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INTRODUCTION 

 
 
 

This monograph1 presents original mathematical models of  
 

 thermal and phase-transformation stresses, which originate in matrix-
inclusion composites during a cooling process, 

 material micro- strengthening and macro-strengthening, which is 
induced by these stresses, 

 intercrystalline and transcrystalline crack formation, including 
mathematical definitions of critical limit states with respect to the 
material crack formation, which is induced by these stresses. 

 
The material strengthening and the limit states represent important 
phenomena in material science and engineering. 

The stresses are determined for a multi-inclusion-matrix model system 
with isotropic ellipsoidal inclusions with the inter-inclusion distance d, 
which are periodically distributed in an isotropic matrix. This model sys-
tem corresponds to real two-component materials, which consist of 

 isotropic ellipsoidal precipitates, distributed in isotropic crystal-line 
grains (e.g., matrix-precipitate composites), 

 two types of isotropic crystalline grains with different material 
properties (e.g., dual-phase steel). 

 
The thermal stresses are a consequence of different thermal expansion 
coefficients of the matrix and ellipsoidal inclusions. The phase-transfor-

 
1 This monograph was supported by the Slovak scientific grant agency VEGA 
2/0069/24. 
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mation stresses are a consequence of a different dimension of a cubic 
crystalline lattice, which is transformed in the inclusion and/or matrix. 

Mathematical and computational models of phenomena in infinite pe-
riodic matrix-inclusion model systems are determined within identical 
suitable cells, and each cell contains a central component (e.g., an 
inclusion, a crystalline grain, a pore). Due to this infinity and periodicity, 
the models, which are determined for a certain cell, are valid for any cell. 
Infinite matrixes are used due to simplicity of mathematical solutions for 
material components (e.g., precipitates, pores). The material components 
are small in comparison with macroscopic material samples or 
macroscopic structu-ral elements, and then the solutions are acceptable in 
spite of this simplifi-cation (Mura, 1987, 31-32). 

The mathematical models results from fundamental equations of me-
chanics of a solid continuum, with respect to its shape, loading, mechani-
cal constraints and the principle of minimum potential energy. 

The infinite multi-inclusion-matrix model system is imaginarily divi-ded 
into cubic cells with the dimension d and with a central ellipsoidal in-
clusion, and the stresses are determined within the cubic cell. Mathema-
tical solutions for this multi-inclusion-matrix model system correspond to 
real composites, in contrast to 

 the simple one-inclusion mathematical model in (Selsing, 1961, 419-
419), determined for a simple one-inclusion-matrix model system, 

 the simple multi-inclusion mathematical model in (Mizutani, 1996, 
483-494), determined for physically unacceptable mechani-cal 
constraints due to unsuitable cells of a multi-inclusion-matrix system. 

 
Different mathematical procedures, which are applied to the fundame-ntal 
equations (Cauchy’s and equilibrium equations, Hooke’s law), result in 
different mathematical solutions for the stresses in the matrix and 
ellipsoidal inclusion. Finally, such a combination of the different mathe-
matical solutions for the matrix and the ellipsoidal inclusion is considered 
to exhibit minimum potential energy. 

The mathematical models are determined by standard procedures of 
mechanics of a solid continuum, which include definitions of 

 such a multi-inclusion-matrix model system and a coordinate sys-tem, 
which correspond to real matrix-inclusion composite ma-terials, 
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 reasons of the thermal and phase-transformation stresses, 
 the fundamental equations, which result in a system of differen-tial 

equations, 
 elastic energy density and elastic energy of the model system, 
 mechanical constraints, i.e., mathematical boundary conditions, for the 

matrix and ellipsoidal inclusion, 
 different mathematical procedures, which are applied to the sys-tem of 

the differential equations, 
 final formulae for the thermal and phase-transformation stresses, 

strains, elastic energy density and elastic energy, 
 final formulae for the material micro-/macro-strengthening in the 

matrix and ellipsoidal inclusion, 
 mathematical procedures to determine such critical dimensions of the 

ellipsoidal inclusion, which are reason of a crack in the ma-trix, 
 mathematical procedures to determine dimensions of the matrix crack. 
 
In contrast to author’s mathematical models (Ceniga, 2008, 10-11; 2007, 
9-12) for composites with inclusions of an ideal spherical shape, the 
mathematical models in this monograph, which are determined for compo-
sites with ellipsoidal inclusions, represent a more realistic description of 
the stress-strain state in real matrix-inclusion composite materials. 

The mathematical results in this monograph are then applicable within  

 basic research (mechanics of a solid continuum, theoretical physics, 
material science), 

 the engineering practice, i.e., material technology, 
 as well as within university undergraduate and postgraduate cour-ses, 

as a textbook on analytical material mechanics. 
 
With regard to the basic research, the results of this monograph can be 
incor-porated to mathematical models, which defines the disturbance of an 
ap--plied stress field around inclusions in a solid continuum (Eshelby, 
1957, 376-396), as well as into mathematical, computational and experi-
mental models of overall materials stresses, overall material strengthening, 
inter-actions of energy barriers with dislocations and domain walls, etc. 

The mathematical models include microstructural parameters of a real 
matrix-inclusion composite (the inclusion dimensions a1IN, a2IN, a3IN, the 
inclusion volume fraction vIN, the inter-inclusion distance d), and are 
applicable to composites with ellipsoidal inclusions of different morpholo-
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gy, i.e., a1IN  a2IN  a3IN (dual-phase steel), a1IN >> a2IN  a3IN (martensitic 
steel). 

In case of real two-component materials (the engineering practice), ma-
terial scientists and engineers can determine such numerical values of the 
microstructural parameters, 
 
 which result in maximum values of the material micro-and ma-cro-

strengthening, 
 which define the limit states (i.e., critical states) with respect to the 

intercrystalline or transcrystalline crack formation in the ma-trix and 
the ellipsoidal inclusion. 

 
Consequently, the material scientists and engineers can develop sui-table 
technological processes, which result in such microstructural para-meters 
to obtain maximum strengthening, and to avoid the crack forma-tion. 

This numerical determination, performed by suitable programming 
languages, result from the mathematical procedure in Appendix. 

With respect to the university courses, the fundamental equations of 
mechanics of a solid continuum, along with the mathematical procedures, 
are explained and determined in detail. As a textbook on analytical ma-
terial mechanics, this monograph is then suitable for non-specialists in 
mechanics of a solid continuum. Finally, Appendix presents such mathe-
matical topics, which are required to perform the mathematical procedures 
in this monograph. 

Ladislav Ceniga 
Institute of Materials Research 

Slovak Academy of Sciences 
Kosice, Slovak Republic 

 
 
 
 
 



CHAPTER 1 

MODEL MATERIAL SYSTEM 
 
 
 

1.1 Matrix-Inclusion System 

Figure 1.1 shows the model material system, which consists of an infi-nite 
matrix and periodically distributed ellipsoidal inclusions with the di-
mensions a1IN, a2IN, a3IN along the axes x1, x2, x3 of the Cartesian system 
(Ox1x2x3), respectively, and with the inter-inclusion distance d along x1, x2, 
x3. The point O is a centre of the ellipsoidal inclusion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1. The matrix-inclusion system with infinite matrix and periodi-cally 
distributed ellipsoidal inclusions: the dimensions a1IN, a2IN, a3IN along the axes x1, 
x2, x3 of the Cartesian system (Ox1x2x3), respectively; the inter-inclusion distance d 
along the axes x1, x2, x3; the inclusion centre O. 
 
The mathematical models of the thermal and phase-transformation stresses 
are determined in the cubic cell with the dimension d and with a central 
ellipsoidal inclusion (see Figure 1.2). With regard to the volume VIN =4 π 
a1IN a2IN a3IN and VC = d3 of the ellipsoidal inclusion and the cubic cell, the 
inclusion volume fraction vIN and the inter-inclusion distance d have the 
forms 
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where vINmax = π / 6 is given by the condition ai → d/2 (i = 1,2,3). The 
inter-inclusion distance d = d(a1IN, a2IN, a3IN, vIN) is included within the 
mechanical constraints (see Equations (1.15), (4.1)-(4.5)), and the stresses 
are a function of the microstructural parameters a1IN, a2IN, a3IN, vIN, d.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.2. The cubic cells with the dimension d and with the plane x1x2, where O 
is a centre of the ellipsoidal inclusions, and x12  x1x2, x12x3  x1x2. 
 
This model system corresponds to real two-component materials, which 
consist of 
 
 isotropic ellipsoidal precipitates, distributed in isotropic crystal-line 

grains, e.g., matrix-precipitate composites, 
 two types of isotropic crystalline grains with different material 

properties, e.g., dual-phase steel with the grains A and B. 
 
Consequently, the ellipsoidal precipitates and the crystalline grains are 
considered to represent the ellipsoidal inclusion and the matrix of the mo-
del matrix-inclusion system. 
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Similarly, let the crystal grains A and B be characterized by the volume 
fraction vA and vB, respectively, where vA+vB=1. If vA<vB, then the grains 
A and B are considered to represent the ellipsoidal inclusion and the 
matrix, respectively. If vA>vB, then the grains A and B are considered to 
represent the matrix and the ellipsoidal inclusion, respectively. If vA=vB, 
then the following energy analysis is required to be consi-dered.  

Let the grains A and B be considered to represent the ellipsoidal inclu-sion 
and the matrix with the elastic energy WINA and WMB, which is accu-
mulated in the ellipsoidal inclusion and the cell matrix (see Equation 
(2.30)), respectively. 

Let the grains A and B be considered to represent the matrix and the 
ellipsoidal inclusion with the elastic energy WMA and WINB, which is 
accumulated in the cell matrix and the ellipsoidal inclusion (see Equation 
(2.30)), respectively. 

If WINA + WMB < WMA + WINB, then the grains A and B are considered to 
represent the ellipsoidal inclusion and the matrix, respectively. If WINA + 
WMB > WMA + WINB, the grains A and B are considered to represent the 
matrix and the ellipsoidal inclusion, respectively. 

Mathematical and computational models of phenomena in infinite pe-
riodic matrix-inclusion model systems are determined within identical 
suitable cells. Due to this infinity and periodicity, the mathematical models 
of the thermal and phase-transformation stresses in the multi-inclusion 
model system in Figures 1.1, 1.2, which are determined for a certain cell, 
are valid for any cell. In general, infinite matrixes are used due to simpli-
city of mathematical solutions for material components (e.g., precipitates, 
crystalline grains, pores). Such mathematical solutions are assumed to ex-
hibit sufficient accurancy with respect to material components (e.g., preci-
pitates, crystalline grains, pores), which are small in comparison with ma-
croscopic material samples and macroscopic structural elements. Finally, 
the mathematical solutions are acceptable in spite of this simplification 
(Mura, 1987, 31-32). 

