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INTRODUCTION

This monograph! presents original mathematical models of

e thermal and phase-transformation stresses, which originate in matrix-
inclusion composites during a cooling process,

e material micro- strengthening and macro-strengthening, which is
induced by these stresses,

e intercrystalline and transcrystalline crack formation, including
mathematical definitions of critical limit states with respect to the
material crack formation, which is induced by these stresses.

The material strengthening and the limit states represent important
phenomena in material science and engineering.

The stresses are determined for a multi-inclusion-matrix model system
with isotropic ellipsoidal inclusions with the inter-inclusion distance d,
which are periodically distributed in an isotropic matrix. This model sys-
tem corresponds to real two-component materials, which consist of

e isotropic ellipsoidal precipitates, distributed in isotropic crystal-line
grains (e.g., matrix-precipitate composites),

e two types of isotropic crystalline grains with different material
properties (e.g., dual-phase steel).

The thermal stresses are a consequence of different thermal expansion
coefficients of the matrix and ellipsoidal inclusions. The phase-transfor-

' This monograph was supported by the Slovak scientific grant agency VEGA
2/0069/24.
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mation stresses are a consequence of a different dimension of a cubic
crystalline lattice, which is transformed in the inclusion and/or matrix.

Mathematical and computational models of phenomena in infinite pe-
riodic matrix-inclusion model systems are determined within identical
suitable cells, and each cell contains a central component (e.g., an
inclusion, a crystalline grain, a pore). Due to this infinity and periodicity,
the models, which are determined for a certain cell, are valid for any cell.
Infinite matrixes are used due to simplicity of mathematical solutions for
material components (e.g., precipitates, pores). The material components
are small in comparison with macroscopic material samples or
macroscopic structu-ral elements, and then the solutions are acceptable in
spite of this simplifi-cation (Mura, 1987, 31-32).

The mathematical models results from fundamental equations of me-
chanics of a solid continuum, with respect to its shape, loading, mechani-
cal constraints and the principle of minimum potential energy.

The infinite multi-inclusion-matrix model system is imaginarily divi-ded
into cubic cells with the dimension d and with a central ellipsoidal in-
clusion, and the stresses are determined within the cubic cell. Mathema-
tical solutions for this multi-inclusion-matrix model system correspond to
real composites, in contrast to

e the simple one-inclusion mathematical model in (Selsing, 1961, 419-
419), determined for a simple one-inclusion-matrix model system,

e the simple multi-inclusion mathematical model in (Mizutani, 1996,
483-494), determined for physically unacceptable mechani-cal
constraints due to unsuitable cells of a multi-inclusion-matrix system.

Different mathematical procedures, which are applied to the fundame-ntal
equations (Cauchy’s and equilibrium equations, Hooke’s law), result in
different mathematical solutions for the stresses in the matrix and
ellipsoidal inclusion. Finally, such a combination of the different mathe-
matical solutions for the matrix and the ellipsoidal inclusion is considered
to exhibit minimum potential energy.

The mathematical models are determined by standard procedures of
mechanics of a solid continuum, which include definitions of

e such a multi-inclusion-matrix model system and a coordinate sys-tem,
which correspond to real matrix-inclusion composite ma-terials,
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o reasons of the thermal and phase-transformation stresses,

e the fundamental equations, which result in a system of differen-tial
equations,

e clastic energy density and elastic energy of the model system,

e mechanical constraints, i.e., mathematical boundary conditions, for the
matrix and ellipsoidal inclusion,

o different mathematical procedures, which are applied to the sys-tem of
the differential equations,

o final formulac for the thermal and phase-transformation stresses,
strains, elastic energy density and elastic energy,

e final formulae for the material micro-/macro-strengthening in the
matrix and ellipsoidal inclusion,

e mathematical procedures to determine such critical dimensions of the
ellipsoidal inclusion, which are reason of a crack in the ma-trix,

e mathematical procedures to determine dimensions of the matrix crack.

In contrast to author’s mathematical models (Ceniga, 2008, 10-11; 2007,
9-12) for composites with inclusions of an ideal spherical shape, the
mathematical models in this monograph, which are determined for compo-
sites with ellipsoidal inclusions, represent a more realistic description of
the stress-strain state in real matrix-inclusion composite materials.

The mathematical results in this monograph are then applicable within

e basic research (mechanics of a solid continuum, theoretical physics,
material science),

o the engineering practice, i.e., material technology,

e as well as within university undergraduate and postgraduate cour-ses,
as a textbook on analytical material mechanics.

With regard to the basic research, the results of this monograph can be
incor-porated to mathematical models, which defines the disturbance of an
ap--plied stress field around inclusions in a solid continuum (Eshelby,
1957, 376-396), as well as into mathematical, computational and experi-
mental models of overall materials stresses, overall material strengthening,
inter-actions of energy barriers with dislocations and domain walls, etc.

The mathematical models include microstructural parameters of a real
matrix-inclusion composite (the inclusion dimensions @i, a2iN, @3N, the
inclusion volume fraction vy, the inter-inclusion distance d), and are
applicable to composites with ellipsoidal inclusions of different morpholo-
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gy, 1.e., ain~ aaiN = asiv (dual-phase steel), ain>> axin = aziv (martensitic
steel).

In case of real two-component materials (the engineering practice), ma-
terial scientists and engineers can determine such numerical values of the
microstructural parameters,

e which result in maximum values of the material micro-and ma-cro-
strengthening,

e which define the limit states (i.e., critical states) with respect to the
intercrystalline or transcrystalline crack formation in the ma-trix and
the ellipsoidal inclusion.

Consequently, the material scientists and engineers can develop sui-table
technological processes, which result in such microstructural para-meters
to obtain maximum strengthening, and to avoid the crack forma-tion.

This numerical determination, performed by suitable programming
languages, result from the mathematical procedure in Appendix.

With respect to the university courses, the fundamental equations of
mechanics of a solid continuum, along with the mathematical procedures,
are explained and determined in detail. As a textbook on analytical ma-
terial mechanics, this monograph is then suitable for non-specialists in
mechanics of a solid continuum. Finally, Appendix presents such mathe-
matical topics, which are required to perform the mathematical procedures
in this monograph.

Ladislav Ceniga

Institute of Materials Research
Slovak Academy of Sciences
Kosice, Slovak Republic



CHAPTER 1

MODEL MATERIAL SYSTEM

1.1 Matrix-Inclusion System

Figure 1.1 shows the model material system, which consists of an infi-nite
matrix and periodically distributed ellipsoidal inclusions with the di-
mensions aiN, @, @3N along the axes xi, x», x3 of the Cartesian system
(Ox1x2x3), respectively, and with the inter-inclusion distance d along xi, x»,
x3. The point O is a centre of the ellipsoidal inclusion.

N matrix
P ) @ @ @O
O X3
-
d
® @ -
inclusion

.-‘--

Figure 1.1. The matrix-inclusion system with infinite matrix and periodi-cally
distributed ellipsoidal inclusions: the dimensions aiN, @2iv, @3N along the axes xi,
x2, x3 of the Cartesian system (Ox1x2x3), respectively; the inter-inclusion distance d
along the axes x1, x2, x3; the inclusion centre O.

The mathematical models of the thermal and phase-transformation stresses
are determined in the cubic cell with the dimension d and with a central
ellipsoidal inclusion (see Figure 1.2). With regard to the volume Vix =4 7
ain az asn and Ve = d® of the ellipsoidal inclusion and the cubic cell, the
inclusion volume fraction viy and the inter-inclusion distance d have the
forms
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14 Araymy ary a T
vy =N~ UN DINBIN | o 7 |

Ve 3d3

1/3
4 =| AFauN a2y a3y ’ (1.1)
3V1N

where vinmax = 7 / 6 is given by the condition a¢; — d/2 (i = 1,2,3). The
inter-inclusion distance d = d(ain, a2, asN, vin) is included within the
mechanical constraints (see Equations (1.15), (4.1)-(4.5)), and the stresses
are a function of the microstructural parameters @, @2, a3, ViN, d.

® ® o oo
d
® ® o oo
OEX3
® o S ®
P | d
X X12

---.—l'-

Figure 1.2. The cubic cells with the dimension d and with the plane xix2, where O
is a centre of the ellipsoidal inclusions, and x12 < x1x2, X12x3 C X1x2.

This model system corresponds to real two-component materials, which
consist of

e isotropic ellipsoidal precipitates, distributed in isotropic crystal-line
grains, e.g., matrix-precipitate composites,

e two types of isotropic crystalline grains with different material
properties, e.g., dual-phase steel with the grains 4 and B.

Consequently, the ellipsoidal precipitates and the crystalline grains are
considered to represent the ellipsoidal inclusion and the matrix of the mo-
del matrix-inclusion system.
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Similarly, let the crystal grains 4 and B be characterized by the volume
fraction va and vg, respectively, where va+tvg=1. If va<vg, then the grains
A and B are considered to represent the ellipsoidal inclusion and the
matrix, respectively. If va>vg, then the grains 4 and B are considered to
represent the matrix and the ellipsoidal inclusion, respectively. If va=vg,
then the following energy analysis is required to be consi-dered.

Let the grains 4 and B be considered to represent the ellipsoidal inclu-sion
and the matrix with the elastic energy Wia and Wwus, which is accu-
mulated in the ellipsoidal inclusion and the cell matrix (see Equation
(2.30)), respectively.

Let the grains 4 and B be considered to represent the matrix and the
ellipsoidal inclusion with the elastic energy Wwma and Wi, which is
accumulated in the cell matrix and the ellipsoidal inclusion (see Equation
(2.30)), respectively.

If Wina + Wums < Wwma + Wik, then the grains 4 and B are considered to
represent the ellipsoidal inclusion and the matrix, respectively. If Wina +
Wwus > Wwuma + Wins, the grains 4 and B are considered to represent the
matrix and the ellipsoidal inclusion, respectively.

Mathematical and computational models of phenomena in infinite pe-
riodic matrix-inclusion model systems are determined within identical
suitable cells. Due to this infinity and periodicity, the mathematical models
of the thermal and phase-transformation stresses in the multi-inclusion
model system in Figures 1.1, 1.2, which are determined for a certain cell,
are valid for any cell. In general, infinite matrixes are used due to simpli-
city of mathematical solutions for material components (e.g., precipitates,
crystalline grains, pores). Such mathematical solutions are assumed to ex-
hibit sufficient accurancy with respect to material components (e.g., preci-
pitates, crystalline grains, pores), which are small in comparison with ma-
croscopic material samples and macroscopic structural elements. Finally,
the mathematical solutions are acceptable in spite of this simplification
(Mura, 1987, 31-32).

1.2 Coordinate System

The ellipse E with the dimensions a, b along the axes x, y of the Carte-sian
system (Oxy), respectively, is described by the function (Rektorys, 1973,
147)
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2 2
(fj +(Zj =1, x=acosa, x=bsina, (1.2)

where x, y are coordinates of any point P of the ellipse £. The normal » at
the point P has the form (Rektorys, 1973, 148)

a—x(x—acosa)+a—y(x—bsina):o. (1.3)
oa oa
y E n
P
b
o X
O/"/
a

Figure 1.3. The ellipse £ with the dimensions a, b along the axes x, y of the
Cartesian system (Oxy), respectively, and the P related to the angle a.

With regard to Equations (1.2), (1.3), we get
yzé[xatana—(az—bz)sina]. (1.4)

The stresses are determined by the spherical coordinates (xn,@,V), where
Xo=|P12P|, Piacxin (see Figure 1.4). Equations (1.12), (1.13) define a
fuction = f{v) for the angles 6,ve(0,72). The model system is symme-
tric (see Figure 1.1, 1.2), and the stresses are sufficient to be determined
within the interval @,ve(0, 7/ 2). Figure 1.4 shows the ellipsoidal inclu-
sion for @, ve(0,7/2), where aiin = O1, axn = 02, asixy = O3. With regard
to Equation (1.2), any point of the ellipse Ei> in the plane xix; has the
coordinates

X| =ay cos@, X, =d,py sing, (pe<0,%>. (1.5)
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The point P of the ellipse E123 in x12x3 is described by the coordinates

X12p 2012SiHV, X3p =daszCosy,

ap, =04= \/a%[N cos? qo+a22[N sin? g, gve <0,%> . (1.6)

where (Pxaxexo) is a Cartesian system at the point P; the axes x, and xg
represents a normal and a tangent of the ellipse Ei»; at the point P, res-
pectively; and x12x3 L x1x2, X12 © X1x2, X L X12.

Figure 1.5 shows the cross section 0567 of the cubic cell in the plane x1,x3
(see Figures 1.2, 1.4). The angle ve(0, 7/ 2) defines a position of the point
P with the Cartesian system (Pxnxoxp) (see Figure 1.4) for v = w (see
Figure 1.5a), ve(0, w) (see Figure 1.5b), ve(w, 7/ 2) (see Figure 1.5¢).
The points P, P, represent intersections of the normal x, with O567.

X3 X0

Figure 1.4. The inclusion with the centre O and with the dimensions a1n = O1, a2iN
= 02, asiw = OI along the axes x1, x2, x3, respectively. The ellipses E12, E123 in the
planes x1x2, x12x3 (see Figure 1.2) are given by Equations (1.5), (1.6), respectively,
where x12x3 L x1x2, x12 < x1x2, x¢ L x12. The point P on the inclusion surface is
defined by ¢, ve(0,7/2), and (Pxnxexo) is a Cartesian system at the point P, where
P c E123. The axes xn and xp represents a normal and a tangent of the ellipse E123 at
the point P, where xn=|P12P|, Pi12cx12. The function = f{v) is given by Equations
(1.12), (1.13).
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With regard to Equation (1.4), the normal x, at the point P of the ellipse
E123 in the plane x;»x3 is derived as

a X
x5 = Cosv(ﬂm%—aﬁ} ve<0,%>. (1.7)

asj sinv

With regard to Equation (1.7), the coordinates xi21, x31 of the point P; is
derived as

2 2.

aip —axz|smy

x121=—( = p 3) » X33 =0, V€<0,%>, (1.8)
12

The coordinates xj2, x32 of the point P, in Figure 1.5b for ve (0, w) are
derived as

sinv | dcosv d
X122 = (—+0122—a32} xp == ve(0vg). (1.9)
a 12 2613 2
X3 Xn X3 /xn
7 6=P, 7 P2 6
N
3 \3 y P=x,
P=x, X9
Y= Vo Eio3
Eip X6 X12 X12
0P, 4 5 o [P, 4 5
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X3
Figure 1.5. The angle ve(0,772) defines
a position of the point P with the
X, Cartesian system (Pxnxgxo) (see Figure
/ 1.4) for (a) ve(0,772), (b) ve(0,w) (c)
P, ve(w,/2), where w is given by Equa-
tion (1.7). The points P12 (see Figure
1.4), P> represent intersections of the
normal xn with 0567, where 0567 is a
cross section of the cubic cell in the
X172 plane xi2x3 (see Figures 1.2, 1.4). The
5 angle 6 =Z(xn,x3) is given by Equation
(1.11).

6

(©)

The coordinates x122, x32 of the point P, in Figure 1.5¢ for ve{w, 7/ 2)
have the forms

iy =
122 20¢,sinv’
¢, = €08 e(0Z), ¢, =sin e””
¢ w’ w ’4 2 qp w’ w 4 2
ap d
xp =V T2E 242 v&<v0,£>. (1.10)
az |2 f(p)sinv 2

The coordinate x12, of the point P, in Figure 1.5a for ve (0, w) is given by
Equation (1.10), where x3> = d/2. With regard to Equation (1.7), the angle
W represents a root of the following equation

apd
CosVy 12. +a%—a%2 _i:O’
as | 2f(p)sinv, 2

S (@) =cosg, ¢6< 2

> f(p) =sing, (pe<% §> (1.11)

and this root is determined by a numerical method. The angle 6 =/(xn,x3)
has the form
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cosf = 3P = ! ,
\/(xlzp—x121)2+x3zp \/H(@ taan2
a2
sin @ = ! . (1.12)

and then we get

sin@df =Qdv, Q= ! ,

2 2
a a .
(3j +cot2v (3] +cot2v sm2v
ais ais

-1 . 2
a
9 :(aej 0 _ef @112 (“3“”] roos?v | (1.13)

00 \ov) ov  ov a || ap

The model system in Figure 1.1 is symmetric. Due to this symmetry, any
point P on the matrix-inclusion boundary exhibit the normal displace-ment
uy along the axis x,. Consequently, any point P of the normal x, exhi-bits
un, and then we get u, = uo, where u,, uo are displacement along the axes
Xg, X0, Tespectively.

The stresses are determined along the axes x,, Xxo, xo of the Cartesian
system (P X, Xxo xo), and represent functions of the spherical coordinates
(xn, @, 9) for @, 8 €0, 7/2). The intervals x, € (0, xn) and x, € (X, Xm)
are related to the ellipsoidal inclusion and the cell matrix, where P = P,
Pc E; and P = P, for x, = 0, xo, = xv and x, = xm (see Figure 1.5),
respectively. Finally, we get

2
az sinv
XN :HP:\/(XIZP_x121)2+x§P =aj { 3(1 J +COS2V,
12

xy =PP z\/(x122 —x12P)2+ (x32 _x3P)2
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A

ajp Cosv

d

as

JE;

0)

2
T 012} :
smv

(1.15)






CHAPTER 2

FUNDAMENTAL EQUATIONS

Fundamental equations of mechanics of a solid continuum are repre-sented
by Cauchy's and equilibrium equations, along with Hooke's law (see
Section 2.1-2.3), which result in a system of differential equations (see
Section 2.4). Due to different mathematical solutions of this systems,
which are determined by different mathematical procedures (see Sections
5.1,6.1,7.1,8.1), the analysis of elastic energy density is considered (see
Section 2.8).

2.1 Cauchy’s Equations

Cauchy’s equations define relationships between strains and displace-
ments, and are determined for a suitable infinitesimal part of the model
system with respect to a coordinate system (see Figures 1.1, 1.2).

X3

Figure 2.1. The infinitesimal spherical cap at the point P with the surface Si1 =
A1BiCiD1 and S2 = A2B2CaD> for xa = PP (see Figure 1.4) and xntdxn,
respectively,  where  A4142=B1B>=C1Co=D1D2=dxn, = A1D1=B1Ci=  xuxdg,
A1B1=C1D1=xnxd 6, A2D2=B>Cor=(xntdxn)xd@, A2B2=C2Dr=(xntdxn) xd6. The axes
xn and xe, xe represent normal and tangential directions (see Figure 1.4),
respetively.
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Due to the spherical coordinates (r,¢,v) (see Figure 1.4), the infinitesimal
part at the point P is represented by the infinitesimal spheri-cal cap with
the dimension 4,4,=B1B,=C1C>,=D1D,=dx;, along the axis x,, and with the
dimensions A1A42=B\B»=C) C2:D1D2:dxn, AD=B,C, :xnxd(p,
A1B1=CD1=xyxd 0 and A2Dr=B>Co=(xntdxn)xd @, A2Br= CoDr=(xn+dxy)xd 0
along the axes x¢, xo for x, = P12P (see Figure 1.4) and x,+dx,, respecti-
vely. The axes x» and x¢, xo represent normal and tangential directions (see
Figure 1.4), respetively.

Xo

Xn
(a) unt(8un/dxp)dxn
Xn
(b) un+(8 Url/aXn)an

Figure 2.2. The normal displacement un and un+(0un/Oxn) dxn of the infini-tesimal
spherical cap at the point P for xn = P12P and xntdxa in the plane (a) xnxe, (b) Xn Xo
(see Figures 1.4, 2.1), respectively.
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As analysed in Chapter 1, any point P of the normal x, (see Figure 1.4)
exhibits the normal displacement u, along the normal x,, and then we get
ue = ue, where uy, ue are displacement along the axes xo, xo, respectively.
The stresses are determined along the axes xn, X, xo of the Cartesian sys-
tem (Pxnxexo).

X Xp

(8un/é@)doe (8un/66)d6

(@ (b)

Figure 2.3. The normal displacement un= un( ¢, 6) of the infinitesimal sphe-rical cap
at the point P in the plane (a) xnxo, (b) xn xo (see Figures 1.4, 2.1).

