm + YzM) g
x,fj"r1 S44M[ a(P xM
2
ot (20 )
i)
d Pn ’
()
x;,w*l 4

_ {(C]M-i-CQM)C%M
KM= |——H
2
2 d DPn i Pn _’_@22 Pn i Pn
 sqam |00 \ € ) 9@ CWI ov \ ) ov z;x;;M—l ‘
(6.23)

Nom =

+cim—2cmc3m

'—'/—\
|"t:

2

1 0 "
+ —— EYR p 1 + @
saam | |99 \ gap

(com —c1m) (2+ c3m) (&) ?

Kam =

The normal stress p, is given'by Equation (2.33). With regard to Equation (6.15),
the coefficient pys in Equation (2.33) is derived as

1 C3M—l
pm = 3 [1 - (%) ] : (6.24)

Conditions Cyy; # 0, C3ps # 0, Copr = 0. With regard to Equations (2.30), (2.31),
(6.5)—(6.12), (2.21), (2.26), (2.27), we get

Ear = — % [1 — e <XM ] (6.25)
Pn XM 3
o [ pn 1 9 (puxs
Enoh = 544 OnpM = — {% (%) ~ 3 (” C’“Mﬂ : 6.27)
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0 [ pn 1 90 (pux;
€10M = S44M Onom = — { (p >——3 N (p xM)], (6.28)

ov \ € 4
OuM = — % [01M62M+2(61M+262M < > ] (6.29)
CoM = Oom = — % [CIMCZM (cim +2com) (M> ] , (6.30)
n
Giv =Nim+ ”W, 6.31)
K K
Wit = Kyl M (6.32)
xn 'xn
n/2m/2 | |
RN K
WM:4/ / [IM (x,Lx?N)+W<3 >+1<5M1n( )} doav,
oo 3 3 \xgy Xy XIN
(6.33)

where O, xyy, xpr and saapr, ciy (i=1,2,3)-are given by Equations (1.15)—(1.17) and
(2.13), (2.18), respectively, and , N3, Kjum (j=3.5; Equation (6.13)) have the forms

3
XM

C=cim—com+2(cim+2com) <—) ,
XIN

3 3 3
_ PnXy (Y2M < 2'YlM) 1 i PnXyy i PnXyy
N3y = + Y3m 90 Yam v )

g S44M

+
K3m =3 (cim +2cam) <Pn§13v1>2+&:w [aa(P ( ”g?”ﬂz
2 3\ 12
e o ()]
e RS0 w2 2)3 () s

The coefficients 117, K1p7 are given by Equation (6.23), where { in Equation (6.23)
is given by Equation (6.34). The normal stress pj, is given by Equation (2.33). With
regard to Equation (6.26), the coefficient pys in Equation (2.33) is derived as

1 Xy -3
Pm = z I (a) . (6.35)
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Conditions Cyy; # 0, C3p1 # 0, C1py = 0. With regard to Equations (2.30), (2.31),
(6.5)—(6.12), (2.21), (2.26), (2.27), we get

X C3pm— 1 .xM 3

n

— -2 .

c3m <XM> <Xn ) ] ; (6.36)
x' C3M71 X 3

ot =5 = ¢ KE) B <—M)

a C3ap— 1 a pnx3
8n¢M—S44MGn¢M—_[a_ o 1) ! x_g%( C’”)], (6.38)

ot 10
( aTE 1> : _,33_< M)] (6.39)

pn xﬂ C3M71 xM 3
OnM = — T [e3m (c1m + com) — 2¢2m] ()W) ~2(c1m +2cam) (x—> )
n
(6.40)

p
EnM:_En

6.37)

QJ|Q_)

€nOM = S44M Onom = —

Pn Xn et M ’
Oom = Oom = — = | (C1m — C2mC30m) (XM) + (c1m +2c2m) <> ,

g n
(6.41)
o1 = Mo DO (6.42)
xn
it = Kapg ) M e (6.43)
Il
n/2m/2 . 1
Kom 2¢ +1 2cay+1 K3m
W 4//{ w2 >+<_>
ZC3M+1 IN 3 x?N xi/[
K
+ C3M6"j : <fo,}"” 1 g 1)} dgdv, (6.44)

where O, xy, xp and sqap7, ciy (i=1,2,3) are given by Equations (1.15)—(1.17) and
(2.13), (2.18), respectively, and £ has the form
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Xy M X\ ?
=1 [eam (cim + com) — 2 com] <—> +2(c1m +2com) <—> ,
XM XIN
9

oy — 2 [2eau (1= caw) —cuu] (pn>2 2 9 pu (pnx?v,>
M= — - - 53— ;
! e saam 09 \ Lxgv ! f o9\
2079 0 3
P ) 2 (Pt (6.45)
 Saam OV G AN
The coefficients Moy, K2ar and M3y, K3ps are given by Equations (6.23) and (6.34),
respectively, where { in Equations (6.23), (6.34) is given by Equation (6.45). The

normal stress p, is given by Equation (2.33). With regard to Equation (6.37), the
coefficient pys in Equation (2.33) is derived as

(’ﬂ)cwl — (X—M>3 . (6.46)
XM XIN '

Conditions Cyy; # 0, Cops # 0, C3p7 # 0. <With regard to Equations (2.30)—(2.32),
(6.5)—(6.12), (2.21), (2.26), (2.27), we get

cm—1 3
3y (;“A”) —2(csm—1) (2‘;”) ] } . (6.47)
xn C3M71 xM 3
3 <—> +(cam—1) (-) ;
XM Xn

oy =1
MTT

Dn 1
emM=— 1< 1—
M C { c3y+2

1
S(PM_SGM_p_Cn{I

c3m+2
(6.48)
EnoM = S44M OnoM = { pn>
99
_ 1 i Pn X 1, cam—1 i an?w
e +2 | 00\ gt S AN ’

(6.49)

o (pn
€100 = S44M Opoyy = —© {a_v (%)



S PO /T S R |V S PnXy
cm+2 ov Qxlf/;M_l " xﬂ ov 4 ’
(6.50)
3 X aap—1
OnM = — p_cn {CIMCZM ) [e3m (c1m + cam) — 2¢am] (x—;)
2 2 3
n (cim +2com) <X_M> 7 651)
cam+2 Xn
PP ') PR M(x_n)c”“
¢ o g M M 3y +2 XM
2 3
_ Gt loam (xm AT 652)
c3m+2 Xn
Gim = Mim + Mo X~ “% (6.53)
n