1.2 Coordinate System 

The ellipse E with the dimensions a, b along the axes x, y of the Carte-sian 
system (Oxy), respectively, is described by the function (Rektorys, 1973, 
147) 
 



Chapter 1 
 

8

 sin,cos,1
22

bxax
b

y

a

x














 ,             (1.2) 

 
where x, y are coordinates of any point P of the ellipse E. The normal n at 
the point P has the form (Rektorys, 1973, 148) 

    0sincos 
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
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

bx
y
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Figure 1.3. The ellipse E with the dimensions a, b along the axes x, y of the 
Cartesian system (Oxy), respectively, and the P related to the angle . 
 
With regard to Equations (1.2), (1.3), we get 
 

   sintan1 22 baax
b

y  .              (1.4) 

 
The stresses are determined by the spherical coordinates (xn,,), where 
xn=|P12P|, P12x12 (see Figure 1.4). Equations (1.12), (1.13) define a 
fuction  = f() for the angles ,0,/2. The model system is symme-
tric (see Figure 1.1, 1.2), and the stresses are sufficient to be determined 
within the interval ,0, / 2. Figure 1.4 shows the ellipsoidal inclu-
sion for , 0, / 2, where a1IN = O1, a2IN = O2, a3IN = O3. With regard 
to Equation (1.2), any point of the ellipse E12 in the plane x1x2 has the 
coordinates 
 

2
,0,sin,cos 2211
  ININ axax .             (1.5) 
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The point P of the ellipse E123 in x12x3 is described by the coordinates 
 

 cos,sin 331212 axax PP  , 

2
,0,,sincos4 22

2
22

112
  ININ aaOa .            (1.6) 

 
where (Pxnxφxθ) is a Cartesian system at the point P; the axes xn and xθ 
represents a normal and a tangent of the ellipse E123 at the point P, res-
pectively; and x12x3  x1x2, x12  x1x2, xφ  x12. 
 
Figure 1.5 shows the cross section O567 of the cubic cell in the plane x12x3 
(see Figures 1.2, 1.4). The angle 0, / 2 defines a position of the point 
P with the Cartesian system (Pxnxφxθ) (see Figure 1.4) for  = 0 (see 
Figure 1.5a), (0,0 (see Figure 1.5b), 0,  / 2 (see Figure 1.5c). 
The points P1, P2 represent intersections of the normal xn with O567. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.4. The inclusion with the centre O and with the dimensions a1IN = O1, a2IN 
= O2, a3IN = O1 along the axes x1, x2, x3, respectively. The ellipses E12, E123 in the 
planes x1x2, x12x3 (see Figure 1.2) are given by Equations (1.5), (1.6), respectively, 
where x12x3  x1x2, x12  x1x2, xφ  x12. The point P on the inclusion surface is 
defined by , 0, / 2, and (Pxnxφxθ) is a Cartesian system at the point P, where 
P  E123. The axes xn and xθ represents a normal and a tangent of the ellipse E123 at 
the point P, where xn=|P12P|, P12x12. The function  = f() is given by Equations 
(1.12), (1.13). 
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With regard to Equation (1.4), the normal xn at the point P of the ellipse 
E123 in the plane x12x3 is derived as 
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With regard to Equation (1.7), the coordinates x121, x31 of the point P1 is 
derived as 
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The coordinates x122, x32 of the point P2 in Figure 1.5b for  (0,0 are 
derived as  
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(a)                                                              (b) 
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Figure 1.5. The angle 0,/2 defines 
a position of the point P with the 
Cartesian system (Pxnxφxθ) (see Figure 
1.4) for (a) 0,/2, (b) (0,0 (c) 
0,/2, where 0 is given by Equa-
tion (1.7). The points P12 (see Figure 
1.4), P2 represent intersections of the 
normal xn with O567, where O567 is a 
cross section of the cubic cell in the 
plane x12x3 (see Figures 1.2, 1.4). The 
angle  =(xn,x3) is given by Equation 
(1.11). 

                          (c) 
 
The coordinates x122, x32 of the point P2 in Figure 1.5c for 0,  / 2 
have the forms 
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The coordinate x122 of the point P2 in Figure 1.5a for  (0,0 is given by 
Equation (1.10), where x32 = d/2. With regard to Equation (1.7), the angle 
0 represents a root of the following equation 
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and this root is determined by a numerical method. The angle  =(xn,x3) 
has the form 
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and then we get 
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The model system in Figure 1.1 is symmetric. Due to this symmetry, any 
point P on the matrix-inclusion boundary exhibit the normal displace-ment 
un along the axis xn. Consequently, any point P of the normal xn exhi-bits 
un, and then we get u = u, where u, u are displacement along the axes 
x, x, respectively. 
 
The stresses are determined along the axes xn, x, x of the Cartesian 
system (P xn x x), and represent functions of the spherical coordinates 
(xn, ,  ) for ,  0,  / 2. The intervals xn  0, xIN and xn  xIN, xM 
are related to the ellipsoidal inclusion and the cell matrix, where P = P1, 
P E123 and P = P2 for xn = 0, xn = xIN and xn = xM (see Figure 1.5), 
respectively. Finally, we get 
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CHAPTER 2 

FUNDAMENTAL EQUATIONS 
 
 
 
Fundamental equations of mechanics of a solid continuum are repre-sented 
by Cauchy's and equilibrium equations, along with Hooke's law (see 
Section 2.1-2.3), which result in a system of differential equations (see 
Section 2.4). Due to different mathematical solutions of this systems, 
which are determined by different mathematical procedures (see Sections 
5.1,6.1,7.1,8.1), the analysis of elastic energy density is considered (see 
Section 2.8). 

2.1 Cauchy’s Equations 

Cauchy’s equations define relationships between strains and displace-
ments, and are determined for a suitable infinitesimal part of the model 
system with respect to a coordinate system (see Figures 1.1, 1.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1. The infinitesimal spherical cap at the point P with the surface S1 = 
A1B1C1D1 and S2 = A2B2C2D2 for xn = P12P (see Figure 1.4) and xn+dxn, 
respectively, where A1A2=B1B2=C1C2=D1D2=dxn, A1D1=B1C1= xnd, 
A1B1=C1D1=xnd, A2D2=B2C2=(xn+dxn)d, A2B2=C2D2=(xn+dxn) d. The axes 
xn and x, x represent normal and tangential directions (see Figure 1.4), 
respetively. 
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Due to the spherical coordinates (r,,) (see Figure 1.4), the infinitesimal 
part at the point P is represented by the infinitesimal spheri-cal cap with 
the dimension A1A2=B1B2=C1C2=D1D2=dxn along the axis xn, and with the 
dimensions A1A2=B1B2=C1C2=D1D2=dxn, A1D1=B1C1=xnd, 
A1B1=C1D1=xnd and A2D2=B2C2=(xn+dxn)d, A2B2= C2D2=(xn+dxn)d 
along the axes x, x for xn = P12P (see Figure 1.4) and xn+dxn, respecti-
vely. The axes xn and x, x represent normal and tangential directions (see 
Figure 1.4), respetively. 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
Figure 2.2. The normal displacement un and un+(un/xn) dxn of the infini-tesimal 
spherical cap at the point P for xn = P12P and xn+dxn in the plane (a) xnx, (b) xn x 
(see Figures 1.4, 2.1), respectively. 
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As analysed in Chapter 1, any point P of the normal xn (see Figure 1.4) 
exhibits the normal displacement un along the normal xn, and then we get 
u = u, where u, u are displacement along the axes x, x, respectively. 
The stresses are determined along the axes xn, x, x of the Cartesian sys-
tem (Pxnxx). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)            (b) 
 
Figure 2.3. The normal displacement un= un(,) of the infinitesimal sphe-rical cap 
at the point P in the plane (a) xnx, (b) xn x (see Figures 1.4, 2.1). 
 
With regard to Figure 2.2, the normal strain n along the axis xn, and the 
tangential strains ,  along the axes x, x, respectively, are derived as 
(Ceniga, 2007, 35-38; Ceniga, 2008, 23-26) 
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where |13| = xn d, |1’3’| = (un + xn) d is considered instead of |13| = xn 
sin d, |1’3’| = (un + xn) sin d (Brdicka, 2000, 73-75), respectively. 
With regard to Figure 2.3, the shear strains n, n and n, n along the 
axes xn and x, x, respectively, have the forms (Ceniga, 2007, 35-38; 
Ceniga, 2008, 23-26) 
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                  (2.4) 
 
where  is given by Equation (1.13), and n = n, n = n (Brdicka, 
2000, 68-71). Due to u = u, we get  =  =  (u/) + (u/) = 0, 
 and  are shear strains along the axes x, x, respectively. 

2.2 Equilibrium Equations 

Mechanics of a solid continuum results from the condition of the 
equilibrium of forces, which acts on sides of an infinitesimal part of a 
solid continuum. The equilibrium equations of the forces, which act on the 
sides of the infinitesimal spherical cap are determined with respect to the 
axes xn, x, x at the point P (see Figure 2.1). In case of the axis xn (see 
Figure 2.4), we get (Ceniga, 2007, 35-38; Ceniga, 2008, 23-26) 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
Figure 2.4. The infinitesimal spherical cap in the plane (a) xnx, (b) xnx (see 
Figures 1.4, 2.1). The normal stress n, the tangential stresses , , the shear 
stresses n = n, n = n, along with changes of these stresses, acting on the 
sides of the infinitesimal spherical cap at the point P. 
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In case of the axis x (see Figure 2.4), we get 
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In case of the axis x (see Figure 2.4), we get 
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where |13| = xn d, |1’3’| = (un + xn) d is considered instead of |13| = xn 
sin d, |1’3’| = (un + xn) sin d (Brdicka, 2000, 73-75), respectively. Due 
to d  0, d  0, dr  0, we get sin(d/2)d/2, sin(d /2)d/2, 
cos(d/2) =cos(d /2)  1, (dr)2 = (d)2 =(d)2 = 0 (Brdicka, 2000, 76-77). 
Consequently, the equilibrium equations (2.5)-(2.7) are derived as (see 
Equation (1.13)) 
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where n and ,  are normal and tangential stress along the axes xn and 
x, x, respectively; n, n and n, n are shear stress along the axes xn 
and x, x, respectively. Due to  = , we get  =  = 0, where  
is a shear stress.  