With regard to Figure 2.2, the normal strain &, along the axis x,, and the

tangential strains &, & along the axes x,, xo, respectively, are derived as
(Ceniga, 2007, 35-38; Ceniga, 2008, 23-26)

‘1m v‘ ‘1 1 ‘ a au
" b Hd "o, Xy . J—dxn} ) axn’ @1

‘ 11

‘1'2"—|12| ‘1’3"-|13|
N TT TN TEY
_ (un+xn)d;0—xn do _ (un+xn)d0 -x,d0 u

==, (22)
X, do x,do X,




18 Chapter 2

where |13| = x, d6, |1'3"| = (un + xu) d@ is considered instead of |13]| = x,
sin@ d6, |1'3’| = (u, + x,) sin@ dO (Brdicka, 2000, 73-75), respectively.
With regard to Figure 2.3, the shear strains &y, &0 and &, &, along the
axes x, and xo, xe, respectively, have the forms (Ceniga, 2007, 35-38;
Ceniga, 2008, 23-26)

Enp :tan[4 (|12, 12* m: L R e 2.3)
x,dp\ O¢ x, 0@
* 1 ou 1 Ou ® Ju
—t 4(13,‘13 ﬂ: O 4|1 Otn _ © Ouy
Eno an[ 13 x,d0 | 06 x, 90 x, ov
2.4)

where @ is given by Equation (1.13), and &¢ = &m, &6 = & (Brdicka,
2000, 68-71). Due to ue = ue, we get g = & = o< (Ouep/06) + (Ouo/0p) =0,
&0 and &y are shear strains along the axes x¢, xo, respectively.

2.2 Equilibrium Equations

Mechanics of a solid continuum results from the condition of the
equilibrium of forces, which acts on sides of an infinitesimal part of a
solid continuum. The equilibrium equations of the forces, which act on the
sides of the infinitesimal spherical cap are determined with respect to the
axes xn, X¢, xo at the point P (see Figure 2.1). In case of the axis x, (see
Figure 2.4), we get (Ceniga, 2007, 35-38; Ceniga, 2008, 23-26)

[Gn + ZO-” dan(xn +dx, )do(x, +dx, )dO

n

+
Q
+
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Q
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Ne—
le)
(=]
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N——
=
S
Iy
T
5
S

+

00,0 do
+ do | cos| — do d
0,0 20 ] [ ) an @ dax,
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+(0'9 +% d@J sin (?j x, de dx, +0, sin[dT(p) x,d8dx,

+0y sin (?] X, do dx,+0,, cos[%) x,d0dx,

+0,9 cos(?j x, dpdx, } =0, 2.5)
Xo
(060/00)d¢ | &+ (a0m0/60)de
Xn dxy G(Pn+(aG(Pn /8Xn)dxn
(a) -
On+(80n/0Xn)dxn
G+
(600/60)d0 | 1 (9600/56)d6
Xn dxp G6n+(806n Oxn)dxn
(b) f -
| cn+(36n/3xn)dxn

Figure 2.4. The infinitesimal spherical cap in the plane (a) xnxy, (b) xnro (see
Figures 1.4, 2.1). The normal stress om, the tangential stresses oy, ov, the shear

stresses Onp = Opn, On0 = Obn, along with changes of these stresses, acting on the
sides of the infinitesimal spherical cap at the point P.
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In case of the axis x, (see Figure 2.4), we get

oo d
4 @
[G¢’+E d¢JCOS[ > jxn d@dxn

0
+ (O'(M + aawl dx, j(xn +dx, )d(/)(xn +dx, )d6’

n

oo
+£Gn¢,+ 6(7 d(pJ sin(dT(pj x,d0dx, +o-n¢,sin(d—2(pJ x,d0dx,

- (% cos(%‘/’) X, dOdx, + 6y %, AP, dﬁJ -0, (2.6)

In case of the axis xo (see Figure 2.4), we get

oo do
(O’@ +6_00 d@jCOS[Tj X, d¢dxn

809,,

+ (0'9,, + dx, ](xn +dx, )do(x, +dx, )do

Xn

+[0n9 +660—;9 dﬁj sin[d—fj x, dpdx,+0,g sin[d—fj x, dpdsx,

- (0'9 cos(?j x,dodx,+ cg,x,dpx, dﬁJ =0. 2.7)

where |13]| = x, d6, |1'3’| = (un + xn) dO is considered instead of |13] = x,
sin@d6, |13 = (un + x,) sinf d@ (Brdicka, 2000, 73-75), respectively. Due
to dp ~ 0, df = 0, dr =~ 0, we get sin(d@/2)=d@/2, sin(d@ /2)=d02,
cos(dg/2) =cos(d9/2) = 1, (dr)* = (d@)* =(d8)* = 0 (Brdicka, 2000, 76-77).
Consequently, the equilibrium equations (2.5)-(2.7) are derived as (see
Equation (1.13))

oo
X, 1) v

0, (2.8)
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oo oo
—L430,,+x,—L =0, (2.9)
op ox,
0990 36 ) sx, 0 _ ¢ (2.10)
ov ox

n

where o, and oy, op are normal and tangential stress along the axes x, and
Xo, Xo, Tespectively; one, ono and oo, Ob, are shear stress along the axes x,
and x,, Xo, respectively. Due to &o = &g, We get oo = ovp = 0, where opo
is a shear stress.

2.3 Hooke Law

With regard to g = 0, ope = 0, Hooke's law has the form (Brdicka, 2000,
60-62)

5n25110'n+512(0'(p+0'0)s (2.11)
Ep =512 (O'n+0'9)+s110(p, (2.12)
&g :s12(0n+0¢,)+s110'9, (2.13)
€n0 = S440n0 > (2.14)
Enp =S440pp (2.15)

where s11, s12 have the form (Brdicka, 2000, 62-63)

21
:_%, S”:(%“), (2.16)

S11 = ok 512
and E, u represent Young modulus, Poisson’s ratio (Brdicka, 2000, 60-
62), respectively. In case of the ellipsoidal inclusion and the matrix, we
get E = En, 4 = uw~ and £ = Ewm, 4 = u, respectively. With regard to
Equations (2.1)-(2.4), (2.11)-(2.15), we get (Ceniga, 2007, 22-23; Ceniga,
2008, 27-28)
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O'n:(cl+cz)gﬁ—202u—”, 2.17)
x}’l 'x}’l
ou u
Op=0p=—0) 8xn +c1x—”, (2.18)
n n
o, =m— Otn (2.19)
S44 Xy, O
G = — o Dl (2.20)
Sq4 Xy ov

where @ 1is given by Equation (1.13), and ¢, ¢, ¢; are derived as

B - wE 0
D020 2T (e p)-20) 4(1-p)<0,221)

and ¢3 < 0 due to u < 0.5 for real isotropic components (Skocovsky and
Bokuvka and Palcek, 1996, 75-79).

If aii = cos[ £L(x1,xi)] (i = n,@,0) represent a direction cosine of an angle
formed by axes xi, xi, then, with respect to Figures 1.4, 1.5, we get

a, =cos@ sinb, aj, =singsinf, ay=cosb,

ay ==sing, ag =—cospcosd, (2.22)

where cos 6, sinfare given by Equation (1.12). The stress o along the axis
x1 has the form

o1 =0ay,0, +a1¢, O'¢+61190'9

+a1n(0'n¢,+0n9)+ Al Oy + 19 gy - (2.23)

With regard to Equations (2.17)-(2.20) and due to Gie = Opn, One = Obn
(Brdicka, 2000, 65-67), we get
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ou u 1 ou
o =ng Syt (7’3 T+ 74 "j, (2.29)
X, X, Sa4 Xy op ov

where % (i =1,...,4) is derived as

71 =ay, (e +cp)- (algo +ay Jey, 72 = (al(p +ayg Jey +2ay, 03,

y3=ay, +ay,. 74=0la,+ay ), (2.25)

where @ is given by Equation (1.13). As presented in Chapter 10, the
mathematical models of the material micro-strengthening oy = ow(x1) and

the material macro-strengthening a result from the stress o1 (see Equa-

tions (2.24), (2.25)). If Equations (2.17)-(2.20) are substituted to Equation
(2.21) and to OEq.(2.9)/0p, then Equations (2.8)-(2.10) are derived as
(Ceniga, 2007, 25; Ceniga, 2008, 30)

2
362”" L L — (2.26)
0°x,, xy saaler +¢2)
X, Un _ «U,, (2.27)
ox

n

where U, has the form

U - 62un ey 82un

" 6(p2 ov?

. (2.28)

2.4 Elastic Energy

The system of the differential equations (2.26), (2.28) is solved by the
different mathematical procedures in Sections 5.1, 6.1, 7.1, 8.1, 9.1, which
result in different mathematical solutions for the thermal and phase-
transfor-mation stresses, and the principle of minimum potential energy
W, is con-sidered (Brdicka, 2000, 96-98). Consequently, such a
combination of the different mathematical solutions for the matrix and the
ellipsoidal inclu-sion is considered to exhibit minimum potential energy
W, = Wq + Wy, + W, (Brdicka, 2000, 96-98), where Wy is deformation
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energy, W, and W; is energy induced by volume and surface forces,
respectively. The model system in Figure 1.1 is not acted by the volume
and surface forces, i.e., W, = W, = 0, and then W, = W; is induced by the
thermal and phase-transformation stresses in the ellipsoidal inclusion and
the cell matrix. The sum W, = Wq= Wi + Wwu represents potential energy,
which is accumulated in the cubic cell (see Figure 1.2), where Wiy and Wu
is elastic energy of the ellipsoidal inclusion and the cell matrix,
respectively.

The elastic energy density wq in the cell matrix (¢ = M) and the ellipsoidal
inclusion (g = IN) is derived as (Brdicka, 2000, 94-95)

1
Wq 2(49an' +8¢q (/>q+89qo-9q)+gn(pq n(pq+gm9qo-m9q7
g=M.IN (229)

and the elastic energy W, (¢ = M, IN) has the form

/27wl 2 Xy
Wy, = j deVM:SJ‘ j jwa,%dxnd(p sin@do
Vs 0 0 xp
/2w /2 Xy
:8.[ j Jwa,ledx”dq)dv,
0 0 xp
/272Xy
Wy = j wiy dViy =8 j j jw,Nxﬁ dx, do sin0do
Vi 0 0 0
/272Xy
- j j leNx Q dx, dpdv, (2.30)
0

where sinddfand (2are given by Equation (1.13)
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REASON FOR STRESSES

The thermal stresses, which originate during a cooling process at the
temperature T € (Ty, Ty), result from the condition am # oun, where Tk is
final temperature of the cooling process; 7; is relaxation temperature of a
real matrix-inclusion composite material; o and o represent thermal
expansion coefficients of the matrix and the ellipsoidal inclusion,
respectively. The phase transformation, which originates at the tempera-
ture Tiq € (T%, T1), results in the strain &q (¢ = M, IN), where T, &w and
Tan, &~ are related to the matrix and the ellipsoidal inclusion, respec-
tively. Consequently, the strain &q is a reason for the phase-transformation
stresses.

If T2 T and Tyq = T;, then the stresses are relaxed by thermal-activated
processes, where T = (0.35-0.4)x T, (Skocovsky and Bokuvka and Palcek,
1996, 42-44), T, is melting temperature of a real matrix-inclusion
composite material. If the inclusions are formed in a liquid matrix, then 71,
is a minimum of the set {Twm, Tmm}, Where Timiv and T is melting
temperature of the inclusion and the matrix, respectively. If the inclusions
are formed in a solid matrix with the melting temperature 7imm, then we get
Tm = Twm. If the matrix-inclusion composite consists of two types of
crystal grains, then 7r, represents melting temperature of this material.

If Tyq € (T, Tv), then the coefficient fy = Sy(T) at T € (Tt, Ty < (Tt, Tr) is
derived as (Ceniga, 2007, 34; Ceniga, 2008, 22)

Tr qu
By=¢&y+ a;l)dT+J.a(§2) drT

Ty r

Tue(T. 1), Te(Tp Ty ) (T 1), g=M,IN | 3.1)
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where aél) = a(gl) () and aéz) = aéz) (T) are related to 7> Tig and T < T,

respectively, and &q is given by Equations (3.17), (3.18). If atgl), a((12) are

not functions of 7> Ty, T < Ty, respectively, then we get

B, =&y +al (Tr —th)+ al? (T,q —T),

Tye(Ty.T,), Te(Tp.T,)(TpT,), q=M,IN, (3.2)

If T> T\, then S, = By(7) at T € (Tyq Ty = (T, T7) has the form

T,
py=[aar,
T
Tye (T 1), Te(Ty ) (TpT), q=M,IN, (3.3)

If a(gl) # aél) (T) for T > Tiy, then we get
B, =a(1,-T), Te <th,Tr> c <r,-,T,>, g=M,IN . (3.4)
If Ty (T7,T,) , then i, = A(T) at T € (Ty, Tiy s derived as
T,
qu:J.adaa ]}qe<TfaTr>: TE<Tf,Tr>, q:M3[N3 (35)
T
where aq = aq(7) is related to the condition 7', ¢ <T f,Tr>. If o # ay(T)
for T € (T, Tr), then we get

By =a,T,-T) T, e(T;T,), Te(l;.T,), g=M,IN. (3.6)

Isotropic material components are characterized by cubic crystalline
latices (CCL), which exhibit the following modifications (Skocovsky and
Bokuvka and Palcek, 1996, 15-18)
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o the simple modification (K6): one atom at each corner point of CCL,

o the body-centered modification (K8): one atom at the center of CCL,
one atom at each corner point of CCL,

o the face-centered modification (K12): one central atom on each side of
CCL, one atom at each corner point of CCL.

The phase transformation of CCL in the matrix (¢ = M) and/or the
ellipsoidal inclusion (¢ = IN) at the temperature Tiqe(7%,T};) represents the
transformation aq — aqu at 7' = Ty, where aqi, aqn are dimensions of CCL
at T > Ty, T < Ty, respectively, and agm < {dqm&®,agm®®,agm®?} (m =
L1I). The transformation aq — aqu results in the strain &g, which induces
the phase-transformation stresses.

X3qm agm
agm 3 7
X3 0 Xn )
\< T~/
P33gm|Pgm agm
Xngm P22gm
N | |
0] 2 X2gm
Py
1
Pl1gm 4
X1gqm X1

Figure 3.1. The cubic crystalline lattice (CCL) in the matrix (¢ = M) and the
ellipsoidal inclusion (g = IN); the dimension aqm along the axis xigm (i = 1,2,3) of
the Cartesian system (OxigmX2qm¥3qm). The angle @jgm = Z(Xigm, Xj) defines a
position of CCL with respect to the Cartesian system (Oxix2x3) (see Figure 1.2). As
an example, the angles @iiqm, @22qm, @33gm are shown. Pym is an intersection point
of the normal xn and the surface /456. P12 is a projection of Pqm onto the plane
= OP;m .

. —
x1x2; the vector X pgm

Figure 3.1 shows CCL with the dimension aqm along the axis Xigm of the
Cartesian system (Oxiqm¥2qm¥3qm) (i = 1,2,3). The angle @ijgm = Z(Xigm, Xj)
(see Figure 3.1), which is formed by the axes Xigm, Xj (i, j = 1,2,3; m = L),
defines a position of CCL with respect to the Cartesian system (Oxix2x3).
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As an example, the angles @i1qm, @22qm, @33qm are shown in Figure 3.1. The
coefficient aijqm, Which represents a direction cosine of @jjqm, is derived as
(Ceniga, 2007, 35-38; Ceniga, 2008, 23-26)

Dijgm = CO8 Pijgm = Cosll(xiqm X j )Ja
i,j=123; g=M,IN; m=1,1I . (3.7)

As shown in Figure 3.1, Pym is an intersection point of the normal x, with
one of the surfaces /456, 2754, 3657, and P, is a projection of Py onto

the plane xx,. The length |x™~ | = |OP”| of the vector x~ = OP”
gm

ngm ngm am
along the axis x, in CCL is determined by agm, ¢, 6. The point Pyy is
defined by the coordinates (x;,x2,x3) in the Cartesian system (Oxix;x3) or
by (X1gm,X2gm,X3qm) in the Cartesian system (Ox1gmX2qmX3qm), and then we get
(Ceniga, 2007, 35-38; Ceniga, 2008, 23-26)

3
Nign = D \@jgm o 1=123 q=M,IN; m=11II, (3.8)
j=1

3 3 3
2 . .
where > (vigm P =D (6 D ygm aigm =55 Gk = 1,2.3), and i is
i=1 i=1 i=1
Kronecker’s delta, i.e., dx = 0 and g = 1 for j # k and j = k (Rektorys,
1973, 143), respectively. The unit vector e, which is derived in
n

(Ox1x2x3), is derived as (Ceniga, 2007, 35-38; Ceniga, 2008, 23-26)

3 3
> _Nm o ) _ [ ( )]_
=D GigmCigms igm = COS £ XigmXn |= D anj Gjjgm

n

e
i=1 Jj=1
i=123; q=M,IN; m=11I, (3.9)

If Pgm with the coordinates (Ox1gmX2qmX3qm), 1s @ point of the surface /456,
i.e., Pgn C 1456, then the length |x~ | =|OP~ | of the vector x> =
ngm qm ngm

OP™ long the axis x, in CCL has the form (Ceniga, 2007, 35-38; Ceniga,

qm

2008, 23-26)
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N
X

ngm

_ Agm

O
alqm

g=M,IN; m=11I, (3.10)

n n n n
where Xngm = Agm > Xpgm = Agm angn /al(q,),, S Qg s Xygm = Agm agq?n /al(qr)n
The surface /456 with the normal x, is determined by each of the

Sagy .

conditions (Ceniga, 2007, 35-38; Ceniga, 2008, 23-26)

0) 2

a
2gm <1 3gm <1

< A R
e e
1gm 1gm

g=M,IN; m=11I. (3.11)

If Pgm < 2754, then we get (Ceniga, 2007, 35-38; Ceniga, 2008, 23-26)

a

X7 |= ((ilm , q=M,IN; m=11, (312)
e a2qm
where Xngm = Ggm al(;r)n /ag:])m S Agm s Xpgm = Agm Xvgm = Agm agZZn /ag])m

<dayy, . The surface 2754 with the normal x, is determined by each of the
conditions (Ceniga, 2007, 35-38; Ceniga, 2008, 23-26)

(n) (n)
alqm < N a3qm <1,
BO) o)

2gm 2gm

g=M,IN; m=11I. (3.13)

If Pgm < 3657, then we get (Ceniga, 2007, 35-38; Ceniga, 2008, 23-26)

a
==L g=M,IN; m=11I, (3.14)
ngm (n)
a3qm
where X, = dg, al((’;r)n /agzzn Slgms Xpgm = Agm a%ln /ag’gn <ag, and
Xygm = dgp - The surface 3657 with the normal x; is determined by each of

the conditions (Ceniga, 2007, 35-38; Ceniga, 2008, 23-26)
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al(n) agn)
(Z’)" <1l A (;’;" <1, ¢g=M,IN; m=11I. (3.15)
a3qm a3qm

The surface with the normal x, is determined by each of the conditions

(n) (n)

Lam oy Lkam

al aln)

i k—123; i#j#k q=M,IN; m=11I. (3.16)

The strain &q (¢ = M,IN) has the form

- ||
> L A Ve (3.17)
-
X
ngll
where (x|, [x7 | are related to the temperature T = Ty If Tyue(Ts, Ty),
ngl nqll
then [x | in Equation (3.16) is replaced by the following formula
Ty
x| o=x7 1= jal(lz) dT |,
nqll T nqll ;

f
Te<Tf,T,q>, g=M,IN . (3.18)
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MECHNICAL CONSTRAINTS

The mechanical constraints of the model system in Figure 1.2 at the
temperature 7e(Ts, T;) are determined for

o the matrix-inclusion boundary with respect to the condition fin # fu
(see Chapter 3), which is a reason of the normal stress py, act-ing at the
matrix-inclusion boundary,

o the cell surface with respect to the displacement un.

The mechanical constraints are described by corresponding mathema-tical
conditions, which determine integration constants in mathematical
solutions of the system of differential equations (2.26), (2.27). Using
Cramer’s rule (see Section 12.2), the integration constants are determined
by the mathematical boundary conditions (4.1)-(4.5).

The difference fv - fin # 0 results in the normal displacements
(4,01 )xn:xIN =0, (uﬂ[N)xn:xIN #0 at the matrix-inclusion boundary where

(4,01 )xH:x[N and (u,y )xnleN are a reason of the stresses in the cell matrix

and the ellipsoidal inclusion, respectively.

4.1 Cell matrix

The absolute values |unmv|, |&Mm|, |om| (see Equations (2.1)-(2.4), (2.17)-
(2.20)) are required to exhibit decreasing functions of the variable
Xn€{XIN,XM), With maximum values at the matrix-inclusion boun-dary, i.e.,
for x, = xiv, where xin, xm are given by Equation (1.15). These decreasing
functions result from the following mandatory conditions (Ceniga, 2007,
67; Ceniga, 2008, 51)

() D “.1)

Xn=XIN
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(e ), =0 (4.2)

where the normal stress p,, acting at the matrix-inclusion boundary, is
given by Equation (4.6). Equations (4.1) and (4.2) represent stress and
geometric boundary conditions, respectively.