2(esy—1) | K3m -1, Ksm _
war = Ky + ko ) 4 o H AT =5 e Y 654)

n n

n/2m/2

' KiMm(3 3 Kom 2esutl 2l
WM = 4 / / |:T (XM _xIN) + 7203[” n 1 (xMC3M _x[]\;gM )
0 0
K 1 1
3 (T - T) + o (W)
Xivo m/ Gt

+ ks In (X—M> e G —x,C]@M‘l)} dodv, (655
XN/ cam—1

where O, xy, xp and sqap, ciy (i=1,2,3) are given by Equations (1.15)—(1.17) and
(2.13), (2.18), respectively, and , i (j=2...,6; Equation (6.13)) have the forms

1 xar )’
— iy — M) (e — 1 2
C=ciu CZM+C3M+2 (XIN> { (esm— 1) (c1m + 2cmm)

cay+2
XIN
—3[eam (c1m + com) — 2 cam] (W) },
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i 3 Pn(V163+72) L i Pn i Pn
N2 = C3M+2{ Qx]f;M_l +S44 13 a(P CXX;M_l +Y4 v Cx;;M_l )

63M—1{pnx13w(722¥1) 1 [ 9 (pnx?u> 9 (nm%)]}
= +— |- Y :
g V3 90 T Y4av T

= c3m+2 544

2
3 2 [ +cam) By Pn
Kopm = 9
M <C3M 2) ( { 5 +eim —2cmcam Cxcon T
2

2

-~ saam (c3m +2) i (f
Y )
Keng = 3(csm—1) [22%4(714— c3m) — C1m] L; (C3Zn+ 2)} ’

M

6(csm—1) 9 <€ ZZI)%(WCX%)

saam (cap +2)7 00 \ £ x5

L 0@ (ew=1) 0 ([ pn 3(’)"’“%4). (6.56)
saam (c3m+2)% OV A\ gt Jov\ ¢

The coefficients 117, K1p7 are given by Equation (6.23), where { in Equation (6.23)
is given by Equation (6.56). The normal stress pj, is given by Equation (2.33). With
regard to Equation (6.48), the coefficient pys in Equation (2.33) is derived as

C3M71 3
3 (”—N> +(esm—1) (X—M> ] } . (6.57)
XM XIN
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6.3 Inclusion

In case of the ellipsoidal inclusion, we get Co;y = C3;y = 0, otherwise we get
(”nIN)x,ﬁo — = oo, (SIN)x”%0 — % oo, (On),_,g — Feo due to c3 < 0 (see
Equations (2.18), (6.4)—(6.10)). With regard to Equations (2.28), (2.29), (6.4)-
(6.12), (2.21), (2.26), (2.27), we get [1]-[22]

EnIN = E@IN = €0IN = —PnPIN, (6.58)

EngIN = S44IN OngIN = —PIN aalz:’ (6.59)

€nIN = S44IN OnoIN = —O pIN a(-;zln, (6.60)

OnIN = OgIN = OQIN = —Dn, (6.61)

O1UN = — PIN [Pn (n1+v2)+ i <Y3 a;:: s 8(911,1)] : (6.62)
WIN = Piy { 2351’1 + sjm (%’:p) g <aapv )2] } , (6.63)

n/2 m/2 5 5
_ 4p%N / / 3 3[’% 2 Opn opn
Win = 3 XIn 201N 4 o 30 + > dodv, (6.64)

where ©, 5447y are given by Equations (1.15), (2.13), respectively. The normal stress
pn is given by Equation (2.33). With regard to Equation (6.58), the coefficient pyy
in Equation (2.33) is derived as

=2y

pIN = En (6.65)
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Chapter 7

Mathematical Model 5

7.1 Mathematical Procedure

Let the mathematical procedures dEq. (2.24) /dr, Eq. (6.2) /r be performed, and then
we get

0%U, U,
xna—x%+(l_C3) axn —07 (71)
U, 5 uy, o%uy,
axn = —S44 (Cl +C2) (xn a—xz +4Xn a—x%> s (72)

where s44 and c1, ¢2, ¢3 < 0 are given by Equations (2.13) and (2.18), respectively.
Let the mathematical procedure dEq. (7.2) /dr be performed, and then we get

U, 5 otuy, *u, %u,,
it L 6x, —= +4 . 7.3
0x2 su (et ) <x" ox} + O ox3 * ox2 > (7.3)
Let Equations (6.2), (6.3) be substituted to (7.1), and then we get
o*u Au 0%u
2 n n n
7 4(2 — =0. 7.4
< +(7—c3)x PR +4(2-c3) o2 (7.4)
Let u, be assumed in the form u, = xz;, then we get
o, G
up, = Crx, +Cax,}? +x—2+C4, (7.5)
n
where Cj ...,C4 are integration constants, which are determined by the boundary

conditions in Section 2.3. With regard to Equations (2.1)-(2.4), (2.14)—(2.17), (2.26),
(7.6), we get

2C

£,1=C1—|—C2ch,f371— x33, (7.6)

—1 .G C
go=€g=C+Cox0 '+ 2+ 2, (1.7)

X3 X

¢ ., 0C 130y 13G

€ = Suu Gy = b - e b s 7.8
ng = 544 Onep a(p +x, a(p x;; a(p +xn a(pa (7.8)
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A1 | 119G | 19Cs | 19Cy

€40 = 544Gno = © S O3 ST 7.9
n0 = S440n0 = O 30 H 4" 50t a3 ov T v (7.9)
2C 2 2¢,C.
6, =C; (Cl7C2)+C2[(C1+6‘2)C37262] c3—1 3(C13+ C2) . (o9 4’(7.10)
x; Xy
Cy(c1+2c¢ c1C
(5@—69—Cl(cl—Cz)+C2(Cl—CQC3)XL3 1+ 3( lx3 2)+ ; 4, (7.11)
n
=n+mxt !+ m+ L3 (7.12)
n xﬂ
_ K
W:K1+K2x3<63 1)_|_ 6+K4+(K5+K9) c3— 1+ +K xC3 4_|_ _‘_%’
Xn n xn Xn Xn
(7.13)

where © and 1; (i =1,2,3) are given by Equations (1.15) and (6.13), respectively, and

N4, K; (j=4.,5,6) are derived as

1 dCy dCy
=C (==
N4 = 4“{2+ <Y3a +4av>

aCy 5 (9Cs\?
il o (==
(w)* (w |

2 <ac1 aC, @2@82)