2.3 Hooke Law 

With regard to  = 0,  = 0, Hooke's law has the form (Brdicka, 2000, 
60-62) 
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  nn s44 ,              (2.14) 

  nn s44 ,              (2.15) 
 
where s11, s12 have the form (Brdicka, 2000, 62-63) 
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and E,  represent Young modulus, Poisson’s ratio (Brdicka, 2000, 60-
62), respectively. In case of the ellipsoidal inclusion and the matrix, we 
get E = EIN,  = IN and E = EM,  = M, respectively. With regard to 
Equations (2.1)-(2.4), (2.11)-(2.15), we get (Ceniga, 2007, 22-23; Ceniga, 
2008, 27-28) 
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where  is given by Equation (1.13), and c1, c2, c2 are derived as 
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and c3 < 0 due to  < 0.5 for real isotropic components (Skocovsky and 
Bokuvka and Palcek, 1996, 75-79). 
 
If a1i = cos[(x1,xi)] (i = n,, ) represent a direction cosine of an angle 
formed by axes x1, xi, then, with respect to Figures 1.4, 1.5, we get  
 

  cos,sinsin,sincos 111  aaa n , 

  coscos,sin 11  aa ,            (2.22) 
 
where cos, sin are given by Equation (1.12). The stress 1 along the axis 
x1 has the form 
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With regard to Equations (2.17)-(2.20) and due to n = n, n = n 
(Brdicka, 2000, 65-67), we get 
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where i (i = 1,…,4 ) is derived as 
 

      2111122112111 2, cacaacaacca nn    , 

   114113 , aaaa n  ,           (2.25) 
 
where  is given by Equation (1.13). As presented in Chapter 10, the 
mathematical models of the material micro-strengthening st = st(x1) and 
the material macro-strengthening st  result from the stress 1 (see Equa-
tions (2.24), (2.25)). If Equations (2.17)-(2.20) are substituted to Equation 
(2.21) and to Eq.(2.9)/, then Equations (2.8)-(2.10) are derived as 
(Ceniga, 2007, 25; Ceniga, 2008, 30) 
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where Un has the form 
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2.4 Elastic Energy 

The system of the differential equations (2.26), (2.28) is solved by the 
different mathematical procedures in Sections 5.1, 6.1, 7.1, 8.1, 9.1, which 
result in different mathematical solutions for the thermal and phase-
transfor-mation stresses, and the principle of minimum potential energy 
Wp is con-sidered (Brdicka, 2000, 96-98). Consequently, such a 
combination of the different mathematical solutions for the matrix and the 
ellipsoidal inclu-sion is considered to exhibit minimum potential energy 
Wp = Wd + Wv + Ws (Brdicka, 2000, 96-98), where Wd is deformation 
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energy, Wv and Ws is energy induced by volume and surface forces, 
respectively. The model system in Figure 1.1 is not acted by the volume 
and surface forces, i.e., Wv = Ws = 0, and then Wp = Wd is induced by the 
thermal and phase-transformation stresses in the ellipsoidal inclusion and 
the cell matrix. The sum Wp = Wd = WIN + WM represents potential energy, 
which is accumulated in the cubic cell (see Figure 1.2), where WIN and WM 
is elastic energy of the ellipsoidal inclusion and the cell matrix, 
respectively. 
 
The elastic energy density wq in the cell matrix (q = M) and the ellipsoidal 
inclusion (q = IN) is derived as (Brdicka, 2000, 94-95) 
 

  qnqnqnqnqqqqnqnqqw   
2
1 , 

INMq ,                (2.29) 
 
and the elastic energy Wq (q = M, IN) has the form 
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where sin d and  are given by Equation (1.13) 
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REASON FOR STRESSES 

 
 
 
The thermal stresses, which originate during a cooling process at the 
temperature T  Tf, Tr, result from the condition M ≠ IN, where Tf is 
final temperature of the cooling process; Tr is relaxation temperature of a 
real matrix-inclusion composite material; M and IN represent thermal 
expansion coefficients of the matrix and the ellipsoidal inclusion, 
respectively. The phase transformation, which originates at the tempera-
ture Ttq  Tf, Tr, results in the strain tq (q = M, IN), where TtM, tM and 
TtIN, tIN are related to the matrix and the ellipsoidal inclusion, respec-
tively. Consequently, the strain tq is a reason for the phase-transformation 
stresses. 
 
If T  Tr and Ttq  Tr, then the stresses are relaxed by thermal-activated 
processes, where Tr = (0.35-0.4)Tm (Skocovsky and Bokuvka and Palcek, 
1996, 42-44), Tm is melting temperature of a real matrix-inclusion 
composite material. If the inclusions are formed in a liquid matrix, then Tm 
is a minimum of the set {TmIN, TmM}, where TmIN and TmM is melting 
temperature of the inclusion and the matrix, respectively. If the inclusions 
are formed in a solid matrix with the melting temperature TmM, then we get 
Tm = TmM. If the matrix-inclusion composite consists of two types of 
crystal grains, then Tm represents melting temperature of this material. 
 
If Ttq  Tf, Tr, then the coefficient q = q(T) at T  Tf, Ttq  Tf, Tr is 
derived as (Ceniga, 2007, 34; Ceniga, 2008, 22) 
 

 
tqr

tq

T

T

q

T

T

qtqq dTdT )2()1(  , 

INMqTTTTTTTT rftqfrftq ,,,,,,  ,            (3.1) 
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where  Tqq
)1()1(    and  Tqq

)2()2(    are related to T  Ttq and T  Ttq, 

respectively, and tq is given by Equations (3.17), (3.18). If )1(
q , )2(

q  are 

not functions of T  Ttq, T  Ttq, respectively, then we get  
 

   TTTT tqqtqrqtqq  )2()1(  , 

INMqTTTTTTTT rftqfrftq ,,,,,,  ,            (3.2) 

 
If T > Ttq, then q = q(T) at T  Ttq Tr  Tf, Tr has the form 

 


rT

T

qq dT)1( , 

INMqTTTTTTTT rfrtqrftq ,,,,,,  ,            (3.3) 

 
If  Tqq

)1()1(    for T  Ttq, then we get 
 

  INMqTTTTTTT rfrtqrqq ,,,,,)1(  .            (3.4) 

 
If rftq TTT , , then q = q(T) at T  Tf, Tr is derived as 

 

INMqTTTTTTdT
rT

T

rfrftqqq ,,,,,,   ,            (3.5) 

 
where q = q(T) is related to the condition rftq TTT , . If q  q(T) 

for T  Tf, Tr, then we get 
 

  INMqTTTTTTTT rfrftqrqq ,,,,,,  .        (3.6) 

 
Isotropic material components are characterized by cubic crystalline 
latices (CCL), which exhibit the following modifications (Skocovsky and 
Bokuvka and Palcek, 1996, 15-18) 
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 the simple modification (K6): one atom at each corner point of CCL, 
 the body-centered modification (K8): one atom at the center of CCL, 

one atom at each corner point of CCL, 
 the face-centered modification (K12): one central atom on each side of 

CCL, one atom at each corner point of CCL. 
 
The phase transformation of CCL in the matrix (q = M) and/or the 
ellipsoidal inclusion (q = IN) at the temperature TtqTf,Tr represents the 
transformation aqI → aqII at T = Ttq, where aqI, aqII are dimensions of CCL 
at T  Ttq, T  Ttq, respectively, and aqm  {aqm

(K6),aqm
(K8),aqm

(K12)} (m = 
I,II). The transformation aqI → aqII results in the strain tq, which induces 
the phase-transformation stresses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1. The cubic crystalline lattice (CCL) in the matrix (q = M) and the 
ellipsoidal inclusion (q = IN); the dimension aqm along the axis xiqm (i = 1,2,3) of 
the Cartesian system (Ox1qmx2qmx3qm). The angle ijqm = (xiqm, xj) defines a 
position of CCL with respect to the Cartesian system (Ox1x2x3) (see Figure 1.2). As 
an example, the angles 11qm, 22qm, 33qm are shown. Pqm is an intersection point 
of the normal xn and the surface 1456. P12 is a projection of Pqm onto the plane 
x1x2; the vector 

nqmx  = 
qmOP . 

 
Figure 3.1 shows CCL with the dimension aqm along the axis xiqm of the 
Cartesian system (Ox1qmx2qmx3qm) (i = 1,2,3). The angle ijqm = (xiqm, xj) 
(see Figure 3.1), which is formed by the axes xiqm, xj (i, j = 1,2,3; m = I,II), 
defines a position of CCL with respect to the Cartesian system (Ox1x2x3). 
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As an example, the angles 11qm, 22qm, 33qm are shown in Figure 3.1. The 
coefficient aijqm, which represents a direction cosine of ijqm, is derived as 
(Ceniga, 2007, 35-38; Ceniga, 2008, 23-26) 
 

  jiqmijqmijqm xxa ,coscos   , 
IIImINMqji ,;,;3,2,1,  .              (3.7) 

 
As shown in Figure 3.1, Pqm is an intersection point of the normal xn with 
one of the surfaces 1456, 2754, 3657, and P12 is a projection of Pqm onto 
the plane x1x2. The length | 

nqm
x | = | 

qm
OP | of the vector 

nqm
x  = 

qm
OP  

along the axis xn in CCL is determined by aqm, , . The point Pqm is 
defined by the coordinates (x1,x2,x3) in the Cartesian system (Ox1x2x3) or 
by (x1qm,x2qm,x3qm) in the Cartesian system (Ox1qmx2qmx3qm), and then we get 
(Ceniga, 2007, 35-38; Ceniga, 2008, 23-26) 
 





3

1
,;,;3,2,1,

j
jijqmiqm IIImINMqixax ,            (3.8) 

 

where    



3

1

2
3

1

2

i
i

i
iqm xx , jk

i
ikqmijqm aa 



3

1
 (j,k = 1,2,3), and jk is 

Kronecker’s delta, i.e., jk = 0 and jk = 1 for j  k and j = k (Rektorys, 
1973, 143), respectively. The unit vector 

n
e , which is derived in 

(Ox1x2x3), is derived as (Ceniga, 2007, 35-38; Ceniga, 2008, 23-26) 
 

   


 
3

1
,

)(
3

1

)( cos,
j

ijqmnjniqm
n

iqm
i

iqm
n

iqm aaxxaeae
n

, 

IIImINMqi ,;,;3,2,1  ,              (3.9) 
 