As mentioned above, the displacement u.v is a consequence of the
difference fv - fin # 0, and does not result from the dimension change Ad
=d am AT. If (i, )xn:xM >0 or (unM )x":xM <0, then Ad> 0 or Ad <0

at the constant temperature 7e(Tt, T;), respectively, and this increase or
decrease of the cell dimension d is physically unacceptable.

The point P, on the cell surface (see Figure 1.5) is related to two
neighbouring cubic cell. Let unva = unma(xna,@a, va) represent a function
of the variables xna, @a, va in a certain cell, e.g., in the cell in Figure 1.5,
and unm = unvp(XnB,@8, ) represent a function of x.s, @8, W in a
neigbhouring cell. Let unva = tnma(Xna, @a, va) and unvs = Unms(XnB, @B, Vi)
are connected at the point P,. The model system is imaginary divided into
identical cubic cells (see Figure 1.2), and then the cell surface is not a
physical boundary.

This connection is assumed to be ‘smooth’, and then u,va and uavp are
assumed not to create a singular connection at the point P,, which is
assumed not to represent a singular point. Due to this non-singularity
assumption, the function unv = unm(xn,@, ) of the variable x,e(xm,xm) 18
assumed to be extremal on the cell surface, i.e., for x, = xm. The absolute
values |unm| represents a decreasing functions of x,€{xm,xm), and then this
extreme for x, = xv is @ minimum of unm = unm(Xn, @, v). With regard to
Equation (2.1), the following condition

ou
(Enrt)s, x, = [a—;M] =0. (4.3)
n Jx, x

=M

4.2 Ellipsoidal Inclusion

The absolute values |unn|, |&N|, |oin|] (see Equations (2.1)-(2.4), (2.17)-
(2.20)) are required to exhibit increasing functions of the variable
Xn€{Xmn,Xm), With maximum values at the matrix-inclusion boundary, i.e.,
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for x,» = xm, and the conditions (uVI]N)xn:O;tiOO7 (g,,,N)Xn:O;tioo,

(G )y, - # + are required to be valid. The boundary conditions are
derived as (Ceniga, 2007, 67; Ceniga, 2008, 51)

(N )xn:x”v ==Pn> (4.4)
(), =0, (4.5)

where Equations (4.4) and (4.5) represent stress and geometric boundary
conditions, respectively.

4.3 Normal Stress

If fu > fiv or fu < fin, then the normal stress p, > 0 or p, < 0 is
compressive or tensile, respectively. If p, > 0 is a compressive normal
stress, acting at the matrix-inclusion boundary, then we get
(s )xn:x”v =—x, Bar > () =x, By - With regard to Equation

Xn=XIN
(2.2), we get (E([,M

N ==Pu > (gwlN)xn:xm =fiy -1 (5¢M )xn:xlN -

)xn:xl

—DuPM (%m )anxlN =—p,.Pw » then the normal stress has the form

. = Pu - Piv , (4.6)
PMm * PIN

where £ (¢ = IN,M) is determined in Chapter 3. The normal stress py is
included in formulae for the stresses and strains, where its compressive
influence is denoted by the term ‘-p,’. The coefficients pv and pv are
given by Equations (5.26), (6.26), (6.37), (6.48), (6.59), (7.25), (7.36),
(7.47), (7.58), (8.24), (8.35), (8.46), (8.57), (9.23), (9.34), (9.45), (9.56),
(9.67), (9.78) and (5.27), (8.66), respectively. Consequently, such a combi-
nation of pm, o is considered to result in minimum potential energy W, =
Win + Ww (see Equation (2.30)).






CHAPTER 5

MATHEMATICAL MODEL 1

5.1 Mathematical procedure 1
If the mathematical procedure x,[OEq.(2.27)/0x.] is performed, then we get

2
x2M+(l—c3)xnaU” =0, (5.1)

n
6x5 0 Xn

where ¢3 < 0, Un = U, (xn,@,0) are given by Equation (2.21),(2.28),
respectively. If Equation (2.27) is substituted to Equation (5.1), then we
get

o*U
X

- tes(l-c3)U, =0. (5.2)
x}’l

If U, =x/, then, with respect to Equation (5.2), we get

U, = Cx/+Cyxs, (5.3)

where the integration constants C;, C, are determined by the boundary
conditions in Chapter 4. The exponents A, A, have the forms

1[1+\/1+16 w)[1+4(1- )]]>3,

:_[1 Ji16(1— w)t+4(1 y)]]>—2, (54)

where 1 < 0.5 for a real isotropic material (Skocovsky and Bokuvka and
Palcek, 1996, 75-79). If Equation (5.3) is substituted to Equation (2.26),
we get
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o 2
x2 . +2[xn au” —un]:Cl x}“},+C2 xﬂﬁ,.

n
8)65 Xn

(5.5)

Using Wronskian’s method in Section 12.1 (Rektorys, 1973, 225-227), the

mathemati-cal solution of Equation (5.5) has the form

u, =C xl,HCz x/l,zq .

(5.6)

and with regard to Equation (2.1)-(2.4), (2.17)- (2.20), (2.29), (5.6), we get

&y = Clﬂle;}l_l +C2/12x,f2_1 5
Ew =&p = C] x,’}l_l +C2 x,?z_l .

419G 2,106
Enp =544 Opg = X' Eﬂnz o0

4-10C 2,1 0Cy
€n9:S44Gn9:®[xnl v + x5 - )

A -1 4y -1
o, =Cé1xy  +Cy &6 X7,

A-1 A1
op=09=CGx,"  +Caréy xp*

a1 21
oy =mx,' X7 ,

A+, =2
w:lq)c,%(’11_1)+/<2)c,%(’12_1)+/c3x,,1 ?

B

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(4.12)

(5.13)

(5.14)

where 6, s44 are given by Equations (1.13), (2.16), and &, & 2+, & 2442, 77

& (i=1,2;j=1,2,3) have the forms

E[(1- 1) +2 4] E(+ 4 p)

(1-u)i-24)

s §2+l -

&=

(-u)i-2p)
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BVl (- u)+aulr2)

§2+i+2j: 2(1—/1)(1—2#)
1 0C; o0C;
=G (4 71+7z)+—(73—+y4—}
S44 op ov
1{( oG 2 G,
K; —C +0
Srv3i t {[ aq)} [ avj ]

069G, , 2aclac2J i1 (5.15)

1
K3 =C1Cy (& + &)+ (6(0 20 av o

5.2 Cell Matrix

With regard to Equations (2.30), (4.1), (4.2), (5.7)-(5.14), we get

Appr—1 Aam—1

A b

Enbt =P ;M (x j +—”§M (—x" j : (5.16)
1 M 2 M

Uy 1(x Fiae 7! 1| x P
v Xp "¢ S\ xy

Ay -1
e sauy o = 0| Pn | X
npM — S44M OnepM — 850 ; xﬂlM_l Xy
1 M
Aoy -1
B DD M (7 (5.18)
09| gy xPu ™t Ly ’ '
2 M
5 -1
2 P X
Enom = Saam Onom =07 |~ ——7 [x"]
é’lxM M
Ay -1
B S P ZM (5.19)
ov| ¢y a2u ™ |\ 2y ’ '
2 M
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5 a1 5 gy -1
X.
Gt =~ P M[x_n] +ﬂ[_’!] , (5.20)
g1 \xy ¢ Xy
Ay —1 Aoy -1
fsM[an §4M(xnj

Gt = Ogng = —py| M| Fn Loam | Xn . (521

7 g e ¢ \xu
Oun =g XM T gy xm L (5.22)
Wy =Kpm xﬁ(ﬂ”"’ 71) + Koym x,%(AZM 71) +K3M xﬁ”‘” +/12M -2 5 (523)

wl27/2
Y o S ) e S S O
M= +

Y 24 +1 205 +1

A A 1 A A 1
+K3M(xA/}M+ om v T Ao

) Qdedv, (5.24
2’1M+2'2M+1 ] ¢ ( )

where @, €2, xiN, Xm; Saam, Aim, S (@ = 1,2; 7 = 1,...,8) are given by Equa-
tions (1.13); (1.15); (2.16), (5.4), (5.15), &, v, Km (i = 1,257 = 1,2,3; see
Equation (5.15)) have the forms

Pl e tram)  vam @ Pn
v = Ay 1 P) Ty 1
i xn™ Saam OP\ ¢jx,™

_ Vam O | Py
Saaps OV & xfm !

2 2
P 1 |0 P
KiM =$2+3iM ;:l ot A, ﬁ
gi xnIM Saam a¢ é/i xnlM
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2
R A

Saap | OV &l
1'n

Pi(§6M+§7M) 1 6( Pn Ja[ Pn ]

+ R [
GG xpv sy 0\ gt Jog| g !

2
L9 0 Pn__ ﬁ%, i=12. (5.25)
Saap OV ST JOVI S xp2M T

The normal stress py, is given by Equation (4.6). With regard to Equa-tion
(5.17), the coefficient pv in Equation (4.6) is derived as

K3pm =

(1+#M)(1—2ﬂM)[ 1 N 1
Ey Ao U= pag )+ 200p Aaag (L= papg )+ 200

(5.26)

5.3 Elipsoidal Inclusion

Due to Aonw < 0, we get Cow = 0, otherwise (unIN)x —o =1x,
(enIN)x —o =1x, (UnIN)x _o =1. With regard to Equations (2.30),
(4.4), (4.5), (5.7)-(5.14), we get

ﬂ, X ﬂ’l[N -1
EnIN == 4{1)" e ) , (5.27)
Siv \xv

" » X Ay =1
Epiy = gy =L = - 4'" . ] , (5.28)
Xp Siv\ XV
Ay-1 0 p
EngIN = S44M Onpin =—% — (5.29)
" 0P| &y x1
IN
2 Ayl © p
EnGIN = SaaM TnoiN =—O7 XMV ——, (5.30)

ov x;”IIN -1
SN X
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X ﬂ‘lIN_1

OuIN == pn( . ] , (5.31)

XIN

p f X /111N 1
Opn =gy =— 20 (—”j , (5.32)
SN\ XV

Ay -1
oun =mix " (5.33)
Wiy =K1y xi(ﬂm\/—l) , (5.34)

4 7l27l2
WIN = .[ IKIIN XIZIGUN_H Q d(DdV N (535)
2/111]\] +1 0 0

where @, 2 xiN, saN, A and &, S, Ssiv are given by Equations
(1.13); (1.15), (2.16), (5.4) and (5.15), respectively, and 7N, &N (see
Equation (5.15)) have the forms

_ pauwrun +raw)  vaw @ [ Pn ]
min =

=1 A
Suw X" Saav 0P\ &y x;™
_ Yav O Pn
=1 |’
Saan OV &y X

2 2
_ Pn 1 0 Pn
KN =51V a1 | TS —a¢[ . 1]
SUN X1 44M SUN X1

2
2
LA R Pr__11 (5.36)
S44M 61/ glleH{]IN

The normal stress p, is given by Equation (4.6). With regard to Equation
(5.28), the coefficient piv in Equation (4.6) is derived as

(g Ji-2ppy) .
E| (U= iy )+ 20 ]

PIN (5.37)



CHAPTER 6

MATHEMATICAL MODEL 2

6.1 Mathematical procedure 2

If the mathematical procedure 6*Eq.(2.27)/0x.? is performed, then we get

3U 2U
n—a ”+(2—c3)6 =0, (6.1)

3 2

ox; 0x;,

where ¢3 < 0, Uy = U, (xn,@,6) are given by Equation (2.21), (2.28),

respectively. If U, =x/ , then, with respect to Equation (6.1), we get

U, =Cyx,+Cyx5+C;, (6.2)

where the integration constants Cj, C,, Cs are determined by the boundary
conditions in Chapter 4. If Equation (6.2) is substituted to Equation (2.26),
we get

2 821/!
n

n o S oy — x4 Cy Gy, (6.3)

ax’% 6xn

Using Wronskian’s method in Section 12.1 (Rektorys, 1973, 225-227), the
mathemati-cal solution of Equation (6.3) has the form

u, =Cyx, (%—lnxnj+cz X3 +Cy. (6.4)

With regard to Equation (2.1)-(2.4), (2.17)-(2.20), (2.29), (6.4), we get

&, =—C| x, (§+lnxnj+C2 ey xS (6.5)
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g(/,:gv:clxn(l—lnxn]+c2x;3‘1+3, (6.6)
3 X,
Enp =844 Opg = l—lnxn %+x;371£+ig, 6.7)
3 op op x, Op
1 m 1 oC
En0 =844 0o =0 (——lnxn)%er,‘ﬁ 18&+__3 , (6.8)
3 ov x, Ov
2 2
o, =—C {@+(q—cz)lnxn}
T [ T s Lo (6.9)
x

n

& +2C2 -1 C3Cl
o,=0,=C {—3 _(Cl —cz)lnxn +C, (cl —czc3)x£3 +_x ,
n

(6.10)
37l T4 (6.11)
X

n

C
o1 =m +1n, Inx, +n3 x,

W=C12K1+C22K2+C§K3+C1C2K4+C1C3K5+C2C3K6

i 2 2 2 2
+A % +®2 % +ﬁ a& +®2 aﬁ
S44 6;0 ov S44 8¢) ov

2 2
+ﬁ % +®2 6C3 +ﬁ 8C1 8C2+®2 8C1 6C2
Sa4 |\ O ov sqa\ O O@ ov ov

ﬁ 8C1 8C3+®2 6C1 8C3 +ﬁ 6C2 6C3+®2 8C2 6C3 ,
S44\ O O@ ov ov op 0@ ov ov
6.12)

S44

where &; sa, ¢i (i = 1,2,3) are given by Equations (1.13); (2.16), (2.21),
respectively, and 7, i, 7« (G = 1,...,4; k= 1,...,6) are derived as

1 1 oC oC
m :§|:C1(71 —272)+—(7’3 —L iyt Ha
S44 op ov
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1 oC oC
n2 I:C1(71 +72)+—(73 p —1 +74—1]:|,
1) ov
oC oC
773—C2(7103+72)+—[73 2 74—2j,
544 op ov
1 oC oC
:C372+—[73—3+74 3),
Sq4 6(0 ov
2
K (cz—cl)(llnxn+§j Inx, Tertac ,
2
Ky = M+cl(l—2c’3) X,ZI(CS_l), K =c—12,
x}’l
4—{03(01 Cz)lnxn+2{01— (261;02) }} ol
Ks :ﬂ, Kg = 0 .
xn
_ 1
J1=In"x —Elnxn+l, X2 = ,3(03 1), X3=—%>
9 x;
24 —2(l—lnx jx%‘l, 75 :i(l—man 26=x3"2. (6.13)
3 X,
The integrals @, ¥ of ki = &i(xn), i = xi(xn) (i = 1,...,6), respectively, are
(6.14)

derived as

Xm
D, = Iicx dx,, ¥;= j)(lx dx,, i=1..6,
XIN

XIN
where xn, xm are given by Equation (1.15). The following integrals are

determined by the equations in Section 12.3, and then we get
ol 53]

C]—Cz 3 1
In - |+—= |-
{XMK XM 3j 9 XIN 9

q)lz
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2e;—¢5) | 3 1) 3 1
+————=2xy Inxy —— | — x| Inx;py ——
9 M M 3 IN IN 3

N (7c1 +2¢; )(xi,, - x?N )

B

27
2
1 | elg+e) (2c A 2 +1)
o, = +ell=2c3 ) |\x7/° " —xm ],
2 203“{ 5 10 3) (i IN

D3 = cy(xp —xpy),

03(01—02) c3+2 1 c3+2 1
CD = X 3 lnx - —X 3 lnx -
4 C3 +2 |: M ( M C3 +2 IN IN C3+2

+ 2 |:Cl _ 03(201 +cy ):|(xc3+2 —xc3+2),

C3+2 3

s :Cl(xj%/[ —X%N) O =0,

3
\Pl :xTM|:(1an —l{lan —§]+g:|

9

i (Inxzy —1) Inx 1,2
3 IN IN 3 9 >

2c3+1 x203+1

M ~YIN
Vy=—""—7""— W5=xy—-xp,
2C3 +1

2 c,+2| €3 +5 42| €3 +5
Y, = x| ———-Inxy, |-x73, | ————-Inx ,
N c3+2{ M {3(c3+2) M} N {3(03-':-2) v

c3+1 c3+l1

5 5 Xy —X
\PS =x%l(g—lanj—x%N(g—lnxle, \P6=A/ICTHV. (615)
3

In case of the ellipsoidal inclusion, we get (g,,IN)x _o=1>, (O'nlN)x -0
n n

=t due to (lnx,) _,=-», (x;W )x o=, and then the

mathematical solutions (6.4)-(6.12) are suitable for the matrix.
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6.2 Cell Matrix

The integration constants Civ, Com, Csm are determined by Equations
(4.1), (4.2) or (4.1)-(4.3), and then the following combina-tions are
considered: Civ # 0, Com # O, Cim = 0; Cim# 0, Cim # 0, Cum = 0; Com # 0,
Civ#0,Cim=0; Cim# 0, Com # 0, Csm # 0. Finally, such a combination
is considered to exhibit mininum potential energy W, = Wi + Wwu (see
Equation (2.30)).

Conditions Cim # 0, Com # 0, Csm = 0. With regard to Equations (2.30),
(4.1), (4.2), (6.4)-(6.12), we get

Pl 2 1 X ey -1
Egy =2 =+Inx, +c3| ——Inx n , 6.16
nM 3K n 3M[3 n][xMJ ( )
EoM =E0M = M _
n
1 1 c3y -1
=- 2 ——lnxn—(——lnxnj = , 6.17)
¢ |3 3 Xy
1Yo (p
o J2(3)

it o (menj ||, (6.18)
6¢) 3 Xy

1Yo (p
S

M i{(l—lnxn)(x—”ﬂ}, (6.19)
a(p 3 Xy

Pn { 2erar +2¢1)
¢ 3

OuM = +(crar —capr )Inx,

cyy—1
1
+(erar +eans Jesns —2cau ](g—ln Xy j( ol J , (6.20)

M
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+2
&{M_ (s —caay Jinx,

O =0y =—
oM oM /; 3

1 ey 1
X
+(erps —cchaM)(g—lan](x" j , (6.21)
M

-
Oing =Mas + Mo X, 477300 7Y (6.22)

- 2 2
| A i[&) 07 ﬂ(&)
Sqgam || 0@\ € ovi ¢
2
0 1-3Inx 0 1-3Ilnx
Sqam || 09 3xpM ov XM

Zay O (Pu| 0| | 1=3Inxy
+ Pn Ccapy —1
Saap Op\ & )0 XM

2
, Zan © i(&J g P{Mﬂ) (6.23)

2

sap v\ ¢ Jov 3xim !
7/27x/2 2 1231 2
WM:4I I Pl |y + @y |~
g 3xCm 7
0 0 M

4 7/2x/2 o (p 2 o (p 2
n 2 n

S44Mm
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PREEEE 5 | 2
+ I I‘I’ZM —{L(——lnxﬂ,{ﬁ Qdpdv

Saam gy Op| ¢xam 3
g T 5 | 2
+ J. J. \P2M®2 — p—n_l(—_lanj Q d@dv
Saam oy v | &xpm 3
w/27x/2
R TMM;Z{£1)51 21929@L%2 Qdpdv
Saam g op\ ¢ )op| 3¢xpMT
w/2x/2
1 -1
LA IWMAﬂE{EQE_EﬁﬂzﬁTJQdWW
Saam oy v ¢ Jovl 3¢gxpm”

(6.24)

where @, €2, xm; Saam, cim (i = 1,2,3) and xm, yim; P, Fim (G = 1,2,4) are
given by Equations (1.13), (1.15), (2.16), (2.21) and (6.13); (6.15),

respectively, and ¢, ¢ (i = 1,2), 7m ( = 1,2,3; see Equation (6.13)) have
the forms

-1
1
42?2‘51(5—1“1\4} ¢ =llern +C2M)C3M_262M](xﬂ] ,
M

= {2(CIM ; 2c31)

U i =270m) , 1 ( 0 0 j[ﬁnﬂ
M="73 + im——Ftram—— || ||
3{ 4 S44m op ov ) ¢

+ 1 0 0
e A va 7/2M)+ [7/3M_+7/4M_J(&J’
¢ Saam op ov

_ Pulring 311 +72u1)

l—lan
cae 3

1 0 0 1
+ [73M —+Vapm —] —f" = [——lanj . (6.25)
Saam op v ) & xpm 3

+(erps —copr )In xlN} ,
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The normal stress p, is given by Equation (4.6). With regard to Equa-tion
(6.17), the coefficient py in Equation (4.6) is derived as