1
—01C4+—

K5=(6‘1—C2)(2+6‘2)C1C2+— a(p a(p v v
2 (acl 9Cy 29 @)

T\ 09 00 v ov
aC2 aCS 2 aC2 8C3
[262(1—C3)—C1]C2C3+—(a(p 8(p +O a_va_v)

- I (3C3C, | _,dC) ACy
kg = (c1 —¢2)C1Cy + (a(p %0 0 > av>

544
1 (9dC; dCy 2 0C2 dCy
Ko = (ci —CzC3)C2C4+— (% %0 ® WW)
dC3 9Cy o2 IC3 ICy )

00 0@ v ov (7.14)

K10 = (c1 +2C2)C3C4+ 1 <

The coefficient x; (i=1,2,3) is given by Equation (6.13). In case of the ellipsoidal

inclusion, we get Cory = Capy = Cyqyv = 0, otherwise we get (“nIN)x,ﬁo — & oo,

(£1N)xn—>0 — £ oo, (O1y),,9 — £eodueto cz < 0 (see Equations (2.18), (6.4)—

(6.10)). In case of Cy;y # 0 (see Equations (6.4), (7.5)), the mathematical solutions
for the ellipsoidal inclusion is presented in Section 6.3.
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7.2 Matrix

The integration constants Cyyz, Capr, Capg, Cap for the matrix (see Equation (4.4)) are
determined by the boundary conditions (2.30), (2.31) or (2.30)—(2.32). The bound-
ary conditions result in the following combinations of Cyys, Copr, C3yr, Capg, Where
the combinations of Cyyy, Cop, Cap are presented in Section (6.2). Finally, such a
combination is considered to exhibit a minimum value of the elastic energy W¢ of
the cubic cell (see Equation (2.27)).

Conditions Cyy; # 0, C4ps # 0, Copy = C3pr = 0. With regard to Equations (2.30),
(2.31), (7.5)—(7.13), (2.21), (2.26), (2.27), we get

e = — %7 (7.15)
o=y —— 2 (1-L (7.16)
(o 4 xn )’
1\ 0 [pa
— = (1o)== (£ 7.17
EnoM = S44M OnoM ( xn) P ( 4 ) ) ( )
1\ 0 [ pn
oM = =-0(1-—|=— ("), 7.18
€n0M = S44M Onom ( xn> v ( 4 ( )
2
OnM = = p_cn <ClM—C2M+ CMm) ) (7.19)
n
C
CoM = Oopm = — Pn <C1M — M — 1M> ) (7.20)
¢ Xn
_ N4m
Oy =Mim + ) (7.21)
Xn
K
Wt = Kiv + 2, (7.22)
xn Xn
n/2m/2
K K
= | T ) )+ 5 ()] g
0 0
(7.23)

where O, xyy, xp and Sqap7, ciyg (i=1,2) are given by Equations (1.15)—(1.17) and
(2.13), (2.18), respectively, and {, N4, Kjm (j=4.8; see Equation (7.14)) have the
forms
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200 XM
C=ciy—com+ ;
XIN

vt Lok () ()]
) {3 B )

2 2 2
wmi-aa(3) - { G} o

The coefficients 117, K1p7 are given by Equation (6.23), where { in Equation (6.23)
is given by Equation (7.32). The normal stress pj, is given by Equation (2.33). With
regard to Equation (7.16), the coefficient pys in Equation (2.33) is derived as

1 1
PmM = z (1 _)7N> . (7.25)

Conditions Cyy; # 0, Cqpy # 0, C1py = Capy = 0c“With regard to Equations (2.30),
(2.31), (7.5)—(7.13), (2.21), (2.26), (2.27), we get

Pn€3m [ Xn cau—1
€M = — — ; (7.26)
¢ \oam
cy—1
Pn Xp\ 1
e Paf (X - 7.27
EoM = €oMm 4 KXM) xn] ) (7.27)
J Pn 9 (pn
n = n =~ |3= -3 | & s 7.28
Frott = i O lacp <m;;w> 5o )] T
_ . 0 Pn 0 Pn
EnoM = 4411 Som = —O | 50 (Kxjj“‘l> v <C>] , (7.29)
n Xy, =l o
oy = — 2 {[cw (c1m + cam) —2¢om) (—) 4 } , (7.30)
C XM Xn
Pn Xn cam 1 ClMm
= oy = — = - - - 31
GoM = Oom z [(ClM C2MC3M) (x > o ] ; (7.31)
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iy = opgxm 1 M (7.32)

Xn
wy = Koy Xn 2eawr—1) + %-’-K’;M x,‘ﬁM*l, (7.33)
n
n/21/2
_ Kom 2c +1  2cu+l
W, 4/ / s+l 2cm ) _
M= 2C3M+1 XIN + Kam (xM XIN)

Kom <xC3M+2 - xcsM+2) dedv, (7.34)

cay+2 N

where ©, xyv, xy and saap, ciy (i=1,2,3) are given by Equations (1.15)—(1.17)
and (2.13), (2.18), respectively, and C, ko) (see Equation (6.13)), Koy (see Equa-
tion (7.14)) have the forms

X1N> 3M—1+262MXM

€= [cam (c1m + cam) — 2c2m] (
xXpm XIN

)

2
2
KZM — {M +C]M_2C2MC3M:| Lﬁ]
2 Cx”
1 ) ’ 9 ’
+ Do 1 +0% |- o -1 ’
saam | | 00 Cxy™ NS

Koy — _ S oM <&> 1 9 Pn J (m)
Xt K Saam 09 \ iy ! 29
o > 9 Pn d Pn (7.35)
Saam OV K xg! av ' '

The coefficients Moy and Naps, Kapr are given by Equations (6.23) and (7.24),
respectively, where { in Equations (6.23), (7.24) is given by Equation (7.44). The
normal stress p, is given by Equation (2.33). With regard to Equation (7.27), the
coefficient pys in Equation (2.33) is derived as

_1 (xI_N> o b (7.36)
P = C | \xm xiv | '
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Conditions Csy; # 0, Cqpy # 0, C1pyy = Copy = 0. With regard to Equations (2.30),
(2.31), (7.5)—(7.13), (2.21), (2.26), (2.27), we get