If Pqm with the coordinates (Ox1qmx2qmx3qm), is a point of the surface 1456, 
i.e., Pqm  1456, then the length | 

nqm
x | = | 

qm
OP | of the vector 

nqm
x  = 


qm

OP  long the axis xn in CCL has the form (Ceniga, 2007, 35-38; Ceniga, 

2008, 23-26) 
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IIImINMq
a

a
x

n
qm

qm

nqm
,;,,)(

1

 ,            (3.10) 

 
where qmnqm ax  , qm

n
qm

n
qmqmqm aaaax  )(

1
)(

2 / , )(
1

)(
3 / n

qm
n
qmqmqm aaax   

qma . The surface 1456 with the normal xn is determined by each of the 
conditions (Ceniga, 2007, 35-38; Ceniga, 2008, 23-26) 
 

IIImINMq
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n
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n
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n
qm ,;,,11 )(

1

)(
3

)(
1

)(
2  .          (3.11) 

 
If Pqm  2754, then we get (Ceniga, 2007, 35-38; Ceniga, 2008, 23-26) 
 

IIImINMq
a

a
x

n
qm

qm

nqm
,;,,)(

2

 ,            (3.12) 

 
where qm

n
qm

n
qmqmnqm aaaax  )(

2
)(

1 / , qmqm ax 
)(

2
)(

3 / n
qm

n
qmqmqm aaax   

qma . The surface 2754 with the normal xn is determined by each of the 
conditions (Ceniga, 2007, 35-38; Ceniga, 2008, 23-26) 
 

IIImINMq
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n
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n
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n
qm ,;,,11 )(
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)(
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)(
2
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1  .          (3.13) 

 
If Pqm  3657, then we get (Ceniga, 2007, 35-38; Ceniga, 2008, 23-26) 
 

IIImINMq
a

a
x

n
qm

qm

nqm
,;,,)(

3

 ,            (3.14) 

 
where qm

n
qm

n
qmqmnqm aaaax  )(

3
)(

1 / , qm
n
qm

n
qmqmqm aaaax  )(

3
)(

2 /  and 

qmqm ax  . The surface 3657 with the normal xn is determined by each of 
the conditions (Ceniga, 2007, 35-38; Ceniga, 2008, 23-26) 
 



Chapter 3 
 

30

IIImINMq
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3
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The surface with the normal xn is determined by each of the conditions 
 

11 )(

)(

)(

)(


n
iqm

n
kqm

n
iqm

n
jqm

a

a

a

a
, 

IIImINMqkjikji ,;,;;3,2,1,,  .           (3.16) 
 
The strain tq (q = M,IN) has the form 
 

INMq
x

xx

nqII

nqInqII

tq ,, 







 ,            (3.17) 

 

where 
nqI

x , 
nqII

x  are related to the temperature T = Ttq. If TtqTf, Ttq, 

then 
nqII

x  in Equation (3.16) is replaced by the following formula 

 
















 

tq
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nqIInqII

T

T

q
T

dTxx )2(1  , 

INMqTTT tqf ,,,  .             (3.18) 

 
 
 
 
 



CHAPTER 4 

MECHNICAL CONSTRAINTS 

 
 
 
The mechanical constraints of the model system in Figure 1.2 at the 
temperature TTf, Tr are determined for 
 
 the matrix-inclusion boundary with respect to the condition IN  M 

(see Chapter 3), which is a reason of the normal stress pn, act-ing at the 
matrix-inclusion boundary, 

 the cell surface with respect to the displacement unM. 
 
The mechanical constraints are described by corresponding mathema-tical 
conditions, which determine integration constants in mathematical 
solutions of the system of differential equations (2.26), (2.27). Using 
Cramer’s rule (see Section 12.2), the integration constants are determined 
by the mathematical boundary conditions (4.1)-(4.5). 
 
The difference M - IN  0 results in the normal displacements 
  0xINxnM n
u ,   0xINxnIN n

u  at the matrix-inclusion boundary where 
  xINxnM n
u   and   xINxnIN n

u   are a reason of the stresses in the cell matrix 
and the ellipsoidal inclusion, respectively. 

4.1 Cell matrix 

The absolute values |unM|, |M|, |M| (see Equations (2.1)-(2.4), (2.17)-
(2.20)) are required to exhibit decreasing functions of the variable 
xnxIN,xM, with maximum values at the matrix-inclusion boun-dary, i.e., 
for xn = xIN, where xIN, xM are given by Equation (1.15). These decreasing 
functions result from the following mandatory conditions (Ceniga, 2007, 
67; Ceniga, 2008, 51) 
 

  nxxnM p
INn




 ,                (4.1) 
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  0
 Mn xxnMu ,                (4.2) 

 
where the normal stress pn, acting at the matrix-inclusion boundary, is 
given by Equation (4.6). Equations (4.1) and (4.2) represent stress and 
geometric boundary conditions, respectively. 

As mentioned above, the displacement unM is a consequence of the 
difference M - IN  0, and does not result from the dimension change d 
= d M T. If   0

 Mn xxnMu  or   0
 Mn xxnMu , then d > 0 or d < 0 

at the constant temperature TTf, Tr, respectively, and this increase or 
decrease of the cell dimension d is physically unacceptable. 

The point P2 on the cell surface (see Figure 1.5) is related to two 
neighbouring cubic cell. Let unMA = unMA(xnA,A,A) represent a function 
of the variables xnA, A, A in a certain cell, e.g., in the cell in Figure 1.5, 
and unMB = unMB(xnB,B,B) represent a function of xnB, B, B in a 
neigbhouring cell. Let unMA = unMA(xnA,A,A) and unMB = unMB(xnB,B,B) 
are connected at the point P2. The model system is imaginary divided into 
identical cubic cells (see Figure 1.2), and then the cell surface is not a 
physical boundary. 

This connection is assumed to be ‘smooth’, and then unMA and unMB are 
assumed not to create a singular connection at the point P2, which is 
assumed not to represent a singular point. Due to this non-singularity 
assumption, the function unM = unM(xn,,) of the variable xnxIN,xM is 
assumed to be extremal on the cell surface, i.e., for xn = xM. The absolute 
values |unM| represents a decreasing functions of xnxIN,xM, and then this 
extreme for xn = xM is a minimum of unM = unM(xn,,). With regard to 
Equation (2.1), the following condition 

  0














Mn

Mn
xxn

nM
xxnM x

u
 .              (4.3) 

4.2 Ellipsoidal Inclusion 

The absolute values |unIN|, |IN|, |IN| (see Equations (2.1)-(2.4), (2.17)-
(2.20)) are required to exhibit increasing functions of the variable 
xnxIN,xM, with maximum values at the matrix-inclusion boundary, i.e., 
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for xn = xIN, and the conditions   0nxnINu ,   0nxnIN , 
  0nxnIN  are required to be valid. The boundary conditions are 
derived as (Ceniga, 2007, 67; Ceniga, 2008, 51) 
 

  nxxnIN p
INn




 ,                (4.4) 

  00 nxnINu ,                (4.5) 

 
where Equations (4.4) and (4.5) represent stress and geometric boundary 
conditions, respectively. 

4.3 Normal Stress 

If M > IN or M < IN, then the normal stress pn > 0 or pn < 0 is 
compressive or tensile, respectively. If pn > 0 is a compressive normal 
stress, acting at the matrix-inclusion boundary, then we get 
  MnxxnM xu

INn



,   INnxxnIN xu

INn



. With regard to Equation 

(2.2), we get   MxxM
INn

 


,   INxxIN
INn

 


. If   
 INn xxM  

Mnp  ,   INnxxIN p
INn

 


, then the normal stress has the form 

 

INM

INM
np







 ,                (4.6) 

 
where q (q = IN,M) is determined in Chapter 3. The normal stress pn is 
included in formulae for the stresses and strains, where its compressive 
influence is denoted by the term ‘-pn’. The coefficients M and IN are 
given by Equations (5.26), (6.26), (6.37), (6.48), (6.59), (7.25), (7.36), 
(7.47), (7.58), (8.24), (8.35), (8.46), (8.57), (9.23), (9.34), (9.45), (9.56), 
(9.67), (9.78) and (5.27), (8.66), respectively. Consequently, such a combi-
nation of M, IN is considered to result in minimum potential energy Wp = 
WIN + WM (see Equation (2.30)). 
 
 





CHAPTER 5 

MATHEMATICAL MODEL 1 
 
 
 

5.1 Mathematical procedure 1 

If the mathematical procedure xn[Eq.(2.27)/xn] is performed, then we get  
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x

U
x ,               (5.1) 

 
where c3 < 0, Un = Un (xn,,) are given by Equation (2.21),(2.28), 
respectively. If Equation (2.27) is substituted to Equation (5.1), then we 
get 
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2 




n

n

n
n Ucc

x

U
x .               (5.2) 

 
If 

nn xU  , then, with respect to Equation (5.2), we get 
 

21 21


nnn xCxCU  ,                (5.3) 
 
where the integration constants C1, C2 are determined by the boundary 
conditions in Chapter 4. The exponents 1, 2 have the forms 
 

      314111611
2
1

1   , 

      214111611
2
1

2   ,             (5.4) 

 
where  < 0.5 for a real isotropic material (Skocovsky and Bokuvka and 
Palcek, 1996, 75-79). If Equation (5.3) is substituted to Equation (2.26), 
we get 
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21 212
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 .             (5.5) 

 
Using Wronskian’s method in Section 12.1 (Rektorys, 1973, 225-227), the 
mathemati-cal solution of Equation (5.5) has the form 
 

21 21


nnn xCxCu  .                (5.6) 
 
and with regard to Equation (2.1)-(2.4), (2.17)- (2.20), (2.29), (5.6), we get 
 

1
22

1
11 21     nnn xCxC ,               (5.7) 

1
2

1
1 21   

  nn xCxC ,               (5.8) 
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1
22

1
11 21     nnn xCxC ,             (5.11) 

1
42

1
31 21   

  nn xCxC ,            (4.12) 

1
2

1
11 21     nn xx ,             (5.13) 
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2121
 

  nnn xxxw ,           (5.14) 
 
where , s44 are given by Equations (1.13), (2.16), and  i,  2+i,  2+i+2j, i, 
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5.2 Cell Matrix 

With regard to Equations (2.30), (4.1), (4.2), (5.7)-(5.14), we get 
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where , ; xIN, xM; s44M, iM, jM (i = 1,2; j = 1,…,8) are given by Equa-
tions (1.13); (1.15); (2.16), (5.4), (5.15), i, iM, jM (i = 1,2; j = 1,2,3; see 
Equation (5.15)) have the forms 
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The normal stress pn is given by Equation (4.6). With regard to Equa-tion 
(5.17), the coefficient M in Equation (4.6) is derived as 
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5.3 Elipsoidal Inclusion 