111 1 c3y 1

XIN
oy =—|——Inx;ny—| ——Inx — . 6.26
M 4, 3 IN (3 IN)[XMJ ( )

Conditions Cim # 0, Csm # 0, Com = 0. With regard to Equations (2.30),
(4.1), (4.2), (6.4)-(6.12), we get

Pn (2
Ent = 3 i), 6.27
nM ;xM[3 nj ( )
un
&, =& = =
oM oM %,
=-n L(l-mxn]_L(l_mej , (6.28)
¢ Lxm\3 x, \ 3
1) 0 P
€ = =|lnx, —— |—| £
oM TR Tnglt [ " 3)640(4“)%]
Lefn(l,,,) o
x, 0| ¢ \3
o p
EnoM =544M OnoM 29{(lnx" _Jé‘_( , )
v & xy
Lofnin L e
x,0v| £ \3
p 1 | 2lcpy +2¢
O'nM :J{—{M+(01M—02M)lnxn:|
¢ |\xy 3

2y G_mM}}’ (6.31)
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Pa |l cipr +2¢
OoM = OoMm Z—?n{u—(cm _C2M)lnxn:|
1
—cl—M(——lanj}, (6.32)
x, (3
O =Mm +7]2M lnxn+ UiM , (633)

n

2 2
Wy = & Kim +K3M[l_lanj —KSM (l—lan)
g szw 3 Xpm 3
2 2
T | pnj +®zﬁ(pn]
Saam || 00\ S Xy ov\ ¢ xy

+Z5—Mi(iJi{&(1an _lﬂ
Saaps O\ S xp )0 | & 3

2
L Asm ® i( Pn i[&(lan—lﬂ, (6.34)
Sq4 M ov é/XM ov

7l27m/2 2_(1) 1 2
WM =4 I J. (&j 12M +(D3M(——lanj
0 0 é, L 3

4 7l27m/2 5 2 5 2
+ J' J'\PIM —(p—"] + 2 —[p—"] Qdpdv
Saam g op\ & xy ov\&xy

4 w/27m/2 5 1 2
+ j J ‘P3M{—{&(——lanH} Qdpdv
Saam 3 opl ¢ \3

0
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4 w/27w/2 5 | 2
+ j J ‘{’3M®2{—{&(——lnxﬁ4ﬂ} Qdepdv
Sqam 0 ovl ¢ \3

0

/272
L4 - ﬁ[ Pu Ja[pn(ﬂan l)}gd(pdv
Saam Mop\ Cxy ) op 3¢

/272
L4 I I o2 a[ )a |:pn(3lan—1)}Qd¢dv,
Saam gy ov\&xy 3¢

(6.35)

where @, €2, xm; Saam, cim (i = 1,2,3) and xm, yim; P, Fim (G = 1,2,5) are
given by Equations (1.13), (1.15), (2.16), (2.21) and (6.13); (6.15),
respectively, and ¢, mim (i = 1,2,4; see Equation (6.13)) have the forms

1 2 2 2 1
:—|: CIM+ CZM (CIM—CZM)IIIXIN:|+ ‘oM [——lan],
M XIN

1 p, 71M_272M) 1 ( 0 0 ][ Pn ]
mm=—= + V3iM =t V4am >
3{ ¢ Xy S44M o9 ¢ Xy

+ 1 0 0
nam p"(ylM sz) (73M_+74M —][ P J,
¢ xy S44Mm op ov )\ & xpy

PnVom 1
== ——Inx
Mapm ‘ (3 Mj

1 0 0 || pufl
; oy, 2 B L . 6.36
Saam (73M 0p T 5"]{ ¢ (3 HXMH (©30)

The normal stress py is given by Equation (4.6). With regard to Equa-tion
(6.28), the coefficient pv in Equation (4.6) is derived as

{11 1 (1
Py :E{E(g—lnxmj—a(g—lnxwfﬂ. (637)

Conditions Com # 0, Csm # 0, Cim = 0. With regard to Equations (2.30),
(4.1), (4.2), (6.4)-(6.12), we get
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=1
et =%{; J : (638)
M M
u X 3yl
Epg = Equ =M =~ Pn_ 1—( ") , (6.39)
Xn gxn XM

o))

1 c Pn 0 n
= Suary Oy = — —| x| P | O FPu |l 640
EngM =S44M CnpM . [xn 8¢{§x;}[M j o0l ¢ (6.40)

EnaM =Saart Onaht =~ g{xzw i[LJ—i[ﬁﬂ . (641)

Xn oo\ cxym ) 99\ ¢
c (c +c )—2(: X o~ 2c
e Pn | Cm\m T Com 2M (_nj L Z2M . (6.42)
g Xy Xp Xy
C +c C X C3M_1 C
Tt = Oant __Pn| Mt OMEBM | Xn _am | (6.43)
g Xy Xp Xy
-1
Oy = gy X L TAM (6.44)
xn
2 K K
Pn 2M 6M
Wy (é,j szwc-??M 3IM xC3M
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/272 ¥ ¥
Pn 2M oM
Wy = 4j '[( J o # ¥y —— | Qdpdy

M

wl2xl2 2
J. J. I2M z
c
SaaMm 0 op £ xSM

4 m/2m/2 5 2 5 2
J. _f M —(p” ] +©? —(p—”j Qdpdyv
S44M op\ ¢ ov\ ¢

4 ml2mw/2 B { 2
4 j IWZM@)Z _Pn (——mej Qdpdv
0 -1 3

SaaMm VI ExpM

0

4 m/2m/2 5 5
+ _[ j Yeom _[%J—(&j Qdpdyv

0 ¢ 0
S44M00 Q0 3M o\ &

[27m/2
+ 4 ”J. ”.[‘I’ 0 = 0 _Pn iﬁ Qdpdv
Saam M o Cxpm Jovi g ’

(6.46)

where @, €2, xm; Saam, cim (i = 1,2,3) and xm, yim; P, Fim (G = 2,3,6) are
given by Equations (1.13), (1.15), (2.16), (2.21) and (6.13); (6.15),
respectively, and ¢, 7im (i = 2,3; see Equation (6.13)) have the forms

cyy 1
1
¢=—" [(ClM +02M) C3pm —ZczM](mJ +2e7 ¢

XIN XIm

ol tron) 1 o 0 Pu
n3m= sm—="Vam || . |
C:xCW S44M op ov ¢ EM
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Putom , | ( o aj(pn]
Napy=—"7"—+——\ Vs —+Vam— || — |- (6.47)
G Saap op ov)\ ¢

The normal stress py, is given by Equation (4.6). With regard to Equa-tion
(6.39), the coefficient py in Equation (4.6) is derived as

M
puy = (’”—NJ -1]. (6.48)
¢ Uxar

Conditions Cim # 0, Com # 0, Csm # 0. With regard to Equations (2.30),
(4.1)-(4.3), (6.4)-(6.12), we get

2 _
En =~ &{Cl (g+lnxnj_§2 c3pg XM 1} (6.49)

Eopt = Equy = 2M = &{g G—lnxnj+§2 xGam 1 +é}, (6.50)

W ¢ Y
1 a p é/lj c3py -1 a (p é’zJ
€ =S O =|==lnx, |—| 2L |+x Y1 ¥n
neM 44M ©nepM [3 n]a¢( C: n 8(0 —C:
+Li(pné’3j’ (651)
X O\ ¢
1 0 ay-1 0
EnoM =S44M OnoM :®|: (g—lnan%[p2§1j+xn %[pné/ééj,
+Li[pné/3]:|’ (6.52)
x, Op\ ¢
2Mciy +2¢
TnM = %{gl[wﬂ“(cw —cap)In xn:|

~Oollews +eans Jesng —2capg ) xgm ™! +M} (6.53)

n
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3

P oy +2¢
CoM = OCam Z—J{gl{u—(cw _CZM)lnxn:l

¢

+& (e —canreang )xgm ™ + s } (6.54)
n

-1.,7.
O\M =Mpm TThm lnxn+773M x;W +%, (655)
n
2
p 2 2 2
Wi =(?”J (101 CT + oM 62 + K3 63

TK4MG162 T K506163 + Kep6263)

L2 _i(pn§1]:|2+®2|:i[pné/lJ:|2
Saapm || Op ovi ¢
- 2 2
LA i(!’ngzﬂ +®2{ﬂ(17n52ﬂ
saam || 0@\ & ovi ¢
- 2 2
A i[pn ?3}} 2{i[pn 43}}
saam || O\ & ovi ¢
| Zam _i(pnglJi(pn§2J+®2i(pnglJi(pn§2j:|
Sa4p | OP oo\ ¢ ovi ¢ Jov{ ¢
L su 3(%4 ﬁ(ﬁnfa}r@zi(ﬁn?lj o [pnz;aﬂ
Sgam |00\ & Jop & ovi ¢ Jov( ¢
XM i[png2Ji(pn§3j+®2i(pn§2j o (pn§3J:|
Saapm | O\ €)oo\ & ovi ¢ Jovi ¢

2
Wy =4 J. J. (%j (CDIM CF+@op §7 + D3y CF + Dy 1 $n

+ D581 C3+ PiprCr C3) Qdop dv
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wl27/2

2
4 0 pnéij
N7} Y| £n51
+S44ME.)‘ '([ M {afﬂ( g }
+®2{ (p”glﬂ Qdpdv
ov\ ¢
7l2x/2

4 pné] pnéﬁ
Y Qdpd
+S44M ! ! w {540( ¢ Jﬁcﬂ( g H vy

wl27/2

4 2 pné& pnéﬁ
" s j J.\P4M® {5"( ¢ ]a‘/( ¢ ﬂngodv

ﬁ/2ﬁ/2

s44MI I { (pnajw(pnfﬂgd(pdv

ﬂ/2ﬂ/2

j j q% { (pn;]j (pn;éj}§2d¢dV
S44M ovi ¢ Jovi ¢

ﬁ/2ﬁ/2
+ 4 I j‘P&w{éz(pn§2jéz(pngéj}gzdwdv
Saam p\ ¢ o\ ¢

/272

4 2 _Q_ pnéé _Q_ pné&
+S44M'([ '([%M@ {5"( g Ja"( ¢ Hdedv,

(6.57)

where @, £2; xu; saam, civ (i = 1,2,3) and x5m, yim; Pm, Fim (G = 1,...,6) are
given by Equations (1.13), (1.15), (2.16), (2.21) and (6.13); (6.15),
respectively, and ¢, &, 7im (i = 1,2,3; see Equation (6.13)) have the forms

-1

2
Si=auxy & =§+1HXM’

$y=— x;}IM {%anM +C3M(%_IHXMH )

£ = ey { [Z(CIM +2c5y7) (

3 +(eppr —capr )In xuv}
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—m(l—lnwj}
XN 3
1 2ey x| (2
_{[(CIM +eanr ) eanr = 2oy T+ M = ngy |,
XIN 3
U paSilnm —270m), 1 o0 0 ) Puéi
My = + V3im 4 )
3 ¢ Sa4M op ov)\ ¢
P10 +7 1 0 Pn§
772M={ 61l 2M)+ [7’3M +7am j( n2l )|,
g SaaMm op g
p ey + 1 0 p
- 0 $2 (e su 7/2M)+ (7/3Ma  Yaus J( né’ZJ’
1] ov

g Saanm g

PnS3 VoM 1 ( 0 J(anJ
Nam= + V3 —+Vam — (6.58)
¢ S4aM Op awv )\ ¢

tVam
ov

The normal stress py, is given by Equation (4.6). With regard to Equa-tion
(6.50), the coefficient py in Equation (4.6) is derived as

out = ;{Q(lnxm— j LGl ‘/’3] (6.59)

XIN



CHAPTER 7

MATHEMATICAL MODEL 3

7.1 Mathematical procedure 3

If the mathematical procedure x, 0°Eq.(2.26)/0x, is performed, then we
get

3 63”}1
n

2
+4xn2 0“u, N X, ou, 0. a1

ox, ox2  sula+e) ox,

where s44, ¢i (i = 1,2,3), Uy = Un (xn,@,0) are given by Equation (2.16),
(2.21), (2.28), respectively. With regard to Equation (2.27), (6.2), we get

n aain =C3 (Cl X, + C2 x,? + C3 ), (72)

n

X

where the integration constants C, C», C3 are determined by the boundary
conditions in Chapter 4. If Equation (7.2) is substituted to Equation (7.1),
we get

3
3614"

Up _
; =

62
+4x,?
8x,3, " 6x,2,

Cx, +Cyx8 +C5, (7.3)

Using Wronskian’s method in Section 12.1 (Rektorys, 1973, 225-227), the
mathemati-cal solution of Equation (7.3) has the form

u, :Clxn(é—lnxnj+czxz3 +C3(%+lnxn) (7.4)

and with regard to Equation (2.1)-(2.4), (2.17)-(2.20), (2.29), (7.4), we get
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£, =C G—lnxnj+czc3x,§3‘1+c—3, (7.5)
£p=8,=C (%—lnxnj+C2xZ31+C—3(%+lnxn} (7.6)

Enp =544 O :(g—lnxnj(;—c;+x,§31&+L(l+lnxnj%,

op  x,\2 op
(1.7)
Eno =544 0,9 =O i—lnxn %+x,‘;371&+i l+lnxn %G
3 op op  x,\2 op
(1.8)
o, =C {Cl ~ 7% (o —Cz)lﬂxn}fcz [(e1+ca)es =26, J ™
+ C—3(c1 ~2¢,Inx,), (7.9)
xn
4 — _
%szvzc{ 4 62—(01—Cz)lﬂxn}LCz(q—0203)9553 1
-2
+C—3(u—cllnxnj, (7.10)
X, 2
_ 1
o =1+, Inx, +173 x;3 1+w, (7.11)

Xn

W=C12K1+C22K2+C§K3+C1C2K4+C1C3K5+C2C3K6

i 2 2 2 2
+A % +®2 % +ﬂ a& +®2 a&
Sq4 8;0 ov S44 6¢) ov

2 2
+ﬁ (%J +®2[%J +ﬁ£8C1 8C2 +®2 8C1 aCZJ

Sa4 |\ O@ ov s44\ O O@ ov Ov
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LA 0C; 0C, ey 0C; 0C, LK 0C, 0C; L @2 0C, 0C;
op O@ ov ov Squ\ O O@ ov 0ov
(7.12)

where @ is given by Equation (1.13); and 7;, &, 7« = 1,...,4; k=1,...,6)
are derived as

0C, 8C
n= |:C1 y1+472)+ [7 IH

oC
P I:CI n+72)+ V350 —L+ Vl H,

1 oC
n3=Cyric3+72)+ —[73— sz,
S44

oC: 5C
C3(71+— ( 3+ 3}
2544

1 oC oC
ns=Cyyy+ (7’3 31y, 3],
2544

S44

op ov

cH—C c1—c 17¢i+c
A Uy P 2lnxn+ 172

K= n

>

2
K :|:C3 (C12+02)+Cl (1_203)1 Xfl(cS_l) ,

K3 :%{cl Inx, (lnx,, —1)+02_TZCI} ,
xn

K4 =1c3(e —cz) Inx, + 2{01 _03(20+02)}}x;3—1’

Ks :L[(kl —cz)lnxn —4617_02} ,

n
Kg =[2q(l—c3)1nxn —c+c C3]X,Cl3_2,

=In’x, —g Inx, +§, 1= xﬁ(“’fl),
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73 :%{lnxn(lnxn +1)+%}, X4 = 2[§—lnxn}cﬁ3_l,
xn

25 = [4+Inx,(5-6lnx,)|, 75 =S 22Inx, +1). (7.13)
xn

With regard to (6.14), (7.13), we get (see Section 12.3)

cg—¢c | 3 1) 1 3 1) 1

ch =ITZ{XM|:(IH‘XM —E\J+§:|—XIN|:(1HXIN—§j+§
-3 1) 3 1
+ Xyl Inxy, ——= [—xpn| Inxpy ——

+ (1 Tc1+ ¢y )(xi,[ - x?N )
54

2
CDz _ 1 |:C3 (Clz"r C2)+C1 (1—2C3):|(X12MC3+1 _x%1$/3+1)’

E

B 203+1

CD3 = C]{XM [lan (IIIXM —2)+ 2]—XM[IIIXIN (lnxlN —2)+ 2]}
(&) —201

(xM _xIN) >

03(01 —Cz) cy+2 1 cy+2 1
by=—"="|x 3 Inxy —— |—x 3 Inx -
4 c3 +2 |: M [ M c3 +2J N [ N Cc3 +2

+ ! {2 o+ c3 (023_ 761)}(xc3+2 —xc3+2),

—ci[xpr (Inxy, —1)=xpy (Inxpy —1)]+

M IN

301 —C 2 1 2 1 401 —C 2 2 )
Qg =——= Inxy —— |- In - |- -
5 > [XM ( X 2) XIN| Xy, > 6 (XM XIN

2¢)(1=c3)| ey 1 et 1
o, =—"——37 x 3 1le — |—X 3 lnx -
6 C3+1 M M C3+1 IN N C3+1

CrC3—C1 | cy+1 cy+1
e
c3 +1

3
\Pl =xTM|:(lan —3{1IIXM —%j+l—7:|

9
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3 2c3+1 2c3+1
XIN 1 17 Xy —XIN
—IN (inxpy =3) Inxpy —— [+—|, W,="M "IN
3 {( N )( N 3j 9 2 205 +1

\P3 =Xp lan (1an —1)—)CIN lnxlN (lnx[N -1

2 4 11 4 11
R P TR S |

>

)+ 5((xM4_x1N )

c3+2 3(c3+2) 3(c3+2)
2\x3, —x? 5 1 1
5 3 6 Xy | Xy 5 Xiv| Xy 5

_szw {lan (lan —1)+%}+x12N|:lnxlN (lnxlN —1)+%} ,

! —x5M gy — !
+1 N v c3+1

C3 "rl C3
1 .
s L) (7.14)
C3 +1

In case of the ellipsoidal inclusion, we get (g,,IN)x _o=1x, (O'nlN)x -0

=t due to (lnx,) _,=-, (x;m’ )x o=, and then the

mathematical solutions (7.4)- (7.12) are suitable for the matrix.

7.2 Cell Matrix

The integration constants Cim, Com, Csum are determined by Equations
(4.1), (4.2) or (4.1)-(4.3), and then the following combina-tions are
considered: Cim# 0, Com# 0, Csm=0; Cim# 0, Csm# 0, Com = 0; Com # 0,
Csm# 0, Cim = 0; Cim # 0, Com # 0, C3m # 0. Finally, such a combination
is considered to exhibit mininum potential energy W, = Win + Wu (see
Equation (2.30)).