20 (v’
oM = o [ 7.37
€1M C < x” > ) ( )
EoM = Eop = — % l x’N ] (7.38)
X 1 9
€ngM = S44M OnpM = — [(;N) - ] % (C) ; (7.39)
n
v\’ 1|9 (pa
€noM = 44 Onom = — | { T v\ (7.40)
n
2pn v\’ e
ot = —— | (citm+2com) | — | — , (7.41)
C.> n Xn

p XIN 3 C1M
CoM = Opm = — fn [(CIMZCZM) <7) - ] ; (7.42)

n n
iy = % % (7.43)

n n
Ky Kapm  Kiom
= 7.44
wpm X,,? X% xé ) ( )
T K 1 1 1 1
WM=4/ / {% (xT I )+K4M(XM XIN) + Kiom (x——x—)} deav,
0 0 IN M IN M

(7.45)

where ©, xpy, xp and saaps, ciy (i=1,2) are given by Equations (1.15)—(1.17) and
(2.13), (2.18), respectively, and {, k37 (see Equation (6.13)), Ko (see Equation (7.14))
have the forms

2
C=—- lZ (c1m+2com) +2com (XI—N> ] )
XM

2

3
p X
K3m =3 (cim +2com) ( nguv)

72



sl ) o R
o=t 20 (2] () 5 (2)]
2 X3
Sl ()5 (%))

The coefficients N3y and N4y, Kaps are given by Equations (6.34), (7.24), respec-
tively, where  in Equations (6.34), (7.24) is given by Equation (7.46). The normal
stress p;, is given by Equation (2.33). With regard to Equation (7.38), the coefficient
pum in Equation (2.33) is derived as

xiv—1
M = .
C.stN

(7.47)

Conditions Cy; # 0, Copg # 0, Capg # 0, C3pr = 0. With regard to Equations (2.30)—
(2.32), (7.5)—(7.13), (2.21), (2.26), (2.27), we get

C3M7]
ey = — 21 l1 & <ﬁ> ] , (7.48)
g XM

C3M71 _
EoM = Eop = — Pn 1_L Xn +M ’ (7.49)
4 cam | \xm Xn
EnoM = S44M OnoM =
d pn) 1 ay—1 0 Pn cay— 1 d <pan>
Sy Gy (L P R + = , (7.50
{a<p ( ¢) e |7 e\t T ) T ae (7:30)

€nOM = S44M Onom =

_ 3 Pn ,i - Qw—li Pn C3M_12 PnXum
{8V<§> C3m Xn ov (C’xlc‘;}M1>+ X a\/( c >‘|}, (751)

Pn 1 Xn cam—1
ot = — = | cim —com — — 9 [e3m (cim + com) — 2com] | —
g c3m

XM
+ 2C2M (C3M — l)xM })
C3M Xn '

(7.52)
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C3M—1
Pn 1 Xn
Gom = Oom = — f CiM — oM — @ (c1m — comeam) ?E
L Cm (cim—1) XM} }7

(7.53)
Xn
cy—1 n4M
Gim = Ny +N2m X, + < (7.54)
n
_ . K

war = K+ kopgan Y 4 K;‘é” + (icsps + Kopg) xS Lt % (1.55)

n n

n/2m/2
[ K :
WM:4// ﬂ(xi,,fx?N)JrizM (1612‘,;3’”+1 f1§,3M+1)+K4M(xM7x1N)
3 2+ 1
0 0

Ksy + Koy (xcm+2 xcw+2) K8mr ( 2

o + 5 (- x,N)} dodv, (1.56)

where 0O, xy, xp and sqap7, ciy (i=1,2,3) are given by Equations (1.15)—(1.17) and

(2.13), (2.18), respectively, and £, ki (i = 1,2; see Equation (6.13)), Kim (j=4.5,8,9;
see Equation (7.14)) have the forms

C=(cim —cam) —

lesu (caa +-am) — 2cau] () W e (e — 1) v
C3m XM

Kant = CLur |:pan(C3M_1):|2+ 1 {i |:pan(c3M_1)]}2

C3M XIN

Cesm s4am | 09 Ccsm

e? {8 |:pan(C3M—1):|}2
+—— o |

saap | OV Cc3m

Koy = (c1im —cam) (2+ e3m) <@>2 2 i(@)i Pn
C3Mx;,}M ! C S44M8(P C a(P CCsMXICéM71

Jﬁi(&)i Pr

S44pm OV \ C C eapg x5!

_Li(p,,) 0 {pnw(cwl)]
saam 09 \ C / 09 Cesm
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0> 0 <p> 0 {w}

sy v\ ) ov € cam
o (e —camesm) (s —1) ( pa \°
M = _xC3M72 C Cant
7y 2
+ (camy—1) d Pn o (Pnxm
Saapt €y 00 g xSm ! a\ ¢
M Xy
2 _
+ e (C3M2 1) ai fnil i <pan> . (1.57)
S44M C3py A% an}}M ov g

The coefficients My, Kiy (i=1,2) and M4 are given by Equations (6.23) and
(7.24), respectively, where € in Equations (6.23) and (7.24) is given by Equation (7.57).
The normal stress p,, is given by Equation (2.33). With regard to Equation (7.49),
the coefficient pys in Equation (2.33) is derived as

C3M71 o
pMzz{l_LKm) RGTRRIEY UWH' (7.58)
g cam | \xm XIN

Conditions C1y; # 0, C3py # 0, Capg # 0, Copy = 0. With regard to Equations (2.30)—
(2.32), (7.5)—(7.13), (2.21), (2.26), (2.27), we get

g o Puly 3 ()’ (7.59)

nM — g 2 Xn ’ .