Due to 2IN < 0, we get C2IN = 0, otherwise   0nxnINu , 
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(4.4), (4.5), (5.7)-(5.14), we get 
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where , ; xIN, s44IN, 1IN and 1IN, 3IN, 5IN are given by Equations 
(1.13); (1.15), (2.16), (5.4) and (5.15), respectively, and 1IN, 1IN (see 
Equation (5.15)) have the forms 
 

 

















  1
144

3
1

1

211
1

11 ININ
nIN

n

IN

IN

nIN

INININn
IN

x

p

sx

p
 




  
















1

144

4
1IN

nIN

n

IN

IN

x

p

s 
 , 

2

1
144

2

1
1

51
11

1














































 ININ
ININ

n

MININ

n
ININ

x

p

sx

p
 

  

2

1
144

2

1 































IN

ININ

n

M x

p

s 
.            (5.36) 

 
The normal stress pn is given by Equation (4.6). With regard to Equation 
(5.28), the coefficient IN in Equation (4.6) is derived as 
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MATHEMATICAL MODEL 2 
 
 
 

6.1 Mathematical procedure 2 

If the mathematical procedure 2Eq.(2.27)/xn
2 is performed, then we get 
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where c3 < 0, Un = Un (xn,,) are given by Equation (2.21), (2.28), 
respectively. If 

nn xU  , then, with respect to Equation (6.1), we get 
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where the integration constants C1, C2, C3 are determined by the boundary 
conditions in Chapter 4. If Equation (6.2) is substituted to Equation (2.26), 
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Using Wronskian’s method in Section 12.1 (Rektorys, 1973, 225-227), the 
mathemati-cal solution of Equation (6.3) has the form 
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With regard to Equation (2.1)-(2.4), (2.17)-(2.20), (2.29), (6.4), we get 
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where ; s44, ci (i = 1,2,3) are given by Equations (1.13); (2.16), (2.21), 
respectively, and j, k, k (j = 1,…,4; k = 1,…,6) are derived as 
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The integrals i, i of i = i(xn), i = i(xn) (i = 1,…,6), respectively, are 
derived as 
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where xIN, xM are given by Equation (1.15). The following integrals are 
determined by the equations in Section 12.3, and then we get 
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In case of the ellipsoidal inclusion, we get   0nxnIN ,   0nxnIN  

  due to   0ln
nxnx ,   0

3
n

IN
x

c
nx , and then the 

mathematical solutions (6.4)-(6.12) are suitable for the matrix. 
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6.2 Cell Matrix 

The integration constants C1M, C2M, C3M are determined by Equations 
(4.1), (4.2) or (4.1)-(4.3), and then the following combina-tions are 
considered: C1M  0, C2M  0, C3M = 0; C1M  0, C3M  0, C2M = 0; C2M  0, 
C3M  0, C1M = 0; C1M  0, C2M  0, C3M  0. Finally, such a combination 
is considered to exhibit mininum potential energy Wp = WIN + WM (see 
Equation (2.30)). 
 
Conditions C1M  0, C2M  0, C3M = 0. With regard to Equations (2.30), 
(4.1), (4.2), (6.4)-(6.12), we get 
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where , ; xM; s44M, ciM (i = 1,2,3) and jM, jM; jM, jM (j = 1,2,4) are 
given by Equations (1.13), (1.15), (2.16), (2.21) and (6.13); (6.15), 
respectively, and , i (i = 1,2), jM (j = 1,2,3; see Equation (6.13)) have 
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The normal stress pn is given by Equation (4.6). With regard to Equa-tion 
(6.17), the coefficient M in Equation (4.6) is derived as 
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Conditions C1M  0, C3M  0, C2M = 0. With regard to Equations (2.30), 
(4.1), (4.2), (6.4)-(6.12), we get 
 







  n

M

n
nM x

x

p ln
3
2


 ,             (6.27) 

 


n

nM
MM x

u
   















 






  M

n
n

M

n x
x

x
x

p ln
3
11ln

3
11


,           (6.28) 

 


















 

M

n
nMnMMn x

p
xs


  3

1ln44  















 




 M
n

n
x

p

x
ln

3
11


          (6.29) 

 
























 

M

n
nMnMMn x

p
xs


  3

1ln44 , 

   



















 




 M
n

n
x

p

x
ln

3
11


,          (6.30) 

 
   









 


 nMM

MM

M

n
nM xcc

cc

x

p ln
3

221
21

21


  

     









  M

n

M x
x

c ln
3
12 2 ,            (6.31) 



Mathematical Model 2 49 

 








 


 nMM

MMn
MM xcc

ccp ln
3
2

21
21


   










  M

n

M x
x

c ln
3
11 ,           (6.32) 

 

n

M
nMMM x

x 4
211 ln   ,             (6.33) 

 


















 






 








 M

M

M
MM

M

Mn
M x

x
x

x

p
w ln

3
1ln

3
1 5

2

32
1

2 


 



























































2

2
2

44

1

M

n

M

n

M

M

x

p

x

p

s 
  







































 































 





2

2
2

44

2 ln
3
1ln

3
1

M
n

M
n

M

M x
p

x
p

s 
  















 
















3
1ln

44

5
M

n

M

n

M

M x
p

x

p

s 
  















 
















3
1ln

44

2
5

M
n

M

n

M

M x
p

x

p

s 
 ,           (6.34) 

 

  










 












2/

0

2/

0

2

32
1

2
ln

3
14

 

 MM
M

Mn
M x

x

p
W  

 ddx
x M

M

M 









 




3
1ln5  

      


























































2/

0

2/

0

2
2

2

1
44

4
 




dd
x

p

x

p

s M

n

M

n
M

M
 

     






















 





2/

0

2/

0

2

3
44

ln
3
14

 




ddx
p

s M
n

M
M

 



Chapter 6 
 

50

     






















 





2/

0

2/

0

2
2

3
44

ln
3
14

 




ddx
p

s M
n

M
M

 

    
  







 















2/

0

2/

0
5

44 3
1ln34

 




dd
xp

x

p

s
Mn

M

n
M

M
 

    
  







 















2/

0

2/

0

2
5

44 3
1ln34

 




dd
xp

x

p

s
Mn

M

n
M

M
, 

         (6.35) 
 
where , ; xM; s44M, ciM (i = 1,2,3) and jM, jM; jM, jM (j = 1,2,5) are 
given by Equations (1.13), (1.15), (2.16), (2.21) and (6.13); (6.15), 
respectively, and , iM (i = 1,2,4; see Equation (6.13)) have the forms 
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The normal stress pn is given by Equation (4.6). With regard to Equa-tion 
(6.28), the coefficient M in Equation (4.6) is derived as 
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Conditions C2M  0, C3M  0, C1M = 0. With regard to Equations (2.30), 
(4.1), (4.2), (6.4)-(6.12), we get 
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where , ; xM; s44M, ciM (i = 1,2,3) and jM, jM; jM, jM (j = 2,3,6) are 
given by Equations (1.13), (1.15), (2.16), (2.21) and (6.13); (6.15), 
respectively, and , iM (i = 2,3; see Equation (6.13)) have the forms 
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The normal stress pn is given by Equation (4.6). With regard to Equa-tion 
(6.39), the coefficient M in Equation (4.6) is derived as 
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Conditions C1M  0, C2M  0, C3M  0. With regard to Equations (2.30), 
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         (6.57) 
 
where , ; xM; s44M, ciM (i = 1,2,3) and jM, jM; jM, jM (j = 1,…,6) are 
given by Equations (1.13), (1.15), (2.16), (2.21) and (6.13); (6.15), 
respectively, and , i, iM (i = 1,2,3; see Equation (6.13)) have the forms 
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The normal stress pn is given by Equation (4.6). With regard to Equa-tion 
(6.50), the coefficient M in Equation (4.6) is derived as 
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7.1 Mathematical procedure 3 

If the mathematical procedure xn 2Eq.(2.26)/xn
2 is performed, then we 

get 
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where s44, ci (i = 1,2,3), Un = Un (xn,,) are given by Equation (2.16), 
(2.21), (2.28), respectively. With regard to Equation (2.27), (6.2), we get 
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where the integration constants C1, C2, C3 are determined by the boundary 
conditions in Chapter 4. If Equation (7.2) is substituted to Equation (7.1), 
we get 
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Using Wronskian’s method in Section 12.1 (Rektorys, 1973, 225-227), the 
mathemati-cal solution of Equation (7.3) has the form 
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and with regard to Equation (2.1)-(2.4), (2.17)-(2.20), (2.29), (7.4), we get 
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where  is given by Equation (1.13); and j, k, k (j = 1,…,4; k = 1,…,6) 
are derived as 
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With regard to (6.14), (7.13), we get (see Section 12.3) 
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In case of the ellipsoidal inclusion, we get   0nxnIN ,   0nxnIN  

  due to   0ln
nxnx ,   0

3
n

IN
x

c
nx , and then the 

mathematical solutions (7.4)- (7.12) are suitable for the matrix. 

7.2 Cell Matrix 

The integration constants C1M, C2M, C3M are determined by Equations 
(4.1), (4.2) or (4.1)-(4.3), and then the following combina-tions are 
considered: C1M  0, C2M  0, C3M = 0; C1M  0, C3M  0, C2M = 0; C2M  0, 
C3M  0, C1M = 0; C1M  0, C2M  0, C3M  0. Finally, such a combination 
is considered to exhibit mininum potential energy Wp = WIN + WM (see 
Equation (2.30)). 
 