Conditions Cim # 0, Com # 0, Csmy = 0. With regard to Equations (2.30),
(4.1), (4.2), (7.4)-(7.12), we get
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eyl
ey == 2ol L e e[ iy, | ) (7.15)
; 3 3 Xpm
Egu = En =21
xn
eyl
__ P i—lnxn—(i—lnxn][ = J : (7.16)
BE 3 Xy

P (i—lnxnj ||, (7.17)
8(p 3 Xy

N i{(i—lnxnj( al H} (7.18)
6¢) 3 Xy

Pn {70211/1 —Cm

Oum = ‘ 3 +(crpr —capr )Inx,
4 X Cam 1
+(erar +canr ez —2¢an ](g_lan j[x" J , (7.19)
M
Py | oy —4c
ToM =Oom = ?{M“L(QM — oy ),

4 cyp—1
X.
+(ernr —camesm )(g—lanj( . j , (7.20)

M

-1
Oing =Mas + 1o X, 477300 7Y (7.21)
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cyp—1
3x37

2 2
LM ﬂ(&j 102 i(&j
Saam || Op\ & ovi ¢ )]
2 2
+ ZZM ﬂ pn 4-311’1)(11‘,[ +®2 ﬂ pn 4-311’1)(11\,[
Saam || 0@ 3xpM ov 3xpM
/1/4M i & i 3lan —4
+ Pn -1
Saam 0P\ & ) Op XM

2 [—
+ X4M o i(&}i Dn 3lan _14 , (722)
Saapg OV G )0V 3xpM

z/27)2 2 431 2
= [ 2] o222
3IM T
0 0 g 3xM

2
2
p 4-3Inx 3lnx,, -4
Wy = (—gnJ Kipm +K2M{—M +K4M{—M

4 /27wl 2 2 2 B 2

Pn 2 Pn
+ S0 | B V20 | RS B R | R e W
S44M ! ! 1M {@igﬂ {5"[§ﬂ

4 Rl . A 2
+S I I \PZM a— #(E—IHXMJ Qd@dv
“4M P Cxyp
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2
Qdpdv

4 7l2x/2 o 4
+ I I \PZM @2 L—l( —lanj
Saam ov Sxpm A3

ml2x/2

, 4 IJWmMﬁ{ﬂqﬁ_ﬁﬂﬁEMLﬂ Q dodv
1

Sa4Mm 0P\ & )Op| 3¢ XM

/272
J. J. \P 2 0 ( j 0 pn(3lan —4)
S44M g Jov 3;xf\;M‘1

Qdpdv

(7.23)

where @, €2, xw; Saam, civ (0 = 1,2,3) and &M, im; Pm, Fm (G = 1,2,4) are
given by Equations (1.13), (1.15), (2.16), (2.21) and (7.13); (7.14),
respectively, and ¢, ¢ (i = 1,2), mm (F = 1,2,3; see Equation (7.13)) have
the forms

cyy—1
4
C=§2—§1[§—1HXM} g1 = [(CIM+02M)C3M_202M][ INJ )
M

ey —1c
¢ Z{IM—M—(QM —CzM)lnva} ,

3
U palri +4700) . 4 ( 0 0 j(l?nﬂ
Mm=—7 + s —— Vam— || — ||’
3{ ¢ S44Mm o ov)\ ¢
Pl +72m) . 1 ( 0 0 J[Pnj
Nom = + 73m <t Vam — |
¢ Sa4M Op ov )\ ¢
Pa\Vim 3 7 4
Maag = n( M c3M71 2M)(__1anj
&g 3
1 0 0 4
+ Vam =t Vam = P - [——lanj . (7.24)
Sa4a M a@ ov é’ ;'éM 3

The normal stress py, is given by Equation (4.6). With regard to Equa-tion
(7.16), the coefficient pv in Equation (4.6) is derived as



Mathematical Model 3 65

1|4 4 Canr

X
=—|——Inx ——Inx ZIN . 7.25
Pu 13 N~ (3 INJ( ] (7.25)

Conditions Cim # 0, Csm # 0, Com = 0. With regard to Equations (2.30),
(4.1), (4.2), (7.4)-(7.12), we get

1 1 4
Py %[(5+lanj(§—lnxnj —’;—f‘: (g_lanH’ (7.26)

_ %K; +1ZxMj [ Inx J ﬂ[——lanjGannﬂ (727)
5

& =S44p O Inx, — 412 |2l +1nx
noM 44M OnpM = n 3 6(/; é, M

+i(l+1nani Pn XM (lnx —iJ , (7.28)
x, 2 op| ¢ 3

p 1 ey —Tc
Ot :?”{(E+lanj{u—(qM —czM)lnxn}

+ i[%—lan \J(ClM _ZCZM lnxn )} . (730)

p 1 depp —c
OpM =0au = ?"{(EHHXM][IM#M—(QM —Com )lnxn:|
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+M(§_1anj(w+c3M1nxnj}, (7.31)

+ Inx
O =M + My Inx, +T74MZ¢, (7.32)
n

2 | 4 2
Wiy =(%j [KIM[E'HHXMJ"'K}M xl%/l [E_IHXMJ
+ K5y X l+lnx i—lnx
SM *M B M 3 M
o p, (1 2 o[ p (1 ’
+;(1_M _|:& [_+]anj:| +®2 —|:&(—+IHXMJ:|
Saam 6(0 ; 2 6(0 g 2
0 4 ?
+ X3M _|:pn M (——lan j:|
Saam | |00 ¢ \3

A5M i & l i PnXpm i_
+S44M{3¢’[§ [2+lanHHa¢’[ ¢ (3 lanH}
Z5u® | 0| pa (1 0 [pu (4
+ Sy {av{g [ZHHXMHH@V[ ‘ [3 1anﬂ},(7.33)
/272

2
WM 4 J. J- (p_gJ |:|:\P1M(%+IHXMJ+‘P3M xﬁ(%—lan]

+\P5M XM £%+IHXM\J(§—IHXMJ:| Qd(ﬂdv

w/27/2 2
- Fim —{—” (—+ Inxy, H
S4am I -[ {6(0 ¢ \2

0 0
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o | Dol 2 (e ]
x{%[% G—meH} Qdpdy

T/27wl2
4

i 1 Dot (]2 (fone ]|

0 0

+

(7.34)

where O, 2, xwm; Saam, civ (= 1,2,3) and xm, v P, v (G = 1,3,5) are
given by Equations (1.13), (1.15), (2.16), (2.21) and (7.13); (7.14),
respectively, and ¢, G, M (i = 1,2; j = 1,2,4,5; see Equation (7.13)) have
the forms

4
¢= 42( +lanj—§1(——lanj G =M ey — 2600 Inxgy),
XM 2 3 ]N
ey —7c
Gr =Xy [u—(cw _CZM)lnxlNi| )

ThM:_Pn(71M+472M)(l+lanj 4rm O |p ( +1an]
3¢ 2 3s4ap O ¢ \2
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3S44M ov é’ 2
gy = Pal +72M)(1+1an)+ Vam ﬂ{&(lﬂnwﬂ
g 2 Saaps Op| ¢ \2

L Tam @ &[lﬂanj ,
S44M ov é/ 2
2 4
_ anM( ;’1;1 +72M)(lan __]

LM i|:pan Elan _iﬂ
254am 0P ¢ 3

L Jam O anM(lan_ij ’
2S44M ov g 3

—— M[lnw _ij++ Vaum i{PnXM [me _iﬂ
¢ Saam 0@ € 3

+-Lam i{pnw (me —iﬂ. (7.35)
Saam OV & 3

napm

The normal stress p, is given by Equation (4.6). With regard to Equa-tion
(7.27), the coefficient pv in Equation (4.6) is derived as

_1 l+1nx )(i—lnx ]—M(l+lnx )(i—lnx )
Pm 12 M 3 IN Xy > IN 3 M ||

(7.36)
Conditions Com # 0, Csm # 0, Cim = 0. With regard to Equations (2.30),
(4.1), (4.2), (7.4)-(7.12), we get

Pn 1 cyy—1 x]C\}M
EqaM = — ? C3pf E+lan Xy — _x_ , (737)
n
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u 1 10X
g(pM:ggM: nM:_p_n[(5+lanij3M 1_L

Xy ¢

Pn x;;M_l 1
OnM =~ T [C3M(CIM +02M)—202M] E"'lan
— 28 (¢ +2e3¢ Inx, )}
xl’l
3y -1
Pn X 1
OpM =Ogm =~ %{(CW +CZMC3M)(E+1HXM]

Xn

e -1 Nayp +15p Inx,
oM =M X L

B
n

2 2
Wy :[%J I:KZM(%-I-IHXMJ +K3Mx12\;3M

_ M(CIM —2202M . lnxnj}’

69

@mx,,ﬂ ,

(7.38)

(7.39)

(7.40)

(7.41)

(7.42)

(7.43)
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C3m 1
+ Ko X3f 5+lan
o [pa(1 B EIrne ’
L A2M —|:&(—+1IIXM):| +@2 —{&(—anﬁ,{ﬂ
Sgam | |00 € \2 do[ ¢ \2
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L2 )| O\ Pa || g2 O | Pa i
saap || O € ovi ¢
C3m
, Zo i&[LHMM] 0| P
Saapm | Op| ¢\ 2 dp| ¢
C3m
+®26ﬁ&(i+1anJ B L I G
vi¢ 2 dp( ¢

ml2m/2 2 1 2
WM :4J‘ J. [%J [\I’le(E-Flanj +W3MX§;3M

0 0

+‘P6M)C]CV}M (%+IHXMJ:|Qd¢dV
/272 2
4 0| p,(l
+ \PZM —|:—n(—+lanj:|
Sqam '([ ’([ {a?’ ¢ \2
0 1 ?
+02 | Lo —+1Inx,, Qdpdv
ov| ¢ \2
2
m/2m/2 C3um
+ 4 J’ J“P3M i PnXpp
Saam Jp ¢

2
C3m
+®2i Pn Xy Qdpdv
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[127]2
a " o[ puf1 o [ paxii”
Saam dp| ¢ \2 op| ¢

C3m
022 &(lﬂanJ O | Puu” Qdpdv,
ov| ¢ \2 op g

(7.45)

where @, €2, xm; Saam, cim (i = 1,2,3) and xm, yim; P, Fim (G = 2,3,6) are
given by Equations (1.13), (1.15), (2.16), (2.21) and (7.13); (7.14),
respectively, and ¢, i, 7m (P = 1,2; j = 3,4,5; see Equation (7.13)) have the
forms

53

XIN

¢ =

1 - b
—+lan —C:lx;f["/’ 1, é/lz—lM (C]M_chMlnxlN)’
2 XIN
ey —1
& =lesns (ennr +eanr )-2eap Jear x3

_ DPa X" (iae v +72m)

¢

1 d o\ paxy”
+ 73 =t Vam — >
SaaMm ( op ov j{ ¢

Pn 2y + 720 )( 1 j
= Ln\TIM TPIMIN gy, |+
Mapm 20 (2 M

+ 1 i+ i &(l+lnx j
2 5uanr V3m o0 Vam oy > M ||

Nsypy= —pn Yam (%'FIHXMJ'F

m3m

¢
1 0 0 )| pnfl
+ —+ — | || =+Inx , 7.46
2544m (HM o THM an { ¢ (2 Mﬂ (740

The normal stress py, is given by Equation (4.6). With regard to Equa-tion
(7.38), the coefficient py in Equation (4.6) is derived as
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11 31 XM (]
Py =—||o+nxy xpM - —+Inxpy || . (7.47)
¢\2 xy 2

Conditions Cim # 0, Com # 0, C3m # 0. With regard to Equations (2.30),
(4.1)-(4.3), (7.4)-(7.12), we get

. &[4«1 (l_mxn} £ cyppeion ™! +é} , (7.48)
¢ 3 Xn
oM = EoMm = u:éM

= —%{gl(é—lnx j+§ xgpm g iz(zﬂnx H (7.49)

4 0 s av- 0 ( p,&
EngM =S44M OnpM =~ Hg—lnxn)g(—pg 1j+xn G(p(pcj ZD
+L(l+ln xﬂji(Pn_@ﬂ , (7.50)

X, \2 op\ ¢

4 0 ( p,¢ au-1 0 [ p,<
EnoM =S44M OnoM == 9{ (g—lnxnja—w("leﬂn a(p( "C: 2

+L(l+lnxnji[—pn &3 Ha (7.51)
x,\2 op\ ¢

p oy —Tc
OuMt =~ ?"{51 {me—(cm _CZM)lnxnj|

+&allens +ean Jesnr —2eapg X2 7+ Galeuq ~2epy nz, )} , (1.52)

Xn

4ep0 —c
oM =0 Z——{é“l{w—m (CIM_CZM)lnxn:|

- 3
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| ciy —2¢
+& (ennr —canrezng ) xg +§3[1M—22M+C1M1nxnj}, (7.53)

L+ Mans +Nam Inx, , (7.54)
X

ey —1
O =My +Mon Inx, +1730 %,
n
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P 2 2 2
Wiy :[?"J (ki ST +kom 65 i3 63

TR4MG162 + 508163+ Kep62C3)
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W O | Pnbi ®2 _[ n lj:| Qdod
R e R Gl e
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7r/27r/2
N 4 J‘ \PzM |:i(pn 42 ]:|
Saam op\ ¢

0

A 712712 o(p.c 2 o(p, ¢ 2
v no3 2| Y| PnS3
+S44M I J.%M [6(”( g H 0 {6‘”( ¢ H adody

0 0

4 7/27x/2 5
T T 22
Sa4Mm 0 0

T s
+S44M j J.\P4M® {5_( g
ﬁ/2ﬁ/2
AR
Saam g op @
/272
L4 _[ I‘I’sM@{a(p”gl)a(p”§3ﬂgd¢dv

Sa4m ov
(pn 4’3 Ji| Qd(ﬁdl/

0
o
op
w/2m/2
s jj% { ( J (p”§3HQd¢dv, (7.56)

/272
T { (pné“zj
SaaMm 0 0
Sa4Mm

0 0
where @, £2; xu; saam, civ (i = 1,2,3) and x5m, yim; Pm, Fim (G = 1,...,6) are
given by Equations (1.13), (1.15), (2.16), (2.21) and (7.13); (7.14),

respectively, and ¢, ¢ (i = 1,2,3), im (i = L,...,5; see Equation (7.13)) have
the forms

1
é’ XAEIM 1|:C3M(E+IHXM)—1:|,

1 1 1
=——Inxy —| —+Inx ——Inxy, |,
) 1 M (2 M)(3 M)
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4/3 :x;}M |:§—1an _C3M(§_lan)i| N
ey 1| M _702M 1
¢ =Xy f—(‘fw —eap )Inxgy || 1=c3p 5 Hinxy

+x5]3VM—1 (CIM +6‘2M)C3M —2C2M][%+IHXMJ[%_IHXMJ

X i—lnx + l+ln)c l—1nx
3 0 MM 3 M

X6 1 4
+ M (ClM"‘Clean) ——lan"rC:;M(——lanj N
‘xIN 3 3
& i +47om) 4 0 o | Pnsi
= — — 1 _— |,
mim 3¢ 35aant 73m o0 Yam e ‘
Pa & (in +ram) 1 ( 0 0 J(PnflJ
Mom = + M Vam — || = |
g Saam op ov ) ¢
Pu&o i +7om) 1 ( 0 0 j(l’n é“zj
n3m=- - MtV — || 7
g Saam op ov)\ ¢
Pu&3 Ry trom) 1 ( 0 0 J(Pn §3j
Napm=— - e tram || — = |
g S4am op ov )\ ¢
PnS3Vom 1 ( 0 0 ](Pn 53}
Nsy=— - M —tVam— || T |- (7.57)
¢ S44M Jp ov)\ ¢

The normal stress py, is given by Equation (4.6). With regard to Equa-tion
(6.50), the coefficient py in Equation (4.6) is derived as

Py = l{‘fl [é—lnxm}fffz x;va_l +£(%+lnxmﬂ . (7.58)

¢ XN






CHAPTER &

MATHEMATICAL MODEL 4

8.1 Mathematical procedure 4

The differential equation (2.26) is derived as
Xy, ox

2
Unz—s44(cl+cz)[x,3 a—u2"+2xn%—2un], 8.1)
0 n

where su, ¢i (i = 1,2), Uy = U, (xn,0,6) are given by Equation (2.16),
(2.21), (2.28), respectively. If x,[OEq.(8.1)/0x.], then we get

3 2
X U,y = —saslc +¢3) xg 0 M;’ +4x,% 0 MZ” . (8.2)
X 0x;, Ox;

If Equations (8.1), (8.2) are substituted to Equation (2.27), then we get

3 2
e 24 (4-c3 ) 0 St 2cs w,—x, | g (8.3)
0x;, ox;, 0x,

If u, = x,},‘ , then, with respect to Equation (8.3), we get

uy = C X, +Cy x,2 +C—§ ; (8.4)
n

where ¢3 < 0 is given by Equation (2.21), and the integration constants C,
(>, C; are determined by the boundary conditions in Chapter 4. With
regard to Equation (2.1)-(2.4), (2.17)-(2.20), (2.29), (8.4), we get
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q 2
£,=C; +Cycy xS 23 , (8.5)
xl’l
Ep=6, =2 =C+Cyxg! +C—§ : (8.6)
Xn xn
Enp =544 0pgp = %+x;3_1a&+%%, 8.7)
op op x, O
9 =544 0y =O %+x;3‘laaﬁ+i3% , (8.8)
L ov
1 2Csle+2c
O'nzcl(Cl Cz)+C2[(Cl+6'2)C3 26‘2] c3-1 3(1—32), (89)
xl’l
_ 2
O'(/,:O'V:C1(61—02)+C2(01—C26‘3)x;3 1+—C3(Cl—;_ 02) , (810)
xn
L= + B 8.11)
n
W=K1+K'2x2(c3 1)+ Z+K‘4xc3 1+—3+K6x 4, (812)

n 'x}’l

where @ is given by Equation (1.15); and 7;, x5 (1 = 1,2,3; j = 1,...,6) are
derived as

1 ( ac, ocC
771=C1(71+72)+—(73—1 V4 1)
S44 8;0 81/

1 oC oC
n2=Cy(yc3 +72)+—(73—2 74—2}
544 op ov

1 ( ac, ocC
773—C3(72—271)+— Bty |,
op ov
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B 2 2 2
o 2 3lame)et 1 [ﬂ] +®z[%j ,

2 Sa4 |\ O ov
2 2 5
K3 :{@+61—26203} C22+L [aCZJ +®2(8C2] ’
Sa4 |\ 09 ov
2 2
K3 :3(C]+ZCZ)C§+L (%j +®2(6C3j ,
sa4|\ 09 ov
i = lerme2)2+3)Gi +L[6CI 0Cs , g2 060G ] |
sa\ 09 09 ov ov
K5 = i aCl 6C3 +®2 ac] 8C3 ’
44\ 09 O v ov
Ko = [202(1_03)_01]C2 Cs +i[6C2 0G; +02 0C, 0G J 8.13)
Sa4 5¢ a¢7 ov 1%

8.2 Cell Matrix

The integration constants Cim, Com, Csum are determined by Equations
(4.1), (4.2) or (4.1)-(4.3), and then the following combina-tions are
considered: Cim# 0, Com# 0, Csm=0; Cim# 0, Csm# 0, Com = 0; Com # 0,
Cim#=0,Cim=0; Cim# 0, Com # 0, Csm # 0. Finally, such a combination
is considered to exhibit mininum potential energy W, = Wix + Wu (see
Equation (2.30)).

Conditions Cim # 0, Com # 0, Csm = 0. With regard to Equations (2.30),
(4.1), (4.2), (8.4)-(8.12), we get

X -1
gnM:_% l_CSM[x_nJ . (814)
M

u ¥ c3p -1
Son = oy =2 =—% 1—(x—"J : (8.15)
n M
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0 Pn ey —1 0 Pn
£ = o =—|—| - |-x — ——— 1], 8.16
noM =S44M O noM 8(0( gj n o0 g“xf\jM_l (8.16)

0 -1 0
EnoM =S44M Cnom =~ © —(&J—xﬁw 1—[Lj ,(8.17)
X

ovi ¢ ovi¢ [C\}M—l
cyp 1
p X
Opm =—"2\Cm —Com _[(CIM +C2M)C3M _2CZM]( . j s
¢ Xp
(8.18)
» x ey —1
Ot =0av =— 23 e —cans —(eiar +canr ) [—"j ,
g Xy
(8.19)
Oun =g g XM (8.20)
Wy =K1y + Ko xi(cw - +Kgp X (8.21)
12712
"] K ( 33 ) Ko ( 23,41 2c3M+1)
WM =4 I j —\Xm —XIN +—XM _XIN
3 2C3M +1
0 0
+ K“—M(x;}M o XM +1 )} Qdepdv, (8.22)
3 +1

where O, 2, xiv, xm; Saam, cim (i = 1,2,3) are given by Equations (1.13);
(1.15); (2.16), (2.21), respectively, and ¢, mm, &M, (0 = 1,25 j = 1,2,4; see
Equation (8.13)) have the forms

ey —1
¢ =cnnr —canr —llenns +canr Jesnr —2canr] (%) ,
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mMZ_{pn(ﬂ’m+72M)Jr ! (73Mi+7,4Mﬁ](?nﬂ’

g S4ap op ov

Pa\Y1im Cap 7 1 0 0 p
M ang = o (i 3M71 2M)Jr Vang —t Yan — n
&g SaaMm o9 ov)l ¢

2 2 2
P 3(ews —com)( Pu Lol g2 0 Pe
M 2 g saap || 0@\ & op\ ¢

2
2
(C1M — M )C3M Py
Koy = |:—+CIM “20yay || ——
2

2 £ xSam -1

2
+ 1 i é” ; +®2 i Ll ,
Saam || 0P| & xpM ™ 0P| ¢ XM~

(o~ )2+ ( P T

Kapm

x;,}’”fl g
2 | 0P| O _Pn |20 (Pu|O| _Pn ||
saam | 09\ &) Op| ¢ xim ! ovi ¢ Jov|¢xim™!