. 1 33
_ _ 0 Pn 1 9 an?u 3 9 PnXM

oM A Onglt = Lkp ( ¢ ) 2599 ( ¢ ) 2xoe\ ¢ )|

(7.61)
o o d (pn 1 9 an13\/1 3 0 (puxu
€10M = S44M OnoM = — [E (Z) + 23 ov < ) 2w\ ¢ ;
(7.62)
p xn\® Beaxm

OuM = — ?n [CIM —com — (c1im +2¢om) <x_> + 7] , (7.63)
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cim+2c¢ w\> e
Y— ] [CIM_QWM <_M> _ 3ewm Ml, (7.64)
4 2 Xn 2x,
3M am
OiM =MNim+ n + nx , (7.65)
n n

Ky Kapm  Kem | Kgm | Kiom

wym = Ky + t-—> t+t-—3+ 7 (7.66)
x8 X2 x; Xn X
n/2m/2 ] ]
K K
WM=4/ / [ﬂ (x%,[—X?N) +ﬂ <T—T> + Kaps (xpr — x18)
3 3 \wy xy
XM Ksm 2 1 1
+ gy In (M +—(x 2 )+K10 <>]d dv,
6M (X1N> > M XN M\ o ¢
(7.67)

where ©, xyy, xp and sqap7, ciyg (i=1,2) are given by Equations (1.15)—(1.17) and
(2.13), (2.18), respectively, and £, kays (see Equation (6.13)), Ky (i=4,6,8,10; see
Equation (7.14)) have the forms

3
Xpm 3comxm
C= (cim — cam) — (c1m + 2c2m) <—> +—
XIN XIN

= e+ 26 (25305 L {[;; (2] e [2 (pggf)r},

weew(522) s ([ o) oo [ (2]
3 3

o= o (%) 30 (52) 7 (%) o (527))

Koy = 3xm (ClM — o) (Pn)
3 a Pn 0 PnX, i Pn 3 <anM
2544 00 \ T ) 99 ov\ ¢ /oav g 7
~ 3xy (e +20m) <P ?
Kiom = — 4 a

g
R (3] o



The coefficients N1y, N3y, K1y and N4y are given by Equations (6.23) and (7.24),
respectively, where { in Equations (6.23) and (7.24) is given by Equation (7.78). The
normal stress p, is given by Equation (2.33). With regard to Equation (7.60), the
coefficient pys in Equation (2.33) is derived as

3
= P (x—M> - 3x—M] : (7.69)

M=
P g 2 \xiy 2xIN

Conditions Cyy; # 0, C3p7 # 0, Cqpr # 0, C1pr = 0. With regard to Equations (2.30)—
(2.32), (7.5)—(7.13), (2.21), (2.26), (2.27), we get

Pn Xn can—1 XM 3
€ = — — |C3m <—> — 3y <—> , (7.70)
C XM Xn
Cngl 3
Pn | [ %0\ c3m (XM (e3m+2)xm
=eom=— | oMM M TEM 7.71
oM = €M T l(XM> + ) (xn ) o, , ( )
: d p cay 0 [ paxs
— _ 1 n nXy
€noM = S44M OnoM = — [X;SM a(p W) + @gp g
(c3m+2) 0 (puxm
= 72
i rmrritr a1k (1.72)
.0 p cay 0 [ pnxi
_ L 3 1Y n v nvyp
€nOM = S44M OnoM = [xn”” v (C x;},M_l) + 3o\ ¢
(capg+2) 0 [ pnxum
— 7.73
Tl )] (7.73)
Pn Xn can—1
O = — 3 [eam (cim + cam) — 2¢om) <—>
g XM
3
com (e3p+2
— (camcim +2com) <);—M> + M } ) (7.74)
n n

XM 2 Xn

x_> L oM cam (cim +2cam) <X_M)3

Pn
GoM = Oop = T [(CIM — CoMC3M) <

ClM (c3m+2) XM:| 7.75)

2xp



O = Napgxgo ! 4 DM WM (7.76)

n Xn

2(cau—1) | K3m K4M Kiom

Wit = Kopg Xy j R oy =28 (7.7
Xn n Xn
n/21/2
Koy 2c 11 el , Km0 1 1
1,7/ 4/ / s+l 2esy )+_ -
M {2 cam+ 1 N 3 \xy
K _ _
—+ Kam (XM —X[N) + C3A47Aj 1 (x;?lM 1 _x;;vM l)

KM (53 iy *2) s wiow (—— —— )| dodv, (7.78)

c3p+2 XIN XM

where ©, xyy, xp and sq4p7, ciyg (i=1,2) are given by Equations (1.15)—(1.17) and
(2.13), (2.18), respectively, and C, ki (i =2,3; see Equation (6.13)), Kim (j=4,7,9,10;
see Equation (7.14)) have the forms

C3M71
XIN
t_, x[‘V‘IM 1 {[CSM (C1M+CZM) ZCZM] <XM>

3
X, S ooc cay+2)x
— camt (a4 2c20) (ﬁ) +2M(+N)M}

2
2
ciM +cam)c
Koy = {ew =+ cam) iy +cm —2cm ey pn -
CxL3M 1

2 M
2 2
@ Pn E Pn
el Cxi;}’”_l av C,xi,}’”_l 7
3\ 2
Pn CSMXM)
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L1 [3 (pncmx;l)rmz [g (pncsMx;y)r
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Pnxum (C3m +2)] 2
2¢

el e [m )
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> pn C3MxM

K7m = [2com (1 — ¢3m) — c1um] <
cay 0 Pn d ( )
+ Y c 1] dn
S44M 8(p Cx 3M— a

+ @ C3pm d pan
sam OV Cx‘3M !

_xy(cim —camesm) (cam + 2)
x5! C

_oaumt2 0 Dn J (anM>
2suupm 09 gt oo\ ¢
O (eam+2) 0 [ pa \ 9 (paxm
2saam OV \ Lt Jov ¢
Kiom = — e3m (cim+2com) (cam +2) ( T )

_ Cm (C3M+2) (pan> i ( an>
4sgay 0@ 0p

9 cam (3 +2) <anM> <anM> (7.79)
4s4am '

Kom =

The coefficients 13, 14 ‘and N4 are given by Equations (6.23) and (7.24), respec-
tively, where  in Equations (6.23), (7.24) is given by Equation (7.79). The normal
stress p, is given by Equation (2.33). With regard to Equation (7.71), the coefficient
pum in Equation (2.33) is derived as

1 )C[N>C3M_l C3m <XM>3 (C3M+2))CM
= | p oM (M M TE)IM 7.80
P C[(XM 2 \xy 2xIN (7.80)
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Chapter 8

Strengthening

The analytical model of the micro-strengthening 6;; = Gy (x1) and the macro-stren-
gthening Gy results from the following analysis [3, 4, 12, 13, 21]. Figures 8.1
and 8.2 shows the plane )c'zx'3 in the cubic cell (see Figure 1.2) for x; € (0,a;) and
x1 € (a1,d/2), respectively, where [x,x2,x3] are coordinates of the point P C x5x}.
The plane O'P; P, with the ellipse E,3 (see Figure 8.2) represents a cross section
of the ellipsoid inclusion in the plane x5x}. With regard to Figures (8.1), (8.2), the
goniometric functions in Equations (1.8)—(1.17) have the forms

' X3

7 d/2
X1

/ P 4n

d/2

O —
@ X3 X2
0) Z

Py Pi| /P; X5

/ X2

X1

Figure 8.1: The plane x’zxg in the cubic cell (see Figure 1.2) for x; € (0,a;), where
[x1,%2,x3] are coordinates of the point P C x5x}. The plane O'P;P, with the ellipse
E»>3 represents a cross section of the ellipsoid inclusion in the plane )c’zx’3 (see Fig-
ure 1.2).
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d/2

d2
v P
(0]
@ X3 X2
0) V4 :
Pl |/P3 X
/ X2
X1

Figure 8.2: The plane x,x} in the cubic cell (see Figure 1.2) for x| € (a1,d/2), where
[x1,%2,x3] are coordinates of the point P C x)xj.