Conditions C1M  0, C2M  0, C3M = 0. With regard to Equations (2.30), 
(4.1), (4.2), (7.4)-(7.12), we get 
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where , ; xM; s44M, ciM (i = 1,2,3) and jM, jM; jM, jM (j = 1,2,4) are 
given by Equations (1.13), (1.15), (2.16), (2.21) and (7.13); (7.14), 
respectively, and , i (i = 1,2), jM (j = 1,2,3; see Equation (7.13)) have 
the forms 
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The normal stress pn is given by Equation (4.6). With regard to Equa-tion 
(7.16), the coefficient M in Equation (4.6) is derived as 
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Conditions C1M  0, C3M  0, C2M = 0. With regard to Equations (2.30), 
(4.1), (4.2), (7.4)-(7.12), we get 
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where , ; xM; s44M, ciM (i = 1,2,3) and jM, jM; jM, jM (j = 1,3,5) are 
given by Equations (1.13), (1.15), (2.16), (2.21) and (7.13); (7.14), 
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The normal stress pn is given by Equation (4.6). With regard to Equa-tion 
(7.27), the coefficient M in Equation (4.6) is derived as 
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                (7.36) 
 
Conditions C2M  0, C3M  0, C1M = 0. With regard to Equations (2.30), 
(4.1), (4.2), (7.4)-(7.12), we get 
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where , ; xM; s44M, ciM (i = 1,2,3) and jM, jM; jM, jM (j = 2,3,6) are 
given by Equations (1.13), (1.15), (2.16), (2.21) and (7.13); (7.14), 
respectively, and , i, jM (i = 1,2; j = 3,4,5; see Equation (7.13)) have the 
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The normal stress pn is given by Equation (4.6). With regard to Equa-tion 
(7.38), the coefficient M in Equation (4.6) is derived as 
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Conditions C1M  0, C2M  0, C3M  0. With regard to Equations (2.30), 
(4.1)-(4.3), (7.4)-(7.12), we get 
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where , ; xM; s44M, ciM (i = 1,2,3) and jM, jM; jM, jM (j = 1,…,6) are 
given by Equations (1.13), (1.15), (2.16), (2.21) and (7.13); (7.14), 
respectively, and , i (i = 1,2,3), iM (i = 1,…,5; see Equation (7.13)) have 
the forms 
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The normal stress pn is given by Equation (4.6). With regard to Equa-tion 
(6.50), the coefficient M in Equation (4.6) is derived as 
 















 






  

IN
IN

c
ININM x

x
xx M ln

2
1ln

3
41 31

21
3 




 .          (7.58) 





CHAPTER 8 

MATHEMATICAL MODEL 4 
 
 
 

8.1 Mathematical procedure 4 

The differential equation (2.26) is derived as 
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where s44, ci (i = 1,2), Un = Un (xn,,) are given by Equation (2.16), 
(2.21), (2.28), respectively. If xnEq.(8.1)/xn, then we get 
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If Equations (8.1), (8.2) are substituted to Equation (2.27), then we get 
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If 

nn xu  , then, with respect to Equation (8.3), we get 
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where c3 < 0 is given by Equation (2.21), and the integration constants C1, 
C2, C3 are determined by the boundary conditions in Chapter 4. With 
regard to Equation (2.1)-(2.4), (2.17)-(2.20), (2.29), (8.4), we get 
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where  is given by Equation (1.15); and i, j (i = 1,2,3; j = 1,…,6) are 
derived as 
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8.2 Cell Matrix 

The integration constants C1M, C2M, C3M are determined by Equations 
(4.1), (4.2) or (4.1)-(4.3), and then the following combina-tions are 
considered: C1M  0, C2M  0, C3M = 0; C1M  0, C3M  0, C2M = 0; C2M  0, 
C3M  0, C1M = 0; C1M  0, C2M  0, C3M  0. Finally, such a combination 
is considered to exhibit mininum potential energy Wp = WIN + WM (see 
Equation (2.30)). 
 
Conditions C1M  0, C2M  0, C3M = 0. With regard to Equations (2.30), 
(4.1), (4.2), (8.4)-(8.12), we get 
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where , ; xIN, xM; s44M, ciM (i = 1,2,3) are given by Equations (1.13); 
(1.15); (2.16), (2.21), respectively, and , jM, jM, (i = 1,2; j = 1,2,4; see 
Equation (8.13)) have the forms 
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               (8.23) 
 
The normal stress pn is given by Equation (4.6). With regard to Equa-tion 
(8.15), the coefficient M in Equation (4.6) is derived as 
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Conditions C1M  0, C3M  0, C2M = 0. With regard to Equations (2.30), 
(4.1), (4.2), (8.4)-(8.12), we get 
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where , ; xIN, xM; s44M, ciM (i = 1,2,3) are given by Equations (1.13); 
(1.15); (2.16), (2.21), respectively, and , 3M, iM (i = 3,5; see Equation 
(8.13)) have the forms 
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The coefficients 1M, 1M are given by Equation (8.23), where  in 
Equation (8.23) is given by Equation (8.34). The normal stress pn is given 
by Equation (4.6). With regard to Equation (8.26), the coefficient M in 
Equation (4.6) is derived as 
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Conditions C2M  0, C3M  0, C1M = 0. With regard to Equations (2.30), 
(4.1), (4.2), (8.4)-(8.12), we get 
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where , ; xIN, xM; s44M, ciM (i = 1,2,3) are given by Equations (1.13), 
(1.15), (2.16), (2.21), respectively, and , 6M (see Equation (7.13)) have 
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The coefficients 2M, 2M and 3M, 3M are given by Equations (8.23) and 
(8.34), where  in Equations (8.23), (8.34) is given by Equation (8.45).  
 
The normal stress pn is given by Equation (4.6). With regard to Equation 
(8.37), the coefficient M in Equation (4.6) is derived as 
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Conditions C1M  0, C2M  0, C3M  0. With regard to Equations (2.30), 
(4.1)-(4.3), (8.4)-(8.12), we get 
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where , ; xIN, xM; s44M, ciM (i = 1,2,3) are given by Equations (1.13), 
(1.15), (2.16), (2.21), respectively, and , iM, jM, (i = 2,3; j = 2,…,6; see 
Equation (7.13)) have the forms 
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The coefficients 1M, 1M are given by Equation (8.23), where  in 
Equation (8.23) is given by Equation (8.56). The normal stress pn is given 
by Equation (4.6). With regard to Equation (8.48), the coefficient M in 
Equation (4.6) is derived as 
 

 














































 3

3

1

3
13

2
111 3

IN

M
M

c

M

IN

M
M x

x
c

x

x

c

M


           (8.57) 

8.3 Ellipsoidal Inclusion 

In case of the ellipsoidal inclusion, we get C2IN = C3IN = 0, otherwise 
  0nxnINu ,   0nxnIN ,   0nxnIN   . With regard to 

Equations (2.30), (4.4), (4.5), (8.4)-(8.12), we get 
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where , ; xIN, s44M are given by Equations (1.13), (1.15), (2.16), 
respectively. The normal stress pn is given by Equation (4.6). With regard 
to Equation (8.59), the coefficient IN in Equation (4.6) is derived as 
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9.1 Mathematical procedure 5 

If the mathematical procedures Eq.(2.27)/xn, Eq.(6.2)/xn are per-formed, 
then Equations (2.27), (6.2) are transformed to the forms 
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where s44, ci (i = 1,2), Un = Un (xn,,) are given by Equation (2.16), 
(2.21), (2.28), respectively, and c3 < 0. If the mathematical procedure 
Eq.(9.2)/xn is performed, then we get 
 

  




























2

2

3

3

4

4
2

21442

2
6

n

n

n

n
n

n

n
n

n

n

x

u

x

u
x

x

u
xccs

x

U ,            (9.3) 

 
If Equations (9.2), (9.3) are substituted to Equation (9.1), we get 
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If 

nn xu  , then, with respect to Equation (9.4), we get 
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where c3 < 0 (see Equation (2.21)), and the integration constants C1, C2, 
C3, C4 are determined by the boundary conditions in Chapter 4. With 
regard to Equation (2.1)-(2.4), (2.17)-(2.20), (2.29), (9.5), we get 
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where  and i, i (i = 1,2,3) are given by Equations (1.15) and (8.13), 
respectively, and 4, j (j = 4,…,10) are derived as 
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In case of the ellipsoidal inclusion, we get C2IN = C3IN = C4IN =0, other-
wise   0nxnINu ,   0nxnIN ,   0nxnIN   , due to c3 <0 

(see Equation (2.21)). In case of C1IN ≠ 0, the mathematical solutions for 
the ellipsoidal inclusion is given by Equations (8.58)- (8.66). 

9.2 Cell Matrix 

The integration constants C1M, C2M, C3M, C4M are determined by Equations 
(4.1), (4.2) or (4.1)-(4.3), and then the following combinations are 
considered: C1M  0, C4M  0, C2M = C3M = 0; C2M  0, C4M  0, C1M = C3M 
= 0; C3M  0, C4M  0, C1M = C2M = 0; C1M  0, C2M  0, C4M  0, C3M = 0; 
C1M  0, C3M  0, C4M  0, C2M = 0; C2M  0, C3M  0, C4M  0, C1M = 0. 
The combinations of C1M, C2M, C3M are presented in Chapter 8. Finally, 
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such a combination is considered to exhibit mininum potential energy Wp 
= WIN + WM (see Equation (2.30)). 
 
Conditions C1M  0, C4M  0, C2M = C3M = 0. With regard to Equations 
(2.30), (4.1), (4.2), (9.5)-(9.13), we get 
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where , ; xIN, xM; s44M, ciM (i = 1,2,3) are given by Equations (1.13); 
(1.15); (2.16), (2.21), respectively, and , 4M, jM, (i = 4,8; see Equation 
(9.14)) have the forms 
 

IN

MM
MM x

xc
cc 2

21
2

 , 









































 n
M

n
M

M

Mn
M

pp

s

p
33

44

2
4

1 , 








































































2
2

2

44

2

14
1


 nn

M

n
MM

pp

s

p
c , 

 







































































2
2

2

44

2

118
1


 nn

M

n
MMM

pp

s

p
cc . 

         (9.22) 
 
The coefficients 1M, 1M are given by Equation (8.23), where  in 
Equation (8.23) is given by Equation (9.22). The normal stress pn is given 
by Equation (4.6). With regard to Equation (9.16), the coefficient M in 
Equation (4.6) is derived as 
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Conditions C2M  0, C4M  0, C1M = C3M = 0. With regard to Equations 
(2.30), (4.1), (4.2), (9.5)-(9.13), we get 
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where , ; xIN, xM; s44M, ciM (i = 1,2,3) are given by Equations (1.13); 
(1.15); (2.16), (2.21), respectively, and , 2M (Equation (8.13)), 9M 
(Equation (9.14)) have the forms 
 

  
M

MM
c

M

IN
MMMM x

xc

x

x
cccc

M
2

1

2321
222

3













 , 

 
2

1321
21

2
3

2
3

2
2

2






























Mc
M

n
MMM

MMM
M

x

p
ccc

ccc


  



















































































2

1
2

2

1
44 33

1
MM c

M

n
c
M

n

M x

p

x

p

s 
, 

2

11
321

9
33 















 MM c
M

n
c
M

MMM
M

x

p

x

ccc


  








































































 1

2
1

44 33

1
MM c

M

nn
c
M

nn

M x

pp

x

pp

s 
. 