The normal stress py, is given by Equation (4.6). With regard to Equa-tion
(8.15), the coefficient py in Equation (4.6) is derived as

1 cyy—1
Py = — 1_(@} . (8.24)
g Xpm

Conditions Cim # 0, Csm # 0, Com = 0. With regard to Equations (2.30),
(4.1), (4.2), (8.4)-(8.12), we get

3
P :_% 1-3(%} , (8.25)
n
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3
s = e = == D1 - (Mj : (8.26)

0 [ p, 1 0 pnxi/f
= = | , 8.27
EngM =S44M CnopM |:a¢ [ é, ) xz 8(0 [ é, ( )

G 1 0 (p,x;
EnoM =544M oy = — O {a— [%J - [p” M ]] . (828)

@ copl ¢
3
X
Ottt =~ 22| c1ag —cape +2cins +2C2M)[ﬂj , (8.29)
4 Xp
3

p X

oM =gy =~ ?" e —canr —(enr +202M)(_MJ , (8.30)
n
N1 8.31
WM =y 5 (8.31)
x’l
Wi = Kipm +’(3—‘/6M+K5—éw, (832)
xn 'xn
1272

T s (s s L[ 11

WM =4 j J. TxM_xlN +T =3 3

0 0 XIN XM
+ Ky 1n[i—Mﬂ Q dpdv, (8.33)

N

where @, (2 xi, xm; Saam, v (I = 1,2,3) are given by Equations (1.13);
(1.15); (2.16), (2.21), respectively, and ¢, 73m, Kim (i = 3,5; see Equation
(8.13)) have the forms
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2
M

¢ =cpy—canr +2(eny 200 ) |
XIN

e —2nm) |1 0 o\ puxis
M3m = + —

3 <t Vam
¢ Saam op ov ¢

2
3
p X
K3M:3(CIM+2C2M)[ . M]

3\ 3\
+ 1 i Pn XM +®2 i Pn XM ,
Saam || O € op\ ¢
oo 2 ﬁ(&ji Pa¥is
M Saap | O\ & ) Op| &

+@2i Pn| 0 M (8.34)
op\ ¢ Jool ¢ )| '

The coefficients 7im, &im are given by Equation (8.23), where ¢ in
Equation (8.23) is given by Equation (8.34). The normal stress py is given
by Equation (4.6). With regard to Equation (8.26), the coefficient pv in
Equation (4.6) is derived as

3
P (Mj . (8.35)
g XN

Conditions Com # 0, Csm # 0, Cim = 0. With regard to Equations (2.30),
(4.1), (4.2), (8.4)-(8.12), we get

=1 3
Enyg == 2 caM( “n ) —2[X—MJ : (8.36)

¢ Xy
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Chapter 8

cyp—1 3
Pu || Xn_ _ | X
XM Xn '

10 ( Paxu
xﬁ op g ,
2 -1 p
EnoM =S44M Onom = —© e % [ngM—l]
X
M
_ L0 [y
xs ov g ’
» X cyy—1
ou == 1 [esnr (e +CZM)_202M]( . j
g Xp
3
= 2(eyy +2e0y )(MJ )
xl’l
cyy—1
p b
CoM =CoM =~ ?" (crar +CZMC3M)[x_nJ
M

cay —1
o = Mo XM

+(enps +2cn )(M

" Napm

X

3
n

B

(8.37)

(8.38)

(8.39)

(8.40)

(8.41)

(8.42)
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2eyy 1), K —4
Wy = egpg X2 ) LI e e (8.43)

Xn

T/2m/2 1 1
LS 2¢y +1 20+ K3y
W 4J‘ J' 2M ( s+l 26y )+ __
M= {2C3M+1 N 3 vy o

XIN XM

oM (x;;M o x ‘1)} Qdpdv,  (8.44)
C3M —1
where @, 2, xix, xm; Saam, cim (I = 1,2,3) are given by Equations (1.13),

(1.15), (2.16), (2.21), respectively, and ¢, xsm (see Equation (7.13)) have
the forms

cyy +2 3
¢ =1lesar (einr +eanr)-2can1] [iﬂJ +2(erps +2¢1) [MJ ,
M

XIN

Kem

. [zcw(1_03]”)_61]‘4](,)?,,J2

_ 2 8 Pn 6 pnx13\/[
Saart 09 ¢ xam ! 0| ¢
2 3
_ 20 i Pn a PnXMm (845)
Saamr OV | ¢ xS | ¢

The coefficients 7m, koM and 73m, &3m are given by Equations (8.23) and
(8.34), where ¢ in Equations (8.23), (8.34) is given by Equation (8.45).

cyy —4
Xpr

The normal stress py is given by Equation (4.6). With regard to Equation
(8.37), the coefficient py in Equation (4.6) is derived as

1 ey -1 3
x x
Py =— (ﬂj - (i} ) (8.46)
¢\ xm XIN
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Conditions Cim # 0, Com # 0, Csm # 0. With regard to Equations (2.30),
(4.1)-(4.3), (8.4)-(8.12), we get

1 cyy 1 3
Enpg == 2201- 3esy (x—"] ~2(e3y —1{xﬂj ;
; C3p +2 Xpm Xy
(8.47)
Egrt = Eou =24
X

1 Y e 3
—_Pny_ 3(’“"] +(C3M_1)(Mj , (8.48)

é’ C3pr +2 Xy Xy

= = 0 [ Pa 3 0 Pn C3p 1
EnoM =S544M OnopM = Gq)[ cj) ey t+2 Ggo[gx]c‘}[Mq Xn

_ M -1 i Pn x]%l (849)
(C3M + 2))63, 6(ﬂ é’

21 0 (p 3 0 P -1
EnoM =S44M Onom = —© %(?nj_ P %[{ c;fw_le;W
M X5

-G i[p"x?”ﬂ, (8.50)

(CSM + 2))63 6(/) é/
vy =1
oo Pn) 3(cras +canr Jesnr —2¢au] [x_njcw
nM M —CoMm
C3Mm +2 X

3
+2(01M +2 CzM)[MJ ’ (8.51)

C3M+2 Xy



Mathematical Model 4 87

3( ) cap 1
= —_Pn _ _am —comem) | Xn
OoM =00Mm = M ~—Cm
g C3Mm +2 Xy
5 3
cy +2c¢ X
M= 2 (—M j , (8.52)
C3Mm +2 Xy
cay =1, m
Oim =M +om X +5-, (8.53)
x}’l
2 -1) K -1, Kspm -4
Wy =K\pm +K2Mxn(C3M )+3—2/1+K4MX;3M +5—3+K6M)C23M N
xn xn
(8.54)
w/2m/2
K K
Wy =4 I j —L (XL —X?N)JF—ZM (xzzvfc}MH —X?ﬁwﬂ)
0 0 3 2C3M +1

K 1 1 K
+ﬂ T_T +&(XIC\;M+2_'X;[{/M+2)
3 XN Xyp C3M+2

+ K3 1n[x—Mj +K6—M(x;}M X _1) Qdpdv,
Xy ) ey =1
(8.55)

where @, 2, xix, xm; Saam, cim (I = 1,2,3) are given by Equations (1.13),
(1.15), (2.16), (2.21), respectively, and ¢, 7im, Km, (P = 2,3; 7 = 2,...,0; see
Equation (7.13)) have the forms

3

1

g=cy—Coyt [MJ 12(c3pr = 1) (erar +2¢21)
C3M+2 XN

cyp +2
X
=3 [(evar +eaar) e3pr —2ca1] [—IN J )
XM
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__ 3 {Pn (i s +720m)
Mam

ey +2 g“x;}M_l
1 0 0
+ [73M_+74M_J % ’
Sa4m Op v\ & xpm
3
e =1 paxa (o —272um0)
M3m =
C3M+2 é/
1 0 PnXpm
+ — 4 — || =,
Saant (73Ma Yam Ov][ ‘
2
P 3
M C3M+2
(C1M —CMm )032M ] p
X —2 +clM_2CZM C3Mm —cn 1
S

2
Y R O I
Saar || Op é’x;}’” -1 op é’va}M -

2 3 2
K3pm Z( Cap —1 3(cipr +2eo ){ pn;M ]
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+@2i(&Jﬁ e |
ov\ ¢ Jov é“x;}[M‘l
Kspr = —2(1_C3M) i[&}ﬂ P Xt
saanv (e +2)| 0o\ ¢ ) dpl ¢
+®2i(&ji pnxl%/[
op\ ¢ )opl ¢

2
P 3(esr —D2eans (1= e3p)—cin ] Pn
oM xam $lespr +2)

L Sl =) of_py |0 puxis
saam(esp +2F 00| cxfpe! J ool ¢

60%(c33, —1) 6[ Dn ]i[ﬁnﬁw} (8.56)

S44M(C3M +2)2 a(P (x;f[M_l 8(0 g

The coefficients 7im, kim are given by Equation (8.23), where ¢ in
Equation (8.23) is given by Equation (8.56). The normal stress p, is given
by Equation (4.6). With regard to Equation (8.48), the coefficient pv in
Equation (4.6) is derived as

1 1 X Can 1 X 3
oy = —1- 3 (ﬂj +(e3u —1)[ij (8.57)
¢| au+2| \xy Xy

8.3 Ellipsoidal Inclusion

In case of the ellipsoidal inclusion, we get Cow = Csiv = 0, otherwise
(”nlN)x,,:o =00, (5nIN)xn o =10, (GnlN)xn:O =z . With regard to

Equations (2.30), (4.4), (4.5), (8.4)-(8.12), we get

UnIN
EnIN = EgIN = EgIN = ; ==Du PIN > (8.58)
n
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op
EngIN =S44IN OngpIN = ~ PIN a(; ) (8.59)
op
EngIN =S44IN TngIN = — O Py avn (8.60)
OuIN =OpIN =OCaN = ~Pn> (8.61)

1 0 0
OlN =~ Pn plN{pn(ﬂ +2)+ (73 Pn +74 P ﬂ , (8.62)
S44IN

op ov
2 2 2
wiy = phy] 22— (a”"j +®2[8ﬂ] , (8.63)
PIN  Saav |\ 09 ov
4 w/2m/2
=§J' j Xy wy Q@ dpdv, (8.64)
0 0

where @, (2, xi, siam are given by Equations (1.13), (1.15), (2.16),
respectively. The normal stress pn is given by Equation (4.6). With regard
to Equation (8.59), the coefficient o in Equation (4.6) is derived as

l_zﬂ. (8.66)

PIN =
Ey
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MATHEMATICAL MODEL 5

9.1 Mathematical procedure 5

If the mathematical procedures 0Eq.(2.27)/0xn, Eq.(6.2)/x, are per-formed,
then Equations (2.27), (6.2) are transformed to the forms

2
x,,a UZ” +(1—c1)aU" =0, 9.1
Ox ox
n n
3 2
U _ _ saalcy +¢2) x2 0 ug +4x, 0 ”2n , 9.2)
axn 5 n 5xn

where su, ¢i (i = 1,2), Un = U, (xn,@,0) are given by Equation (2.16),
(2.21), (2.28), respectively, and c3 < 0. If the mathematical procedure
0EQq.(9.2)/0x, is performed, then we get

2 4 3 2
U, =~ syalc;+¢5) x2 0ty +6x Ouy +8 “n 9.3)
2 4 n 3 2
ox;, 0x, ox, Ox;

If Equations (9.2), (9.3) are substituted to Equation (9.1), we get

4 3 2
2O (7 T2 )

0 x;t 0 x,% 0 x,%

=0, (9.4)

Ifu,= x,f , then, with respect to Equation (9.4), we get

u, = Cl Xn+C2 X;S +C—;+ C4, (95)

Xn
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where ¢3 < 0 (see Equation (2.21)), and the integration constants C;, C,
C;, C4 are determined by the boundary conditions in Chapter 4. With
regard to Equation (2.1)-(2.4), (2.17)-(2.20), (2.29), (9.5), we get

4 2C
£, =C+Creyxp ™ =252 (9.6)
xn
a4 G C
Ep=6, =L =C+Cyxp 42 44 ©.7)
Xn Xy Xn
oC .—1 0C 1 oC 1 ocC,
Enp =S440np = —-t x| —b— —p— 4, (9.8)
op op x, Op x, Op
oC _10C 1 oC 1 oC
£n0 =544 09 =0 | —L+xp T 24— (99)
ov ov. x, Ov x, ov
-1
o =Cile =)+ Gy (e +e3)es =20 |y
_ 2C3(Cl;202) _ 202 C4 ’ (910)
Xy Xn
-1 Cileg+2c¢
%Z(fvZCl(Cl—02)+C2(01—6’203)XZ3 +M
xﬂ
2
N C3(01: o) L aC ’ ©.11)
Xpn Xn
oy =+ + BT 9.12)
xn xn
W=K1+K2xg(c3_1)+K—2+K—g+(K5 + 109 ) xS
xn xl’l
+&+fc7x,§3_4+&+m (9.13)

3 4°
Xn Xn Xn
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where @ and 7, x (i = 1,2,3) are given by Equations (1.15) and (8.13),
respectively, and 7, &; (f = 4,...,10) are derived as

1 ocC ocC
774=C472+—(73—4 +7. _4}

sul g Hov
2 2
K4 =Cq Cz-f-L [8C4J +®2[8C4J ’
s44 |\ Op ov
1
K5 = (cl—cz)(2+c3)cl Cy +— 0Cy 0G, ey 0C 0C, ’
saa\ 09 09 ov ov
Ke = i acl 8C3 +®2 8C1 5C3 ’
s44\ 09 09 ov ov
2
K7 = [26‘2(1—03)_61](:2 C3 L= acz 8C3 +®2 8C2 6C3 ’
Sa\ Op Og ov ov
Ky = (c1—c2) G Cy +L 0G 0Cy 10?2 0C 0Cy ’
sS4\ 09 09 ov ov
1
K9 = (C]_CZC?,)CZ C4 +— acz aC'4 +®2 acz 8C4 ’
a4\ Op 09 v ov
Ko = (e1+2¢2) G G4 4 1[0 06 620G 0Cs | (9.14)
Sa4\ O O0p ov ov

In case of the ellipsoidal inclusion, we get Coiv = Csiv = Caiv =0, other-
wise (un[N)xn:O =00, (g )xn _o =%, (O-nIN)xn —o =%, duetoc; <0

(see Equation (2.21)). In case of Cin # 0, the mathematical solutions for
the ellipsoidal inclusion is given by Equations (8.58)- (8.66).

9.2 Cell Matrix

The integration constants Cim, Com, Csm, Cam are determined by Equations
(4.1), (4.2) or (4.1)-(4.3), and then the following combinations are
considered: Cim #0, Cam# 0, Com= Csm =0; Com # 0, Cam # 0, Cim = Csm
= 0; C3M¢ 0, C4M #* 0, ClM: CZM: 0; C[M * 0, CzM * 0, C4M * O, C3M = 0;
Cim # 0, Cim # 0, Cim # 0, Com = 0; Com # 0, Cim # 0, Cim # 0, Cim=0.
The combinations of Cim, Com, Csm are presented in Chapter 8. Finally,



94 Chapter 9

such a combination is considered to exhibit mininum potential energy W,
= Wn + Ww (see Equation (2.30)).

Conditions Cim # 0, Cam # 0, Com = C3m = 0. With regard to Equations
(2.30), (4.1), (4.2), (9.5)-(9.13), we get

Enbt =—p—§”, (9.15)

UnM Pn 1
EoM = Eom = =-—=|1-—1 (9.16)
? Xn ¢ ( an

1)0(p
£ =s o =—|1-—|—| 2|, 9.15
noM =S44M OnoM ( xn] (p[{j (9.15)
1) 0
EnoM =S44M Tnoy = — © (1——J —{&J (9.16)
X, ) 0p\ &
2c
Oum = _&(CIM —cop - ZMJ, (9.17)
g Xy
C
O'¢M =0gm :_%(CIM_QM _%J, (918)
n

Olpr =y + M (9.19)

'xl’l
Wy =iy +- 2L M (9.20)

Xy, Xy

wl27/2

Wy =4 j J [KITM(xi/I _X?N)+K4M(XM ~xpy)
0 0
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+ KSZM (sz\,[ —x%N)} Qdpdv, 9.21)

where @, 2 xiN, xm; Saam, cim (I = 1,2,3) are given by Equations (1.13);
(1.15); (2.16), (2.21), respectively, and ¢, 7am, KM, (i = 4,8; see Equation
(9.14)) have the forms

2¢Cyis X
$ =y —opy + 2L
XIN

_ Pul2m 1 0 ([ Pn 0 (Pn
Tan = g +S44M{73M5¢(é"j+y3MaV(évﬂ,
2 2 2
_ Pn L J| 2 [Pn 2| 0 [ Pn
K4M_61M(§J +S44M {540(5]]“9 {5"(?}} ’
2 2 2
—(ern - Po| 1 ]| O (Pu 2| 9 (Pu
o = e CIM)[fj Saam [W’(?j]ﬂa av[g“}}

(9.22)

The coefficients 7im, kim are given by Equation (8.23), where ¢ in
Equation (8.23) is given by Equation (9.22). The normal stress p, is given

by Equation (4.6). With regard to Equation (9.16), the coefficient ov in
Equation (4.6) is derived as

pM:i[l_L) ©23)

¢ Xy

Conditions Com # 0, Cam # 0, Cim = Csm = 0. With regard to Equations
(2.30), (4.1), (4.2), (9.5)-(9.13), we get

ey —1

C X

vt = — _pn;M (_xn J : (9.24)
M



96 Chapter 9

u » £ oM -1 1
8¢M = SHM = nM =_sn (_nJ -—, (925)
Xn ¢ Xy Xy

-1 0 P 1 0 (p
s s = 87 | | L]

op é’x;}M_l _xn op

(9.26)

-1 0 P 1 0 (p
EnoM =S44M Onayt = — © | X, v e T ___(—”J ;

v ;xﬁM X, 0v\ ¢
9.27)

=1 )
p X C
O-nM =-2 [(CIM +2€2M)C3M—2C2M]( n j +ﬂ R
g Xy X,
(9.28)
cyy—1
P X c
Oor =0 == 2| (e —capr o) | 2L -2 (9.29)
4 X, X,
_ ey -1, Mapm 0.30
O1\M =Tham *n ), (9.30)
xn
Wy = gy X ) E el ©9.31)
X

n

S

w/27w/2 . |
K K
Y R .
3 XIN XM

+ Kopr (xAC;M‘FZ _x;]3VM+2):| Qdopdv , (9.32)
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where @, 2 xiN, xm; Saam, cim (I = 1,2,3) are given by Equations (1.13);
(1.15); (2.16), (2.21), respectively, and g, xom (Equation (8.13)), xom
(Equation (9.14)) have the forms

>

eyl
¢ :[(ClM +2€2M)03M —202M](mj + 2cm Xy

m m
2
2
i (e +200u) Pn
Koy = { 5 e+ 20m Gp || T
X
M

2 2
L B B e
Saam || 0| ¢ xp ! op| ¢ xam !