. X2 X1 1 X2
SINQP = ———, COSQP = ————, tan(p:—t:—,
2 2 2 2 cO X1
/AT VX T
2 2
. X7+ x X3 X3
siny = %, COSV = ——————, X, = o’ (8.1)
X{+x5+x3 x%—l—x%—i—x% cos

where cos 0 is given by Equation (1.13). With regard to Equation (1.2), the param-
eters by, b3 of the ellipse E»>3 along the axes x’2, x’3, respectively, are derived as (see
Figure 8.1)

. as a% —x% . @ a% —x%
by=0P=———, b3=0Ph=——", (8.2)
ay ay
and then we get
as b% —x%
by = PyPs = ——— =, (8.3)
az



The micro-strengthening Gy = G (x1) represents a stress along the axis x;, which
is homogeneous at each point of the plane x5x3 with the area § = d’/4,ie., oy #
f(x2,x3).

If x; € (0,a;), then the elastic energy surface density Wy, which is induced by o,
and accumulated within the area S;y = b, b3 /4 of the plane O'P; P, and within the
area Sy = (d/2)> — Sy of the plane x,x} (see Figure 8.1), has the form

Wy = 007, (8.4)

where 61, is related to x; € (0,a;). The coefficient ® is derived as

1 1 1 d?
w= g [Ttbzbg (E]N — EM> +EM:| s (8.5)
where Ejy and E)s is Young’s modulus for the ellipsoidal inclusion and the ma-
trix, respectively. The elastic energy surface density W;g, which is induced by the
stress 61 = G (x1) (see Equations (3.22), (4.22), (4.33), (4.44), (4.55), (5.20), (5.31),
(5.43), (5.54), (6.20), (6.31), (6.42), (6.53), (7.21), (7.32), (7.43), (7.54), (7.65),
(7.76)), has the form

wie— L (Wivs  Wins
IN ) EIN Ey )
by [ by
Wins = / / o1 dxs | dws,
0 0
by /[ dJ2 dj2 / dj2
WIMS:/ /G%d)g dx, + / / G%d)@ dxy, x1€<0,a1>. (8.6)
0 by by 0

The micro-strengthening 61y = Gy (x1) for x; € (0,a;), which results from the
condition Wy, = Wy [3, 4, 12, 13, 21], is derived as

L (Wins  Wius
L= — [ === 0 . 8.7
Oyt \/20)<EIN + v >, x1 € (0,a1) (8.7)

If x; € (a;,d/2), then the elastic energy surface density Wy, which is induced by
6, and accumulated within the area Sy = d> /4 of the plane x’zx’3 (see Figure 8.2),
has the form

2 g2
_ 0-2std
t ] EM ’
83

W, (8.8)



where Gy is related to x; € (a1,d/2). Similarly, we get

dj2 dj2 4
W .
Whs = 2MS, Woms = / / G% dxydxy, x1€(ai,= ). (3.9)
2Ey 2
0 0
With regard to the condition Wy, = Wy [3, 4, 12, 13, 21], we get
2/W;
Opg = Y55 (8.10)

d
Finally, the macro-strengthening G is derived as [3, 4, 12, 13, 21]

aj dj2

@:% / Oy dxy + / Oy dxy | - (8.11)
0 ajp

If oyny < oy or ayy > oy, the strengthening exhibits a resistive effect against
compressive or tensile mechanical loading, respectively.

The macro-strengthening Gy, = Gy (v,a1,a2,a3) is a function of the inclusion vol-
ume fraction vy and the dimensions ay, ap, a3 of the ellipsoidal inclusion. In case
of a real inclusion-matrix composite, such values of the microstructural parameters
VIN, 41, a2, a3 can be numerically determined to result in a maximum value of [Gy|.
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Chapter 9

Crack Formation

The analytical model of the crack formation in the matrix results from the following
analysis [3, 4, 5, 19]-[22]. Figures 9.1, 9.3 show the ellipse E}»3 in the plane x17x3
of the cubic cell (see Figures (1.4), (1.5)), where ajp = 04, x120 = OS5 are given by
Equations (1.7), (1.11), and a3 = O3.

With regard to the plane xjpx3 for @ € (0,7/2) (see Figures 1.4, 1.5), the elastic
energy density w = w (x,,9,V) (see Equations (3.23), (3.34), (4.23), (4.34), (4.45),
(4.56), (5.22), (5.33), (5.44), (5.55), (6.21), (6.32), (6.43), (6.54), (6.63), (7.22),
(7.33), (7.44), (7.55), (7.66), (7.77)) is determined as a function of the coordi-
nates x,, v € (0,t/2) (see Equations (1.6)—(1.17)). The elastic energy density w =
w(x12,9,x3,a1,a2,a3,vy) as a function of the coordinates xj3, x3 is determined by
the following transformations

X . X X 1 X
Xy = B ginv=—"2  cosv=——2 _ tany=_— — 12
C

0s0’ 2 2’ 2 2 cotv E’
X T3 X +43

where cos 0 is given by Equation (1.13).

9.1)

Matrix. The curve integral Weps of wy = wyr (x12,0,X3,a1,a2,a3,viy) along the
abscissa Py P, (see Figure 9.1) in the plane x1>x3 of the matrix (see Figures 1.4, 1.5)
has the form

a2
Wenr = /WMdX3: / war dxs. 9.2)
PP, 0

Let fiom = fiam (x12,0,a1,a2,a3, vy ) represent a decreasing function of the vari-
able x12 € (a12,x0pm), wWhich describe a shape of the matrix crack in the plane xj5x3
(see Figure 1.4), where ¢ € (0,7/2), a1, az, a3, viy are parameters of this decreasing
function. As presented in [3, 4, 5, 19]-[22], we get

dfiom VWc%\l_ﬁIZVI ©93)

ox12 Oy
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X3
P
X12
Epx
3
X12
O 4 P, 5

Figure 9.1: The ellipse E123 and the abscissa P| P, in the plane xjx3 of the cubic cell
(see Figures (1.4), (1.5)), where ajp = 04, x122 = OS5 are given by Equations (1.7),
(1.11), and a3 = O3.