                (9.33) 
 
The coefficients 2M and 4M, 4M are given by Equations (8.23) and 
(9.22), where  in Equations (8.23), (9.22) is given by Equation (9.33). 
The normal stress pn is given by Equation (4.6). With regard to Equation 
(9.25), the coefficient M in Equation (4.6) is derived as 
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Conditions C3M  0, C4M  0, C1M = C2M = 0. With regard to Equations 
(2.30), (4.1), (4.2), (9.5)-(9.13), we get 

 
3

2










n

INn
nM x

xp


 ,              (9.35) 



Chapter 9 
 

98

























nn

INn

n

nM
MM xx

xp

x

u 1
3


  ,           (9.36) 

 








































 
n

n

INn
nMnMMn

p

x

xp
xs

13
3

44 ,     (9.37) 

 








































 
n

n

INn
nMnMMn

p

x

xp
xs

13
32

44 , 

                (9.38) 
 

 
























n

M

n

IN
MM

n
nM x

c

x

x
cc

p 2
3

21 2


 ,           (9.39) 

 

 
























n

M

n

IN
MM

n
MM x

c

x

x
cc

p 1
3

21 2


  ,          (9.40) 

 

n

M

n

M
M xx

4
3

3
1

  ,              (9.41) 

 

4
10

2
4

6
3

n

M

n

M

n

M
M

xxx
w


 ,             (9.42) 

 

 INMM
MIN

M
M xx

xx
W 

















   4

2/

0

2/

0
33

3 11
3

4 


 

 

      dd
xx MIN

M 















11
10 ,           (9.43) 

 
where , ; xIN, xM; s44M, ciM (i = 1,2) are given by Equations (1.13), 
(1.15), (2.16), (2.21), respectively, and , 4M (see Equation (8.13)), 10M 
(see Equation (9.14)) have the forms 
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The coefficients 3M, 3M and 4M, 4M are given by Equations (8.34) and 
(9.22), where  in Equations (8.34), (9.22) is given by Equation (9.44). 
The normal stress pn is given by Equation (4.6). With regard to Equation 
(8.37), the coefficient M in Equation (4.6) is derived as 
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Conditions C1M  0, C2M  0, C4M  0, C3M = 0. With regard to Equa-tions 
(2.30), (4.1)-(4.3), (9.5)-(9.13), we get 
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where , ; xIN, xM; s44M, ciM (i = 1,2,3) are given by Equations (1.13), 
(1.15), (2.16), (2.21), respectively, and , jM (j = 4,5,8,9; see Equation 
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The coefficients iM, iM (i = 1,2) and 4M are given by Equations (8.23) 
and (9.22), where  in Equations (8.23), (9.22) is given by Equation (9.55). 
The normal stress pn is given by Equation (4.6). With regard to Equation 
(8.37), the coefficient M in Equation (4.6) is derived as 
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Conditions C1M  0, C3M  0, C4M  0, C2M = 0. With regard to Equa-tions 
(2.30), (4.1)-(4.3), (9.5)-(9.13), we get 
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where , ; xIN, xM; s44M, ciM (i = 1,2,3) are given by Equations (1.13), 
(1.15), (2.16), (2.21), respectively, and , 3M (see Equation (8.13)), iM (j 
= 4,6,8,10; see Equation (9.14)) have the forms 
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The coefficients iM (i = 1,3), 1M and 4M are given by Equations (8.23) 
and (9.22), where  in Equations (8.23), (9.22) is given by Equation (9.66). 
The normal stress pn is given by Equation (4.6). With regard to Equation 
(9.58), the coefficient M in Equation (4.6) is derived as 
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Conditions C2M  0, C3M  0, C4M  0, C1M = 0. With regard to Equa-tions 
(2.30), (4.1)-(4.3), (9.5)-(9.13), we get 
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where , ; xIN, xM; s44M, ciM (i = 1,2,3) are given by Equations (1.13), 
(1.15), (2.16), (2.21), respectively, and , iM (i = 2,3; see Equation 
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The coefficients iM (i = 2,3) and 4M are given by Equations (8.23) and 
(9.22), where  in Equations (8.23), (9.22) is given by Equation (9.77). 
The normal stress pn is given by Equation (4.6). With regard to Equation 
(9.58), the coefficient M in Equation (4.6) is derived as 
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CHAPTER 10 

MATERIAL STRENGTHENING 

 
 
 
The mathematical model of the material micro-strengthening st=st(x1) 
and the material macro-strengthening st  results from the following ana-
lysis (Ceniga 2008, 102-105). Figures 10.1 and 10.2 show the plane x'2x'3 
in the cubic cell (see Figure 1.2) for x10, a1 c, respectively, where 
[x1,x2,x3] are coordinates of the point P  x'2x'3, and a1 is a dimension of 
the ellipsoidal inclusion along the axis x1 (see Figure 1.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.1. The plane x'2x'3 in the cubic cell (see Figure 1.2) for x10, a1, where 
[x1,x2,x3] are coordinates of the point P  x'2x'3. The plane O'P1P2 with the ellipse 
E23 represents a cross section of the ellipsoid inclusion in the plane x'2 x'3. 
 
The plane O'P1P2 with the ellipse E23 (see Figure 10.1) represents a cross 
section of the ellipsoid inclusion in the plane x'2 x'3. With regard to Figures 
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8.1, 8.2, the goniometric functions in Equations (1.7)-( 1.16) have the 
forms 
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where cos is given by Equation (1.12).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10.2. The plane x'2x'3 in the cubic cell (see Figure 1.2) for x1a1, d/2, 
where [x1,x2,x3] are coordinates of the point P  x'2x'3. 
 
With regard to Equation (1.2), the parameters b2, b3 of the ellipse E23 along 
the axes x'2, x'3, respectively, are derived as (see Figure 8.1) 
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and then we get 
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The material micro-strengthening st = st(x1) represents a stress along the 
axis x1, which is homogeneous at each point of the plane x'2x'3 with the 
area S = d2/4, i.e., st  f (x2, x3). 
 
If x10, a1, then the elastic energy surface density Wst, which is induced 
by st, and accumulated within the area SIN =  b2b3 /4 of the plane O'P1P2 
and within the area SM = (d/2)2 - SIN of the plane x'2x'3 (see Figure 10.1), 
has the form 
 

2
1ststW  ,               (10.4) 

 
where 1st is related to the interval x10,a1, and the coefficient  is 
derived as 
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where EIN and EM is Young's modulus for the ellipsoidal inclusion and the 
matrix, respectively. The elastic energy surface density W1S, which is in-
duced by the stresses 1q = 1q(x1) (q = IN,M; see Equations (5.33), (8.62), 
(6.22), (6.33), (6.44), (6.55), (7.21), (7.32), (7.43), (7.54), (8.20), (8.31), 
(8.42), (8.53), (9.19), (9.30), (9.41), (9.52), (9.63), (9.74)), has the form 
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The material micro-strengthening 1st = 1st(x1) for x1a1, d/2, which 
results from the condition Wst = W1S (Ceniga 2008, 102-105), is derived as 
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If 11 ,0 ax  , then the elastic energy surface density Wst, which is 
induced by st and accumulated within the area SM = d2/4 of the plane 
x'2x'3 (see Figure 10.2), has the form 
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where 2st is related to the interval x1a1, d/2. Similarly, we get 
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With regard to the condition Wst = W2S (Ceniga 2008, 102-105), we get 
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Finally, the material macro-strengthening st  is derived as (Ceniga 2008, 
102-105) 
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If IN < M or IN > M, the material strengthening exhibits a resistive 
effect against compressive or tensile mechanical loading, respectively, 
where q (q = M,IN) is given by Equations (3.1)-(3.6), (3.17), (3.18). 
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The material macro-strengthening  321 ,,, aaavINstst    is a func-tion 
of the inclusion volume fraction vIN and the dimensions a1, a2, a3 of the 
ellip-soidal inclusion (see Equation (1.1)). In case of a real matrix-
inclusion composite, such values of the microstructural parameters vIN, a1, 
a2, a3 can be numerically determined to result in a maximum value of 

st . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





CHAPTER 11 

MATERIAL CRACK FORMATION 
 
 
 

11.1 Mathematical Procedure 

The mathematical model of the crack formation in the cell matrix and the 
ellipsoidal inclusion results from the following analysis. Figure 11.1a and 
11.1b shows a solid continuum with the volume V in the Cartesian system 
(Ox1x2x3) without and with a crack, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           (a)     (b) 
 
Figure 11.1. The solid continuum of a general shape with the volume V in the 
Cartesian system (Ox1x2x3) (a) without and (b) with a crack, respectively. The 
crack is formed in the plane x1x2. The shaded area repre-sents cuts of the solid 
continuum in x1x3, x1x2, x12x3, where x12 x1x2,  =  (x1,x12) 0,/2, x12x3  
x1x2. The curves 1, 2, 3, 4 are outlines of the cuts in the planes x1x3, x1x2, x2x3, x12x3, 
respectively. P and P'' are points of the axis x12 and the curve 4, respectively. The 
curves 5 and 6 represent the crack shape in x1x3, x12x3, respectively. The crack 
shape in x12x3 is defined by the function f12 = f12 (, x12,x3), which is determined by 
the cylindrical coordinates (, x12,x3). The curve 7 defines a position of the crack 
tip in x12x3. P0 x1x2 represents the crack tip related to the plane x12x3. 
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The crack is formed in the plane x1x2. The shaded area represents cuts of 
the solid continuum in x1x3, x1x2, x12x3, where x12 x1x2,  =  (x1,x12) 
0,/2, x12x3  x1x2. The curves 1, 2, 3, 4 are outlines of the cuts in the 
planes x1x3, x1x2, x2x3, x12x3, respectively. Additionally, P and P'' represent 
points of the axis x12 and the curve 4, respectively. The curves 5 and 6 
represent the crack shape in x1x3, x12x3, respectively. The crack shape in 
x12x3 is defined by the function f12 = f12 (x12,,), which is determined by the 
cylindrical coordinates (x12,x3) for the parameter 0,/2. The curve 7 
defines a position of the crack tip in x12x3. The point P0 x1x2 represents 
the crack tip related to the plane x12x3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.2. The infinitesimal prism with the height |PP''| (see Figure 11.1b) and 
the infinitesimal surface dS12 = x12 d dx12 in x1x2. The infinitesimal crack surface 
dS(12) is related to the infinitesimal crack length ds(12) at the point P' (see Figure 
11.1b). The function f12 = f12(x12,) of the variable x12 for the parameter 0,/2 
defines the crack shape in the plane x12x3. 
 