2
_ QM %M C3m Pn
Kop = ‘

xj‘éM—l x;}M_l
U S IR 7% DA D RN IS AR (70 DA .
saan | 09\ ¢ ) Op( ¢ xam ! ovi ¢ )ov|cxsm
(9.33)

The coefficients 7m and 7am, xum are given by Equations (8.23) and
(9.22), where ¢ in Equations (8.23), (9.22) is given by Equation (9.33).
The normal stress p, is given by Equation (4.6). With regard to Equation
(9.25), the coefficient py in Equation (4.6) is derived as

1 (e Y1
Py = z (ﬂ] - — . (9.34)

Xy Xp

Conditions Civ # 0, Cam # 0, Cim = Com = 0. With regard to Equations
(2.30), (4.1), (4.2), (9.5)-(9.13), we get

3
2 X
Wr%ﬂ, (9.35)

n
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3
3 0 | PpXin 1 0 [ py
Eront =Saant Tuont = —| X0 —— LS . (937
noM =S44M TnoM [xna(o[ 5 ] . 8(/)(( J] (9.37)

0 px3 1 0 (p
EngM =544M Onors = — ©° {xgg[ nglNJ_x_E(gn ,
n

(9.38)
3
X C
o = £ ; (c1M+2czM)(ﬂ] -2, (9:39)
n n
3
P X c
Cprt =Cgy =— ?" (e —202M)(%J —% , (9.40)
n n
oM =—773§4 + e ) 9.41)
xn xn
wyy =M JaM | FI0M (9.42)
xn xn xn
1272
T ey 11
Wy =4j I 3|33 +K4M(xM_xlN)
XIN M
0 0
+ Kiom [xL— XLH Qdepdv, (9.43)
IN XM

where O, 2, xiN, xm; Saam, cim (I = 1,2) are given by Equations (1.13),
(1.15), (2.16), (2.21), respectively, and ¢, xam (see Equation (8.13)), xiom
(see Equation (9.14)) have the forms
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2
¢ =lesur (e +02M)—202M](XI—N] )
XM

2
3 P
K10 = xpv (eipr+2capr) (?"j

+L{i (mj i(&}(y i{mj i{&ﬂ |
swlool ¢ Jaelc ) ¢ Javle
(9.44)

The coefficients 73m, k3m and 7um, &um are given by Equations (8.34) and
(9.22), where ¢ in Equations (8.34), (9.22) is given by Equation (9.44).
The normal stress py is given by Equation (4.6). With regard to Equation
(8.37), the coefficient py in Equation (4.6) is derived as

xpv —1
py =" (9.45)
gxy

Conditions Cim # 0, Com # 0, Cam # 0, C3m = 0. With regard to Equa-tions
(2.30), (4.1)-(4.3), (9.5)-(9.13), we get

. ey -1
ey = —%” 1- (%j , (9.46)
n

cyy—1
UaM _ _ Pn )y ] (anM _ (e =Dy

Xn ¢ am |\ Xm X,
9.47)
0 p 1 ey —1 O D
e T St {% H N [;— ,1
M
" ey —1 i(l?an ] ’ (9.48)
aux, 0o\ &

EnOM =S44M OnoM
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:_@)2 i Pn _1_ xC3M—1i _Pn
op\ &) au | Op|gxgy

_1_ xfl3M_li _Pn
3 0@ | ¢ xm ™!

cayy—1 0 X
+ 3M —[p" M J : (9.49)
aux, op\ ¢
ey -1
__ Pa e e )es =2con [ x,
OnM =~ —| M —Com -
g C3m Xy
2¢ car —1)x
+ 2M( IM ) M:|’ (950)
C3M Xn
+ cypy 1
V4 M toOmEm | X
OpM =0gy == — | —Cm— — [—”]
¢ M Xy
civlean —1)x
+ lM( 3IM ) M:|’ (951)
C3M Xp
ey =1, Mam
oM =Mm + Mm% S (9.52)
n
_ 2(esp 1), Kam -1, K8m
War = Kipg + Kgpy 325 )+—2 + (g + Koy )+
xn xn
(9.53)
wl/27x/2
K K
=4 ][22t = o222 )
0 0 3 26‘3M +1

LM + Koy (x Gut2 Gy +2)

+K4M(xM_x]N) Cang +2 M IN
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+’“STM(xA24 —x%N)} Qdodv, (9.54)

where O, 2 xin, xm; Saam, civm (I = 1,2,3) are given by Equations (1.13),
(1.15), (2.16), (2.21), respectively, and ¢, xKm (F = 4,5,8,9; see Equation
(9.14)) have the forms

cy—1
£ = cag —Copg — (cinr +conr)esr —2¢a (MNJ

M XM
L 2o (c3pr —Dxpr
C3M XIN
2
(e30 =1)xs Py }
g3y

;(M_IJ {i (_panHZ@z[i(panﬁ
Saam \ M op\ ¢ ovi ¢ ’

(e )2+esy) ( Py T

>

Kapm = Cim {

Kspm _
canr Xy ! ¢
2 i(l’_nji P
Saars 3ar |09\ &) 0 | ¢ xS
202 0 [Pu |0 | __Pu
v ¢ )ov | xsm!
2

P (crr—conr Nesn = Vxus ( Pu

3 ¢

_ oy~ i(P_nJi[anMJ
Saapr iy |09\ ¢ ) oo\ &
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2
P (CIM_CZMC3M)(C3M_1)( Dn j
oM =

cyy =2 c
Xpf éu 3IM

) o p |2 (panj
S44MC32M a¢ ;X;}M71 a(p é/

o2 0| P O [P || (955
ov cjxj}’”*l ov ¢

The coefficients 7im, &m (i = 1,2) and 74m are given by Equations (8.23)
and (9.22), where ¢ in Equations (8.23), (9.22) is given by Equation (9.55).
The normal stress p, is given by Equation (4.6). With regard to Equation
(8.37), the coefficient py in Equation (4.6) is derived as

eyl
1 1 (xﬂjw _ (C3M_1)xM ) (9.56)

Py =—5l-——
¢ cp |\ Xy XN

Conditions Cim # 0, Csm # 0, Cam # 0, Com = 0. With regard to Equa-tions
(2.30), (4.1)-(4.3), (9.5)-(9.13), we get

3
DPn 3 XM
ey = 2ol | 9.57
nM é, 2[)6,,,} ( )
1 3 3
ey =gy =M _ _ Pn |y JPAM | 2XM 9.58
oM = fo = ’ Z[xn 2x, (9.58)

2
_3 i( n XM H (9.59)
2x, O¢ ¢
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o (p 1 0 |p xi
Ener =Saart Tnopt = — ©° [%(?”]+ . %[HTM
'xl’l

S B PR (9.60)
2x, Op 4 ' '

3
XM 302M XM
e —can — (e +202M)(_] =

é’ xl’l xl’l
9.61)
2 : 3
p CMmt<Cm | Xm M *m
O'(pM:O'BM:_?n clM_CZM‘Ff B
n n
9.62)
By | Mam
Ol =Mm +—3+ , (9.63)
Xn xn
K K, K, K K
Wag = Kiag + 324 n 434 N 6§/[ LM 10;\4’ (9.64)
X, X, Xy, Xn X,

7l2ml2 1 1

Kim (3 3 ), K3m

Wy =4 _[ J. [T(XM _XIN)+3T[T_T]+K4M(XM _xIN)
0 0 XIN M

X K
+Kem ln(xiJ + ZM (xnzd - X%N)
IN

+K10M[L— ! j Qdepdyv, (9.65)
XIN XM

where @, (2 xiN, xm; Saam, v (0 = 1,2,3) are given by Equations (1.13),
(1.15), (2.16), (2.21), respectively, and g, x3m (see Equation (8.13)), xm (f
=4,6,8,10; see Equation (9.14)) have the forms
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3
xM 3C‘2M.XM
¢ =cp—con — e +252M)(_j A

XIN

2
Pu i
2¢

K3 = 3(ewr+2can) [

3 2
U o (e || Lol 2
SaaMm 8¢ 24/ ov

2
3pan
2¢

2
L] i(3pnwj e
Sqam |09\ 24

P i(ﬁ_nji Py 1y
Saam |0\ ¢ )0 2&

Kam = (

XIN

Pu¥u
2¢

2
o = _ XM (c1nr—com) (P_n]
s =T

3 i[ﬂ_nJ_(anM
2sqap |09\ & ) Op

5 \2
B __3(C1M+203M)[anM
oM =

4

_ 3 i pnx/3\/l i(pan]
dspapr |00 & oo &

B

“JI}



Mathematical Model 5 105

3
+ 0’ _aa (””"M ]_a (panJ]' (9.66)
v ¢ ov ¢

The coefficients 7im (i = 1,3), xim and 77am are given by Equations (8.23)
and (9.22), where ¢ in Equations (8.23), (9.22) is given by Equation (9.66).
The normal stress p, is given by Equation (4.6). With regard to Equation
(9.58), the coefficient pv in Equation (4.6) is derived as

3
ooy = - 1+1(M] _ 3w | (9.67)
g 2\ xy 2xv

Conditions Com # 0, Csm # 0, Cam # 0, Cim = 0. With regard to Equa-tions
(2.30), (4.1)-(4.3), (9.5)-(9.13), we get

cyy—1 3
Eay = _ S3M Pn_ (x_nJ - (X_MJ , (9.68)
é, M Xn
Eort = Equ = —
oM oM X,
eyl 3
- 1 RC YV V2 R YV ) V) S
¢ |\ xy 2\ x, 2x, ’

EnpM =S44M CnoM

3
_ | vl 0 Pn M 0 PnXpm
*n T
0P ( &xm™ 2x; Op| ¢

_ C3M+2 i PnXm (9.70)
2x, O¢ ¢ ’

EnOM =S44M OnoM
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3
__@> x£3M—li Dn 1 +63A§ 0 | PnXm
ov gx;}M_ 2xn ov g

_Gm+2 0 [ Po¥m 9.71)
2x, ovl ¢ ’
cyp 1
p X,
o == 21 [enar +canr Jesnr —2ap ] (—"]
g Xy
Xy ’ conr (esnr +2)xu
— (e e3p +2cap )| 2L+ ,
n xn
9.72)
-1
V4
OoM =0y =~ ?" (ClM +Cm CzM)[x—"j
M
3
L GM (e +2con) (xar | cina (e3n +2)xy
2 X, 2x, ’
(9.73)
i =M XM T+ 773]3” + UiM ’ ©.749)
Xn n
Wi =Koy x,%(c“” 1)+ 3]6\/[ +K4—§/[+K x;3M74
xn xn
+rgppegn !+ FLUL (9.75)
xn

w/27m/2 1 1
_ Kom 23+ 2c3M+1) K301
WM =4 J. J. |:—(XM _x]N +T T—T
XIN XM
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K - -
+ &gy (g =gy )+ (xcle i 1)

M TXIN
(62374 -1
Kops (xc3M+2 C3M+2)

+ -x
ey +2 M N

mw[L_;J Qdpdy . ©76)
XIN XM

where @, 2, xix, xm; Saam, cim (I = 1,2,3) are given by Equations (1.13),
(1.15), (2.16), (2.21), respectively, and g, xim (i = 2,3; see Equation
(8.13)), xim (j = 4,7,9,10; see Equation (9.14)) have the forms

C3p—1
¢ =1 llews +2ean)esn _ZCzM](x’—NJ L 3%m Xm
xM x[N

3
— 3y (e +2¢21) (;Ci] " W(CT—JFZ))CM}’
IN -

fenrrean) 2
CimtCom )M p
Koy = { +o —2¢u Cay .

2 ;va}M*I

2 2
+ 1 i Pn +®2 i p—n
Saapm || O §xf\jM71 ov ;’xf‘,}"”*l

3 \2
PnC3m xM]

2¢
5 2 2
. _Gum {i[anMH +®2{£(PMMH ’
2sqam || O\ & ovi ¢

P (c3p+2) ?
2¢

2 2
L Gm+2 |:i[anMJ:| +®2|:i(panj:| ’
Saam || 00\ 28 ov 24

v =3(cir+2¢pr) {

Kam = QM {



108 Chapter 9

_ esn[2(-csu)eans —ciu] ( Py T

" 2xC3M -4 g
C3M a Pn a pnxl%/[
S44M o9 ¢ xpu ! | ¢
3
@2 a pn a p}’l'xM
ov | ¢ xS cxam T fov | ¢ ’
o = xar (enr—canr e3nr eanr+2) ( pa
oM = e3y—1
Zx ¢

C3M+2 6 p
25400 | 09 ngBMl 5(ﬂ C
@2 a i pl’l'xM
v ;xcwfl av ’

Ko = —C3pr (erar+2eanr )eap+2) (%}

_caulesy +2) lg[pnxa ]i(pnm J

4S44M 6(/) é/ 6(0 é,
L 02 0 | P Xy | 0 puxu 9.77)
ovi ¢ Jovl ¢ ' '

The coefficients 7 (i = 2,3) and 74m are given by Equations (8.23) and
(9.22), where ¢ in Equations (8.23), (9.22) is given by Equation (9.77).
The normal stress py is given by Equation (4.6). With regard to Equation
(9.58), the coefficient pv in Equation (4.6) is derived as

cyp 1 3
Py = 1 (Mj L Om [MJ  (oam +2)xy . (9.78)
g )CM 2 X[N ZXIN



CHAPTER 10

MATERIAL STRENGTHENING

The mathematical model of the material micro-strengthening oy=0ow(x1)
and the material macro-strengthening o, results from the following ana-

lysis (Ceniga 2008, 102-105). Figures 10.1 and 10.2 show the plane x"%x"
in the cubic cell (see Figure 1.2) for x:€(0, ai) c, respectively, where
[x1,x2,x3] are coordinates of the point P — xxs, and a; is a dimension of
the ellipsoidal inclusion along the axis x; (see Figure 1.2).

X X3
7 dn

,X}’
/ P 4n

E
P, 23 dr2

0 \
(P \ X3 XZ
(e} Z
Py Pi| /P X5
/ X2
X1

Figure 10.1. The plane x"2x"3 in the cubic cell (see Figure 1.2) for x1€(0, ai), where
[x1,x2,x3] are coordinates of the point P — x"2x5. The plane O'P1P; with the ellipse
E>; represents a cross section of the ellipsoid inclusion in the plane x> x'.

The plane O'P\ P, with the ellipse E>3 (see Figure 10.1) represents a cross
section of the ellipsoid inclusion in the plane x> x5. With regard to Figures
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8.1, 8.2, the goniometric functions in Equations (1.7)-( 1.16) have the
forms

. X X1 X2
Sy =—=——, COSQp=——+———, tanp=—=,
\lez +x§ \lez +x§ !
2
siny = cosv :#, X, = 3 , (10.1)
Xt + x5+ x5 cos¢
where cos@is given by Equation (1.12).
5] X3
o d/2
X1
/L P2 an
d/2
vy P
0]
® s 2
O'
Py |/P3 X5
/ X2
X1

Figure 10.2. The plane x>x5 in the cubic cell (see Figure 1.2) for x1€{a1, d/2),
where [x1,x2,x3] are coordinates of the point P — x"x 3.

With regard to Equation (1.2), the parameters b, b3 of the ellipse E»3 along
the axes x", x'3, respectively, are derived as (see Figure 8.1)

,2 2 ,2 2
a ar — X azy\ar — X
b2=0'fi= 2V 1’ b3=O'P2= 3V4 1

a a

, (10.2)

and then we get
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[2_ 2
by=pp=8N22 702 (10.3)

a

The material micro-strengthening oy = ow(x1) represents a stress along the
axis x;, which is homogeneous at each point of the plane x’x with the
area S=d*4, i.e., 0w % f (x2, X3).

If x1€(0, a1), then the elastic energy surface density Wy, which is induced
by oy, and accumulated within the area Siv = 7 b2b3 /4 of the plane O'P1 P>
and within the area Sy = (d/2)? - Siv of the plane x’x"3 (see Figure 10.1),
has the form

2
Wy =woiy, (10.4)

where oy is related to the interval x;e€(0,a,), and the coefficient w is
derived as

2
6!):l 7Z'b2b3 L—L +d— , (105)

where Env and Ev is Young's modulus for the ellipsoidal inclusion and the
matrix, respectively. The elastic energy surface density Wis, which is in-
duced by the stresses giq = o14(x1) (¢ = IN,M; see Equations (5.33), (8.62),
(6.22), (6.33), (6.44), (6.55), (7.21), (7.32), (7.43), (7.54), (8.20), (8.31),
(8.42), (8.53), (9.19), (9.30), (9.41), (9.52), (9.63), (9.74)), has the form

1{w /4
WlS:_[ INS 1MSJ’

2\EN  Ey
by ( by
Wins =.[ J.O'lznv dxs | dxy
0\ 0
by( d/2 d/2( d/2
WIMS:J‘ Jaledx3 dx2+'[ J‘O'12de3 dxy, xle<0,a1>.
0l by 0\ b,

(10.6)
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The material micro-strengthening ois = ois(x1) for x;e(ai, d/2), which
results from the condition Wy = Wis (Ceniga 2008, 102-105), is derived as

N m+M, x1 €{(0,a). (10.7)
1st 1 1
2(0 EIN EM

If x e(O,a1>, then the elastic energy surface density Wy, which is

induced by oy and accumulated within the area Sy = d*/4 of the plane
x"x" (see Figure 10.2), has the form

2 2
w,, = st d ’ (10.8)
8E),

where oy is related to the interval x;e{ai, d/2). Similarly, we get

d/2d/2

w. d

WZS = ZMS N WZMS = I _[012 de dX3, Xrelay,— ). (109)
2By 0 b 2

4

With regard to the condition Wy = W>s (Ceniga 2008, 102-105), we get

231 (10.10)

Ot = d .

Finally, the material macro-strengthening o, is derived as (Ceniga 2008,
102-105)

o d/2
O-St:; jalstdx1+ J.O-Zstdxl . (10.11)
0 0

If fin < pu or fin > Pu, the material strengthening exhibits a resistive
effect against compressive or tensile mechanical loading, respectively,
where 3 (¢ = M,IN) is given by Equations (3.1)-(3.6), (3.17), (3.18).
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The material macro-strengthening oy, = GS,(VIN,al,az,a3) is a func-tion

of the inclusion volume fraction vy and the dimensions ai, a,, as of the
ellip-soidal inclusion (see Equation (1.1)). In case of a real matrix-
inclusion composite, such values of the microstructural parameters vin, a1,
a», az can be numerically determined to result in a maximum value of

Oy
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MATERIAL CRACK FORMATION

11.1 Mathematical Procedure

The mathematical model of the crack formation in the cell matrix and the
ellipsoidal inclusion results from the following analysis. Figure 11.1a and
11.1b shows a solid continuum with the volume / in the Cartesian system
(Ox1x2x3) without and with a crack, respectively.

X3 X3

6: f15=115(x12,9)

(b)

Figure 11.1. The solid continuum of a general shape with the volume V in the
Cartesian system (Oxix2x3) (a) without and (b) with a crack, respectively. The
crack is formed in the plane xix2. The shaded area repre-sents cuts of the solid
continuum in x1x3, X1x2, X12x3, where x12C x1x2, ¢ = £ (x1,x12) €(0,m/2), x12x3 L
x1x2. The curves 1, 2, 3, 4 are outlines of the cuts in the planes x1x3, x1x2, X2x3, X123,
respectively. P and P" are points of the axis x12 and the curve 4, respectively. The
curves 5 and 6 represent the crack shape in xix3, xi2x3, respectively. The crack
shape in x12x3 is defined by the function fi2 = fi2 (@, x12,x3), which is determined by
the cylindrical coordinates (¢, x12,x3). The curve 7 defines a position of the crack
tip in x12x3. Poc x1x2 represents the crack tip related to the plane x12x3.
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The crack is formed in the plane xix,. The shaded area represents cuts of
the solid continuum in xix3, x1x2, X123, where x12C xix2, @ = £ (x1,X12)
€(0,m/2), x12x3 L x1x2. The curves 1, 2, 3, 4 are outlines of the cuts in the
planes xix3, x1x2, X2x3, X12x3, respectively. Additionally, P and P" represent
points of the axis xj» and the curve 4, respectively. The curves 5 and 6
represent the crack shape in xix3, x12x3, respectively. The crack shape in
x12x3 is defined by the function fi» = fi2 (x12,¢,), which is determined by the
cylindrical coordinates (xi2,x3) for the parameter ¢pe(0,n/2). The curve 7
defines a position of the crack tip in xi2x3. The point Poc x1x> represents
the crack tip related to the plane x2xs.

X3 %2
i P" 7
N
e /d_V
ds(12)

f12=f12(X12,0)

sy,

451y

X]

X12

Figure 11.2. The infinitesimal prism with the height |[PP"| (see Figure 11.1b) and
the infinitesimal surface dSi2 = x12 d@ dx12 in x1x2. The infinitesimal crack surface
dS1? is related to the infinitesimal crack length ds(? at the point P' (see Figure
11.1b). The function fi2 = fi2(x12,¢) of the variable x12 for the parameter pe(0,7/2)
defines the crack shape in the plane x12x3.

Let the energy W = deV be accumulated in the volume V, where w is

i
energy density. Let ¥ tend to be released by the crack formation in xox3.
The same is also valid for the infinitesimal energy dW , accumulated in the
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p
volume dV = J. dS), dx5 of the infinitesimal prism (see Figure 11.2),

P
where dS1» = x12 dg dx3, and then we get

P'l PH
dw = J.WdVZ .[WdS12 dX3: Wc(lz) X12 d(ﬂdxlz 5 (111)
P P

where the curve integral Wc(lz) has the form

pn

w2 - Iw(x12,¢,x3)dx3 : (11.2)
P

The crack is formed in the plane x; x, provided that the condition

p" pre)
J-w(xlz,go, x3)dx3 = jw(xlz,w,—x3)dx3, Qe <0,2ﬂ'> (11.3)
P P

is valid for ¢ €(0,n/2), where P’’ is an intersection point of the line PP’
with the solid continuum surface for x3 < 0. The energy dW is in an
equilibrium state with the energy dWes = y dS"'?, which creates the infini-
tesimal crack surface dSU? = ds'? x1, de, where yis surface energy den-
sity. The infinitesimal crack length ds(? is derived as (Rektorys, 1972,
276)

ds 12 =dx;, x . (11.4)

(11.5)
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where the following condition

Wineg— 7420, q=M,IN . (11.6)

is required to be fulfiled. The subscript ¢ = M and g = IN in Equations
(11.5), (11.6) is related to the crack formation in the cell matrix and the
ellipsoidal inclusion, respectively. Additionally, the condition

Wireg=74=0, q=M,IN . (11.7)

defines a limit state (i.e., a critical state) for the crack formation in the
plane x1x, with respect to the parameter @e(0,n/2), i.e., the infinitesimal
crack with the length dx, is formed in the plane x;x, for p(0,7/2).