X3
Ej2;
3
fiom
XoM
X12
O 4 6 5

Figure 9.2: The decreasing function fiop = fionm (x12,9,a1,a2,a3,viy) of the vari-
able x5 € (aj2,xom), which describes a shape of the matrix crack in the plane xj2x3
(see Figure 1.4) for ajp > aglﬁ,)[ or ajp > agﬂ? (see Equations (9.8), (9.9)), where
Xopm = xopm (@) defnes a position of the crack tip in the matrix, and ¢ € (0,1/2), aj,
ap, a3, viy are parameters of this decreasing function.

where ), is energy per unit length in the matrix. In case of intercrystalline crack
formation, we get
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K2
ICM
Oy = —EM (9.4)
Ey
where Kjcys is fracture toughness of the matrix. In case of transcrystalline crack
formation, we get

Oy = Ogpm, 9.5)

where the energy Ogpp per unit length is related to the inter-atomic bonding of
boundaries of crystalline grain in the matrix.
As presented in [3, 4, 5, 19]-[22], the condition

(Wet) gy — Om1 =0, (9.6)

is a transcendental equation with the variable aj» and the parameters ¢ € (0,7/2),

ai, az, az, viy (see Figure 1.4.
IC) _ (IC) TC (Tc
The roots aEZM =ay,y (@,a1,a2,a3,vy) and aEZM) = ale) (9,a1,a2,a3,viy) (see

Equation (1.7)) of Equation (9.3) for s, which.is given by Equations (9.4) and (9.5),
represents such a dimension of the ellipsoidal inclusion along the axis x1» C x1x7 (see
Figures 1.4, 1.5), which is critical with respect to the intercrystalline and transcrys-

talline crack formation in the plane x1x, respectively. Accordingly, if a(llzf& > agf}

I T . . . . .
or a(lz(;& < agzﬂc,l), then the intercrystalline or transcrystalline matrix crack is formed
in the plane x1x», respectively.

Let the function a<1}2(1)v1 < 4(1}2(12/1 (9,a1,az,a3,viy) (X=IC,TC) of the variable ¢ €

(0,7/2) exhibit the minimum ag,lM for @ = (pl(")ir)lM. The critical dimension afrﬁr)lM =
a%,),M (ay,az,a3,viy) (X=IC,TC) along the axis x12 C x1xp (see Figures 1.4, 1.5)
defnes a limit state with respect to the formation of the intercrystalline matrix crack
(X=IC) and the transcrystalline matrix crack (X=7C) in the plane xx, at the mi-
crostructural parameters ap, as, as, viy (see Equation (1.1)). Accordingly, if ajp >

‘lgz/[ (X=IC,TC), the condition [3, 4, 5, 19]-[22]

Wert — Oy =0, app>a\s),, X =IC,TC 9.7)

represents a transcendental equation with the variable x1, and with the root xgy =
xXom (@, az,a3,viy), which defnes a position of the crack tip in the matrix (see Fig-
ure 9.2). Consequently, the decreasing function fion = fiom (X12,0,a1,a2,a3,viN)
with the variable xj» € (ajp,x0p) and with the parameters ¢ € (0,7/2), aj, az, a3,
vin (see Figures 1.4, 1.5), which describes a shape of the matrix crack in the plane

x12%3 for agy > @), (X=IC,TC)), has the form [3, 4, 5, 191-[22]
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1
Sfiom = o [CM/ (\/ij@%4> dﬂz] . X12 € (a12,Xom) , (9.8

where Cy = Cy (9, a1,a2,a3,viy) is derived as [3, 4, 5, 19]-[22]

Cy = [ / ( WgM—ﬁ@ dxu} . 9.9)

X12=XoMm

Inclusion. The curve integral Wen of wiy = wiy (X12,9,x3,a1,a2,a3,vin) along
the abscissa Py P (see Figure 9.3) in the plane x1,x3 of the ellipsoidal inclusion (see
Figures 1.4, 1.5) has the form

X3

P

X12

3
[P Eix;

X12

o) P, 4 5

Figure 9.3: The ellipse E123 and the abscissa P; PP, in the plane x1,x3 of the cubic cell
(see Figures (1.4), (1.5)), where aj2 = 04, x122 = OS5 are given by Equations (1.7),
(1.11), and a3 = O3.

b d/2

Wen = /W[NdX3+/WMdX3= /W[NdX3+ / wydxs, (9.10)
PP PP, 0 by

where ajp = 04 (see Equation (1.7)), a3 = O3, and by is derived as (see Equa-

tion (1.2))
2 2
a3\/ a1 A1
by =PP= —, X|2€ (O,a12>. 9.11)

a
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With regard to the intercrystalline and transcrystalline inclusion cracks (see Fig-
ure 9.4), the sign -’ and the subscript M in Equations (9.3) and (9.3)—(9.7) are re-
placed by the sign ’+’ and the subscript /N, respectively.

X3
| DU
125
3
ISPIIN
Xom
X12
O 6 5

Figure 9.4: The increasing function fion = fioin (X12,9,a1,a2,a3,viy) of the vari-
able x5 € (ajn,xorn), Which describes a shape of the inclusion crack in the plane

x12x3 (see Figure 1.4) for ajp > a(llgl)v or ajp > aglcl\), (see Equations (9.8), (9.9)),
where xo;y = xory (@) defnes a position of the crack tip in the inclusion, and
¢ € (0,1/2) is a parameter of this increasing function.

Consequently, the increasing function fi2;y = fion (x12,9,a1,a2,a3,viv) with

the variable x5 € {(aj2,xo7nv) and with the parameters @ € (0,7t/2), aj, as, a3, viy
(see Figures 1.4, 1.5), which describes a shape of the inclusion crack in the plane

x12x3 for ajp > a(llgl)\, orap > agl?,, has the form [3, 4, 5, 19]-[22]

1
fiav = S [/ ( me—ﬁ%;v> dle—CIN:| ., X12 € (@12, X0IN) 9.12)

where C[N = C]N ((p,al,dz,a3,V[N) is derived as [3, 4, 5, 19]—[22]

Ciy = [/ (\/ Wc21N ﬂ%N) dx12] : ©-13)

X12=X0IN
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Chapter 10
Appendix

Cramer’s Rule. The system of n linear algebraic equations is derived as

aynxy+apxy+ ... +ayx, = by,
ayn x| +apxy+ ... +ayx, = by,

A1 X1+ apx2+ ... +awx, = b,. (10.1)

The root x; (i=1,...,n) is determined by Cramer’s rule [23]

xi=— i=1,...,n, (10.2)

where the determinant D) with n rows and n columns has the form

alh a127 . aln
D(n) o 021, a223 e a2n
apl, dnp2, [
< Lti n-1) = 1+ (n—1)
=Y (-1)"auD\ ) =Y (=1) T ayDy . (10.3)
i=1 i=1

The subdeterminant Dgn) is created from D("), i.e., the i-th column of D s
replaced by

by
by

1 TOWS. (10.4)
by
Similarly, the subdeterminant DE}FI) @i,j=1,...,n)with (n—1)rowsand (n—1)
columns is created from D<”), i.e., the i-th row and the j-th column of D™ are omit-
ted. If n =2, then we get
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2 ary, ap
D = ’ =ajax —apay]. (10.5)
a1, ax
Consequently, if n = 3, then we get
. aiy, a2, a3
DW= ay, an, ax
asy, asa, adsz
a a a a a a
—qy | 9 93 21, 423 21, a2 (10.6)
asy, asjz asy, asjz asl, az

Integrals. The derivatives of the functions f = X, f =Inx and the constant C are
derived as [23]

/ 1
(x*) — AL () = -, C'=0, (10.7)
X

The indefinite integrals of f = X, f =Inx and the constant C have the forms [23]

A .

1 d

/x*dx: aSL R WY /—lenx, /Cdx:Cr. (10.8)
A1 X

In case of the product f g of the functions f = f (x), g = g (x), we get [23]

(f8) =r'g+fs. (10.9)
and then the integral of f g has the form [23]

/f’gdx:fg—/fg'dx. (10.10)
With regard to Equation (10.17), the following integrals are derived as [23]

A+l x7x+l 1 A1

A X X 1 /k

Inxdx=——Inx— [ —— X —-dx=——Inx— —— d
/xnxxklnx llx X 1nxkl x"dx
KM

1
—m(lﬂXm>7 }\,7&*1,

1
/lnxdx=/1 xlnxdx:xlnx—/xx—dxlenx—/l xdx=x(Inx—1),
X
/xxln2xdx = b {x“l lnzx—Z/xxlnxdx}
A+1
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x7”+ 1

:m

1 \? 1
<lnx—k+1> +(k+1)2]’ AA 1. (10.11)

Let F = F (x) be a primitive function of f = f(x) in the interval x € (a,b), i.e.,
b
f =dF /dx. The definite integral [ fdx is defined by Newton-Leibniz’s formula
a
[23], which has the form

b

/fdx:F(b)—F(a). (10.12)

a

Wronskian’s Method. The differential equation (4.3) with a non-zero right-hand
side [23] is derived as

Pu, 2 u, 2uy, 3

7 =g g= C-x“ffz, 10.13
oxz  x, 0x, X2 & & l.; ! ( )
where the integration constants Cy, Cy, C3 are determined by the boundary conditions
in Section 2.3. If g = 0, we get

u, 20u, 2uy
ST 2T . 10.14
ox?2 5 Xp Ox, X2 ( )

If u, = x", then the solutions u1,, us, of Equation (10.24) have the forms

1
Uln = Xn, U2n = —5- (10.15)
n

The solution u,, of Equation (10.22) is derived as [23]

2 W
un:izziaiuin, ai:/mdxn, i=1,2. (10.16)

Wronskian’s determinants W(z), Wi(2> (i=1,2) with 2 rows and 2 columns are
have the forms [23]

) Uln, Uzn @) 0, uy @) Uiy, 0
W = duy, Oduy, |» W= duy, |» W, = ouy, . (10.17)
0x, >  0xy & Ox, oxp

The determinant Wi(z) (i=1,2) is created from W(2), i.e., the i-th column of w®
is replaced by the following one [23]
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g } 2 rows. (10.18)

Let f1,..., fu represent n solutions of a differential equation of the n-th rank with
zero right-hand side. Let the functions fi, ..., f; of the variable x exhibit continuous
derivatives to the (n — 1)-th degree. The solution of this differential equation with a
non-zero right-hand side (i.e., g # 0) is derived as [23]

n W(")
f:i:ziaifi, aiz/de. (10.19)

With respect to fi, ..., fn, Wronskian’s determinant w ) (i=1,...,n) with n rows
and n columns have the form [23]

Jis S In
9N af dfn
wo—| N AR (10.20)
an—lfl an—1f2 an—lfn
odxn—1° gyn—1>l2" gyn—1
where Wi<n) (i=1,...,n) with n rows and.n columns is created from w® ie., the
i-th column of W is replaced by the following one [23]
0
0
7 TOWS. (10.21)
8

Numerical Determination. Numerical values of the phase-transformation stresses
in a real matrix-inclusion composite include integrals and derivatives, which are de-
termined by a programming language. If f = f(x), then a numerical value of the
derivative df/dx is determined by [23]

of fx+A)—f(x)
ox Ax '
In case of the angles @, v (see Figure 1.4), the step Ax = Ag = Av = 107 [deg]

is sufficient [3, 4, 5, 19]-[22].
Let F represent a definite integral of the function f = f(¢,Vv) with the variables
¢,v € (0,m/2). Let n, m be integral parts of the real numbers ©/ (2A@), n/(2Av)

(10.22)
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[3,4,5, 19]-[22], respectively. Numerical values of the definite integral F are deter-
mined by the following formula [23], [3, 4, 5, 19]-[22]

£ i % AQ; j x AV)A(p) Av,  (10.23)
=0

1

n/2n(2 m
F:/ / f((p,v)d(pdsz(
0

0 J=0

where the steps Agp = Av = 0.1 [deg| are sufficient. Finally, the average numerical
value f of the function f = f(@,v) with the variables ¢,v € (0,7/2) is determined
by the following formula [23]

n/2 m/2

B 2 2 2 2 m n

7=(2) | [ reviaeav~(2) jzo(;)faxm;ijvm)Av-
0 0 VA=

(10.24)
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