If fi2q = fi2q(x12,9) is a decreasing or increasing function of the variable x>
for the parameter @<(0,n/2), then the sign “-” or “+” is considered,
respectively. With regard to Equation (11.5), if 0 fj5,/0x,<0 and

0 Winey/0x12<0 or 0 Winey/0xp>0, then 0°fj,,/0x5>0 or

0?2 Ji2g/ 6x122<0, and the decreasing function fioq = fioq(x12,¢0) of the

variable x> for the parameter pe(0,n/2) is convex or concave is, respec-
tively.

Similarly, — if 0 fj54/0x2>0 and 0 Moey /0x12<0 or

0 Wineg!0x12> 0, then 82 fi5,/0x2<0 or 0°fp,/0xi2>0, and the

increasing function fioq = fiaq(x12,¢) of the variable x;, for the parameter
@e(0,m/2) is concave or convex, respectively.

In case of an intercrystalline crack in polycrystalline materials, we get
(Skocovsky and Bokuvka and Palcek, 1996, 93)

7q:7/Bq’ q:M’INs (117)

where jgq represents inter-atomic bond energy density per unit length,
which is related to the boundaries of crystalline grains.
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In case of a transcrystalline crack, the energy density per unit length, y,
has the form (Brdicka, 2000, 173)

Kic
Vg = E", q=M,IN, (11.8)

q

where Kicq and Eq is fracture toughness and Young’s modulus, respecti-
vely, for the matrix (¢ = M) and the ellipsoidal inclusion (g = IN).

The crack formation in the cell matrix and the ellipsoidal inclusion results
from the curve integrals Wisxem and Wisn, which are determined with
respect to the cubic cell (see Figures 1.2, 11.3). The model system in
Figures 1.1 is symmetric. With regard to Figure 11.3, the crack formation
in the plane xix, is sufficient to be investigated within one eighth of the
cubic cell, i.e., for the parameter pe(0,m/2) and the angle ve(0,n/2).

X3 d/2

dr2

1 —_—

1

i \

o) VG X,

{9y )\ ‘s

Figure 11.3. One eight of the cubic cell (see Figure 1.2) and the central ellipsoidal
inclusion the centre O and with the dimensions aiv = OI, axw = O2, asw = O3
along the axes x1, x2, x3 of the Cartesian system (Oxix2x3). The ellipses E12, E123 in
the planes xix2, x12x3 (see Figures 1.2, 1.4) are given by Equations (1.5), (1.6),
respectively, where ¢ = £ (x1,x12) €(0,1/2), x12x3 L x1x2, X12 < X1X2, X9 L x12. The
coefficient c¢ is given by Equation (1.10).
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With regard to the plane x.x3 for ¢ =Z(x1,x12) €(0,7/2) in Figure 11.3, the
elastic energy density wm = wym (X, @, V) and win = win(xn, @, V) in the cell
matrix (see Equations (5.23), (6.23), (6.34), (6.45), (6.56), (7.22), (7.33),
(7.44), (7.55), (8.21), (8.32), (8.43), (8.54), (9.20), (9.31), (9.42), (9.53),
and (5.34), (8.63)), respectively, is determined as a function of the
coordinates xn, ve(0,m/2) (see Equations (1.5)-(1.16)).

The elastic energy wq = wq (X12,9, X3, a1, @2iN, @3N, VIN) (¢ = MLIN) as a
function of the cordinates x2, x3 is determined by the following transfor-
mations

Xy, =—— , siny = CosV =

X
3 y= arctan[ 12 j,
A )C122 +X§ X3

(11.9)

ﬂxlz +X3

where cos@is given by Equation (1.12).

11.2 Cell Matrix

The curve integral Wisem of wm = wm(xi2,x3,9,a1,a2,a3,viN) along the ab-
scissa PP, (see Figure 11.4) in the plane xi2 x3 of the matrix (see Figure
11.3) is derived as

d/2

Wiaenr =Wiaem (%12, 0.1 @13- @3 13-V ) = '[ Wy dxy = J.WM dxy .
AP, 0

(11.10)

The elastic energy density wy = ww (xn,@, V) is a decreasing function of the
variable x,. Consequently, Wi is a decreasing function of xi», i.e.,
OWioep 10%12<0, and the sign “-” in Equation (11.8) for ¢ = M is

considered, ie., O fioopr/0X2<0. Due to OWjp s /0x,<0 and

0 fioem 10x12<0, we get O 2f12CM /8x122 >0, and the decreasing func-

tion fiam = fiam(x12, @,a1n,a2i8,a318,vin) Of the variable x;, for the parameters
9e{0,1/2), ain, axn, asin, vin is convex. Consequently, the following
condition
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(Phoenr )y ym=0. (11.11)

12=412

represents a transcendental equation with the variable a1, and the parame-
ters parameters @<(0,m/2), a1, @2iN, @3N, Vin. The root xj, = al(é(j& of this

transcendental equation for yv given by Equation (11.7) or (11.8) repre-
sents such a dimension of the ellipsoidal inclusion along the axis x12 < x1x2
(see Figure 11.3), which defines a limit state (i.e., a critical state) for the
intercrystalline or transcrystalline matrix crack formation in the plane xx;
with respect to one value of the parameter ¢e(0,m/2), and then X = IC or X

= TC, respectively. Accordingly, if agg} < al(sz/I) or agg} > al(ZTE), then

the intercrystalline or transcrystalline matrix crack is formed in the plane
X1x2, respectively.

Consequently, if the function ag(j\} 201(5(131((Ps011Nsa21Naa31N) X =

(X)
min M

IC,TC) of the variable @e(0,m/2) exhibits the minimum a

Q= ¢Jr(n)1(3  » Which defines the limit state with respect to the formation of

for

the intercrystalline matrix crack (X = IC) or the transcrystalline matrix
crack (X' = TC) in the plane xx, for each value of the parameter p<(0,1/2)
and at the microstructural parameters aim, g2, g3, VIN.

X3
P,
X12
Eix;
3
X12
O 4 P, 5

Figure 11.4. The ellipse E123 and the abscissa P1P, in the matrix plane xix2 of the
cubic cell (see Figure 11.3), where ai12 = O4 and x122 = O35 are given by Equations
(1.6) and (1.9), (1.10), respectively, and a3 = O3.
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If a5 > ag{[\z[ (X=1C,TC), then the following condition

Wisen — 731 =0, app >ala)y, X =IC,TC (11.12)

represents a transcendental equation with the variable x> and with the root
X12 = xom = Xom(@,a1mv,a2v,a317,VIN), Which defines a position of the crack
tip in the matrix (see Figure 11.5).

X3
Ei2;
3
f1om
Xom
X12
O 4 6 5

Figure 11.5. The decreasing function fiam = fiam(x12,@,a11N,a27,a31N,viN) of the
variable x12 €{a12,xom), which defines a shape of the matrix crack in the plane x12x3

(see Figure 11.3) for ajp >alyy (X = IC,TC; see Equations (11.13), (11.14)),

where xom= xom(@,a1m,a2mv,a3,viN) defines a position of the matrix crack tip, and
the microstructural characteristics aiN,a2iN,a3N,vIN - are  parameters of this
decreasing function, where a2 = 04 and x122 = OS5 are given by Equations (1.6)
and (1.9), (1.10), respectively, and a3 = O3, xom = O6.

The decreasing function fiam = fiam(X12,@,a1N,a217,a3187,ViN) of the va-riable
x12 €{an,xomy and with the parameters @e(0,m/2), ain, an, d3N, VIN,
which defines a shape of the matrix crack in the plane xi2x3 (see Figure

11.3) for a5 > a\5), (X=IC,TC), has the form

Jiom =Cy —J.

2
|:VV126M:| _1 dX12, x12 €<a12:x0M> . (1113)
M
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The integration constant Cv = Cm(@,a117,a217,a318,VIN) 1S derived as by the
condition

(fia gy =gy, =0 (11.14)
and then we get
2
Cy = I {le—‘M} -1 |dxpy : (11.14)
M

X12=Xom

11.3 Ellipsoidal Inclusion
The curve integral Wixan of winv = win(X12,%3,0,a1,a2,a3,vin) along the ab-

scissa PP, (see Figure 11.6) in the plane x;, x3 of the ellipsoidal inclusion
(see Figure 11.3) is derived as

Waeiny =Whaemv (¥12,0.a1 5. a01v, @373 vy ) = '[WIN dxy + JWM dx3

BP PPy
a d/2
=J.W[NdX3+ .[WM dX3 , (1115)
0 a
X3
)
X12
3
P Ein
X12

0 P, 4 5

Figure 11.6. The ellipse E123 and the abscissa P1P2 in the inclusion plane x1x2 of
the cubic cell (see Figure 11.3), where a2 = O4 and x122 = OS5 are given by
Equations (1.6) and (1.9), (1.10), respectively, and a3 = O3.
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where a2 = 04 and x122 = OS5 are given by Equations (1.6) and (1.9), (1.10),
respectively, and then a = |P1P| is derived as

a=|plp|=a3—valzz_x122

s X12 €<0,6112>. (1116)
a2

If Wizan is a decreasing or increasing function of the variable xi», i.e.,

OWioen 10x12<0 or OWjpen/0x1,>0, then the sign “-” or “+” in

Equation (11.8) for ¢ = IN is considered, respectively. In both cases we get

2 2 .
0 flsz /8x12 >0, and then fioiv = fiain(x12, 9,a118,@21N,G31N, VIN) 1S @ con-

vex function of the variable x;, for the parameters pe(0,m/2), ainN, @z,
Aa3IN, VIN.

Consequently, if Wixan is a decreasing function of xi», then the root al(é(lg\/

of the following transcendental equation

(Maeiv ), —o— 7iv =0. (11.17)

12
represents such a dimension of the ellipsoidal inclusion along the axis x>
c xix2 (see Figure 11.3), which defines a limit state (i.e., a critical state)
for the intercrystalline or transcrystalline inclusion crack formation in the

plane xx; with respect to one value of the parameter ¢<(0,1/2), and then

ey . (10)

X = IC or X = TC, respectively. Accordingly, if ap,;y <appy or

al(ég\), > al(zT]CA;, then the intercrystalline or transcrystalline inclusion crack

is formed in the plane x;x,, respectively.

Consequently, if the function a1(§(13v :agg\,((o,allN,azm,ayN) X =

IC,TC) of the variable @e(0,1/2) exhibits the minimum al%), for
()

@ = @in v » Which defines the limit state with respect to the formation of

the intercrystalline inclusion crack (X = IC) or the transcrystalline inclu-
sion crack (X = TC) in the plane xix, for each value of the parameter
@e{0,m/2) and at the microstructural parameters a1, d2iN, @3N, VIN.

If a, > al(é(lgv (X=1C,TC), then the following conditionlf a;, > al(é(lg\,
(X=1C,TC), then the following condition
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Wiaev=—riv =0, ap; >a1(§(13\,, X =IC,TC (11.18)

represents a transcendental equation with the variable x;, and with the root
X12 = XomN = Xom(@,a1N,a218,d318,Vin), Which defines a position of the crack
tip in the ellipsoidal inclusion (see Figure 11.6).

X3
Eix;
3 flon
X0IN
X12
O 6 4 5

Figure 11.7. The decreasing function fiaiv = fiain(x12,@,a1N,a2iN,a3N,ViN) of the
variable x12 €(0,xon), which defines a shape of the inclusion crack in the plane

x12x3 (see Figure 11.3) for aj, >a1(5([3\, (X = IC,TC; see Equations (11.19),

(11.21)), where xomn= xom(@,a1N,a21N,a31N,VIN) defines a position of the inclusion
crack tip, and the microstructural characteristics ai,a2m,a3N,VIN are parameters of
this decreasing function, where a1 = O4 and x122 = OS5 are given by Equations
(1.6) and (1.9), (1.10), respectively, and az = O3, xom = O6.

The decreasing function fioiv = fiamn(X12, @,a1m8,@2m,a318,vin) of the va-riable
x12 €{aiz,xony and with the parameters @e(0,m/2), ain, 2N, a3, VIN,
which defines a shape of the inclusion crack in the plane xj2x; (see Figure

11.3) for a5 > a3y, (X=1IC,TC), is derived as

Jiow =Ciy —I
YIN

2
|:WlZc[N:| ~1 |dxip, x5 €(Oxgpy).  (11.19)
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The integration constant Cix = Cin(@,a1mv,@21v,@318,VIN) 1S derived as by the
condition

(2w )y =x,py =0 (11.20)
and then we get
2
Cpy = j {—W;MN} -1 |dxp, . (11.21)
IN
X12=Xo v
X3
Ei23
3
fion
XoIN
X12
O 6 5

Figure 11.8. The increasing function fiain = fi2ain(X12,@,a1N,a2iN,a31N,vIN) of the
variable x12 €{xomN,a12), which defines a shape of the inclusion crack in the plane

x12x3 (see Figure 11.3) for ajp >a1(§(1])\, (X = IC,TC; see Equations (11.19),

(11.21)), where xomn= xom(@,a1N,a217,a31N,viN) defines a position of the inclusion
crack tip, and the microstructural characteristics ai,a2mN,a3N,VIN are parameters of
this decreasing function, where a1z = O4 and x122 = O5 are given by Equations
(1.6) and (1.9), (1.10), respectively, and a3 = O3, xom = O6.

This analysis is also valid provided that W, is an increasing function of
x12, then xj, = al(é(lg\/ represents a root of the following transcendental

equation

(W12CIN)x12=a12 -riv=0. (11.22)
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If a)n > al(gg (X: IC,TC), then X12 =X0IN — xom((p,auN,aZIN,a31N,le), which

defines a position of the crack tip in the ellipsoidal inclusion (see Figure
11.8), represents a root of the transcendental equation (11.18) with the
variable x;; and the parameters @e(0,1/2), aiN, a2N, 3N, VIN.

The increasing function fio = fian(x12, @@ 18,218,318, ViN) of the va-riable
x12 €{xom,a12) and with the parameters @e(0,m/2), ain, 2N, @3N, VIN,
which defines a shape of the inclusion crack in the plane xj2x; (see Figure

11.3) for a5 > a5y, (X=1IC,TC), is derived as

2
:| -1 dxlz—ClN, X12 €<XOIN’a12>‘ (1123)

/4
fiamn :J‘ { 12¢IN

YIN

The integration constant Cix = Cin(@,a1mv,@2mv,@318,ViN) 1S derived as by the
condition (11.20), and then we get

YIN

2
{M} —1 |dx;, . (11.24)

X12=Xo v
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APPENDIX

12.1 Wronskian’s method

Wronskian’s method can be explained by the following mathematical
example. The differential equation (6.3) with a non-zero right side is
derived as

2
Tty (2 0y 2 g g G032 S (12.12)
ox;  Xp Ox,  xj X, X,

where the integration constants Ci, Ci, C), are determined by the boundary
condition (4.1)-(4.5). If g= 0, then we get

2 0%u, ou,,
Xy —— +2x, — —2u, =0. (12.13)
axn axn
A

If u,, = x,, , then the solutions w1y, u2, have the forms
1
Uy =Xy, Uy 2—2. (1214)
'xl’l

The solution u, of Equation (10.13) is derived as (Rektorys, 1973, 341-
345)

wiD)
U, =ayuy, +ayuy,, ai:J‘Wde’“ i=12. (12.15)
2

Wronskian’s determinants 7, Wz(i) (i = 1,2) have the forms



130 Chapter 12

Uy, Uy 0» Upp Ulps 0
Wy = |duy, Ouy,), W =|  ouy|, WP =|ou, |,(12.16)
ox, Ox © ox ox,

n n n n

where the determinant Wz(i) (i = 1,2) is created from W, i.e., the i-th

column of W, is replaced by the following one

0
}2 rows . (12.17)
g

Let fi, ..., fa represent n solutions of a differential equation of the n-th rand
with zero right-hand side (i.e., g = 0). Let the functions fi, ..., fy of the
variable x exhibit contionous derivatives to the (n-1)-th degree. The
solution of this differential equation with a non-zero right-hand side (i.e., g
# () is derived as

n

" (0
=Y af ai:jn;; dx . (12.18)
i=1

Wronskian’s determinant W, with n rows and n columns has the form

fls f2’ oo fn
U

ox ox’ ox
w,=| . . . , (12.19)

a n—1 fi a n—1 f2 a n—1 fn
axn—l ’ 6xl1—1 v axl’l—l

where W,,(i) (i =1,...,n) is created from W, i.e., the i-th column of W, is
replaced by the following one
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0
0
. o norows . (12.20)
g
12.2 Cramer’s rule
The system of # linear algehraic equations is derived as
apx tappxy ...t ax, = bl
ar1X1 +ayXy +...+ a1, x, =b
219 T 42272 In¥n =02 (12.1)

Ay X+ aypxy +...+a,,x, =b,

where the root x; (i = 1,...,n) is determined by Cramer’s rule (Rektorys,
1973, 22-28)

(i)
_ Dy . (12.2)
D}’l

The determinant D, with n rows and #n columns has the form

ary, A, -, A1y

D, = 02'1» a‘zzs »?2n

Apls Ap2s oo 5 Ayy

n n
ZZ(—I)HI a; DY) :Z(—l)m a; DI
i1

(12.3)
i=1

and the subdeterminant D,(f) is created from D,, i.e., the i-th column of D,
is replaced by
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by
n rows . (12.4)

Similarly, the subdeterminant D,(ll{)l with (n-1) rows and (#-1) columns is
created from D, i.e., the i-th row and the j-column are omitted. If n = 2,
we get

D, =| M M2 12.5
h = =ajayp—appdy . (12.5)
a1, A
Similarly, if n = 3, we get
a11, 412, 413
D3 =layy, ayp, a
asy, aszp, dsj
ary, a ary, a a a
—ay, 22> 93| 21> 93| 21 42| (12.6)
azp, a33 asy, das3 asy, azp
12.3 Integrals

The derivatives of the functions f= x*, /= In x and the constant C have the
forms (Rektorys, 1973, 234-247)

(xﬁ)' —ax*, (Inx)=2, C'=o0. (12.7)
X

The indefinite integrals of f= x* and /= C are derived as

A+l

J‘x/ldxz al

e Ak dex:Cx. (12.8)

In case of the product f g of the function f = flx), g = g(x), we get
(Rektorys, 1973, 234-247)
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(fe) =feg+sg . (12.9)
and then the integral of f'g is derived as
jfgdxzfg—jfg'dx. (12.10)

With regard to Equations (6.13)-(6.15), (7.13), (7.14), the following
integrals have the forms

A+l A+l A+1
J‘xllnxdxz i lnx—J.x ><labc=x—1nx—L x* dx
A+1 A+l x A+1 A+1
A+1
S P S P
A+1 A+1

'[ Inxdx :Jlxlnxdx =xlnx-— '[xxl dx= xlnx—'[lxdxz
x
:xlnx—ledx :x(lnx—l) ,

JAx/1 In?xdx=—— (x}”l In2 x—J-x/1 1nxdx)

A+1
A+1 2

== (mx—Lj —1 | ael (12.11)
A+1 A+1 (/1+1)2

12.4 Numerical determination

Numerical values of the thermal and phase-transformation stresses for real
matrix-inclusion composites include integrals and derivatives, which are
determined by a programming language. If /= f(x), then the numerical
value of the derivative 0 f/0x is determined by

ﬂ _ f(x+Ax)_f(x) (12 21)
Ox Ax ’ '

In case of the angles ¢, v (see Figure 1.4), the step Ax = Ap = Av =10
[deg] is sufficient.
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Let F represent a definite integral of the function f = flgp,v) with the
variables ¢@,ve(0, 7/2). Let n, m be integral parts of the real numbers
7 (2Ap), 7(2Av), respectively. Numerical values of the definite integral F
are determined by the following formula

/2 7wl2 m .
F= ’(')‘ _([ f((ﬂ,V)dwdsz[ Zf(ixA(p;ijv)AgoJAv, (12.22)

Jj=0\ i=0

where the step Ap = Av= 0.1 [deg] is sufficient. The average numerical
value f of the function f'= f{p,Vv) with the variables ¢,ve(0, 772) is deter-
mined by the following formula

. 2ml2 /2 2 m n
f:[%j I f((p,v)d¢dvz[%j Z[ Zf(ixA@ijv)A(p]Av
0 0 j=0\ i=0

(12.23)
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