Let the energy 

V

dVwW  be accumulated in the volume V, where w is 

energy density. Let W tend to be released by the crack formation in x12x3. 
The same is also valid for the infinitesimal energy dW , accumulated in the 
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volume 
''

312

P

P

dxdSdV  of the infinitesimal prism (see Figure 11.2), 

where dS12 = x12 d dx3, and then we get 
 

 
''

1212
)12(

312

'' P

P

c

P

P

dxdxWdxdSwdVwdW  ,           (11.1) 

 
where the curve integral )12(

cW  has the form 
 

 
''

3312
)12( ,,

P

P

c dxxxwW  .             (11.2) 

 
The crack is formed in the plane x1 x2 provided that the condition 
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dxxxwdxxxw           (11.3) 

 
is valid for  0,/2, where P’’(-) is an intersection point of the line PP’’ 
with the solid continuum surface for x3 < 0. The energy dW is in an 
equilibrium state with the energy dWcs =  dS(12), which creates the infini-
tesimal crack surface dS(12) = ds(12) x12 d, where  is surface energy den-
sity. The infinitesimal crack length ds(12) is derived as (Rektorys, 1972, 
276) 
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With regard to the equilibrium condition dW = dWcs, we get 
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where the following condition  
 

INMqW qcq ,,012   .             (11.6) 
 
is required to be fulfiled. The subscript q = M and q = IN in Equations 
(11.5), (11.6) is related to the crack formation in the cell matrix and the 
ellipsoidal inclusion, respectively. Additionally, the condition 
 

INMqW qcq ,,012   .             (11.7) 
 
defines a limit state (i.e., a critical state) for the crack formation in the 
plane x1x2 with respect to the parameter 0,/2, i.e., the infinitesimal 
crack with the length dx12 is formed in the plane x1x2 for 0,/2. 
 
If f12q = f12q(x12,) is a decreasing or increasing function of the variable x12 
for the parameter 0,/2, then the sign “-” or “+” is considered, 
respectively. With regard to Equation (11.5), if 0/ 1212  xf q  and 

0/ 1212  xW cq  or 0/ 1212  xW cq , then 0/ 2
1212

2  xf q  or 

0/ 2
1212

2  xf q , and the decreasing function f12q = f12q(x12,) of the 

variable x12 for the parameter 0,/2 is convex or concave is, respec-
tively. 
 
Similarly, if 0/ 1212  xf q  and 0/ 1212  xW cq  or 

0/ 1212  xW cq , then 0/ 2
1212

2  xf q  or 0/ 2
1212

2  xf q , and the 

increasing function f12q = f12q(x12,) of the variable x12 for the parameter 
0,/2 is concave or convex, respectively. 
 
In case of an intercrystalline crack in polycrystalline materials, we get 
(Skocovsky and Bokuvka and Palcek, 1996, 93) 
 

INMqBqq ,,   ,             (11.7) 
 
where Bq represents inter-atomic bond energy density per unit length, 
which is related to the boundaries of crystalline grains.  
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In case of a transcrystalline crack, the energy density per unit length, q, 
has the form (Brdicka, 2000, 173) 
 

INMq
E

K

q

ICq
q ,,  ,             (11.8) 

 
where KICq and Eq is fracture toughness and Young’s modulus, respecti-
vely, for the matrix (q = M) and the ellipsoidal inclusion (q = IN). 
 
The crack formation in the cell matrix and the ellipsoidal inclusion results 
from the curve integrals W12cM and W12cIN, which are determined with 
respect to the cubic cell (see Figures 1.2, 11.3). The model system in 
Figures 1.1 is symmetric. With regard to Figure 11.3, the crack formation 
in the plane x1x2 is sufficient to be investigated within one eighth of the 
cubic cell, i.e., for the parameter 0,/2 and the angle 0,/2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.3. One eight of the cubic cell (see Figure 1.2) and the central ellipsoidal 
inclusion the centre O and with the dimensions a1IN = O1, a2IN = O2, a3IN = O3 
along the axes x1, x2, x3 of the Cartesian system (Ox1x2x3). The ellipses E12, E123 in 
the planes x1x2, x12x3 (see Figures 1.2, 1.4) are given by Equations (1.5), (1.6), 
respectively, where  =  (x1,x12) 0,/2, x12x3  x1x2, x12  x1x2, xφ  x12. The 
coefficient c is given by Equation (1.10). 
 



Chapter 11 
 

120

With regard to the plane x12x3 for  =(x1,x12) 0,/2 in Figure 11.3, the 
elastic energy density wM = wM (xn,,) and wIN = wIN(xn,,) in the cell 
matrix (see Equations (5.23), (6.23), (6.34), (6.45), (6.56), (7.22), (7.33), 
(7.44), (7.55), (8.21), (8.32), (8.43), (8.54), (9.20), (9.31), (9.42), (9.53), 
and (5.34), (8.63)), respectively, is determined as a function of the 
coordinates xn, 0,/2 (see Equations (1.5)-(1.16)). 
 
The elastic energy wq = wq (x12,, x3, a1IN, a2IN, a3IN, vIN) (q = M,IN) as a 
function of the cordinates x12, x3 is determined by the following transfor-
mations 
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         (11.9) 
 
where cos is given by Equation (1.12). 

11.2 Cell Matrix 

The curve integral W12cM of wM = wM(x12,x3,,a1,a2,a3,vIN) along the ab-
scissa P1P2 (see Figure 11.4) in the plane x12 x3 of the matrix (see Figure 
11.3) is derived as 
 

   

21

2/

0
33321121212 ,,,,,

PP

d

MMININININcMcM dxwdxwvaaaxWW  .

              (11.10) 
 
The elastic energy density wM = wM (xn,,) is a decreasing function of the 
variable xn. Consequently, W12cM is a decreasing function of x12, i.e., 

0/ 1212  xW cM , and the sign “-” in Equation (11.8) for q = M is 
considered, i.e., 0/ 1212  xf cM . Due to 0/ 1212  xW cM  and 

0/ 1212  xf cM , we get 0/ 2
1212

2  xf cM , and the decreasing func-
tion f12M = f12M(x12,,a1IN,a2IN,a3IN,vIN) of the variable x12 for the parameters 
0,/2, a1IN, a2IN, a3IN, vIN is convex. Consequently, the following 
condition 
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  0
121212  MaxcMW  .           (11.11) 

 
represents a transcendental equation with the variable a12 and the parame-
ters parameters 0,/2, a1IN, a2IN, a3IN, vIN. The root )(

1212
X
Max   of this 

transcendental equation for M given by Equation (11.7) or (11.8) repre-
sents such a dimension of the ellipsoidal inclusion along the axis x12  x1x2 
(see Figure 11.3), which defines a limit state (i.e., a critical state) for the 
intercrystalline or transcrystalline matrix crack formation in the plane x1x2 
with respect to one value of the parameter 0,/2, and then X = IC or X 
= TC, respectively. Accordingly, if )(

12
)(

12
TC

M
IC
M aa   or )(

12
)(

12
TC

M
IC
M aa  , then 

the intercrystalline or transcrystalline matrix crack is formed in the plane 
x1x2, respectively. 
 
Consequently, if the function  INININ

X
M

X
M aaaaa 321

)(
12

)(
12 ,,,  (X = 

IC,TC) of the variable 0,/2 exhibits the minimum )(
min

X
Ma  for 

)(
min

X
M  , which defines the limit state with respect to the formation of 

the intercrystalline matrix crack (X = IC) or the transcrystalline matrix 
crack (X = TC) in the plane x1x2 for each value of the parameter 0,/2 
and at the microstructural parameters a1IN, a2IN, a3IN, vIN. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.4. The ellipse E123 and the abscissa P1P2 in the matrix plane x1x2 of the 
cubic cell (see Figure 11.3), where a12 = O4 and x122 = O5 are given by Equations 
(1.6) and (1.9), (1.10), respectively, and a3 = O3. 
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If )(
1212

X
Maa   (X = IC,TC), then the following condition 

 
TCICXaaW X

MMcM ,,,0 )(
121212            (11.12) 

 
represents a transcendental equation with the variable x12 and with the root  
x12 = x0M = x0M(,a1IN,a2IN,a3IN,vIN), which defines a position of the crack 
tip in the matrix (see Figure 11.5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.5. The decreasing function f12M = f12M(x12,,a1IN,a2IN,a3IN,vIN) of the 
variable x12 a12,x0M, which defines a shape of the matrix crack in the plane x12x3 
(see Figure 11.3) for )(

1212
X
Maa   (X = IC,TC; see Equations (11.13), (11.14)), 

where x0M= x0M(,a1IN,a2IN,a3IN,vIN) defines a position of the matrix crack tip, and 
the microstructural characteristics a1IN,a2IN,a3IN,vIN are parameters of this 
decreasing function, where a12 = O4 and x122 = O5 are given by Equations (1.6) 
and (1.9), (1.10), respectively, and a3 = O3, x0M = O6. 
 
The decreasing function f12M = f12M(x12,,a1IN,a2IN,a3IN,vIN) of the va-riable 
x12 a12,x0M and with the parameters 0,/2, a1IN, a2IN, a3IN, vIN, 
which defines a shape of the matrix crack in the plane x12x3 (see Figure 
11.3) for )(

1212
X
Maa   (X = IC,TC), has the form 
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The integration constant CM = CM(,a1IN,a2IN,a3IN,vIN) is derived as by the 
condition  
 

  0
01212  MxxMf ,            (11.14) 

 
and then we get 
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11.3 Ellipsoidal Inclusion 

The curve integral W12cIN of wIN = wIN(x12,x3,,a1,a2,a3,vIN) along the ab-
scissa P1P2 (see Figure 11.6) in the plane x12 x3 of the ellipsoidal inclusion 
(see Figure 11.3) is derived as 
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Figure 11.6. The ellipse E123 and the abscissa P1P2 in the inclusion plane x1x2 of 
the cubic cell (see Figure 11.3), where a12 = O4 and x122 = O5 are given by 
Equations (1.6) and (1.9), (1.10), respectively, and a3 = O3. 
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where a12 = O4 and x122 = O5 are given by Equations (1.6) and (1.9), (1.10), 
respectively, and then a = |P1P| is derived as 
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 .         (11.16) 

 
If W12cIN is a decreasing or increasing function of the variable x12, i.e., 

0/ 1212  xW cIN  or 0/ 1212  xW cIN , then the sign “-” or “+” in 
Equation (11.8) for q = IN is considered, respectively. In both cases we get 

0/ 2
1212

2  xf cM , and then f12IN = f12IN(x12,,a1IN,a2IN,a3IN,vIN) is a con-
vex function of the variable x12 for the parameters 0,/2, a1IN, a2IN, 
a3IN, vIN. 
 
Consequently, if W12cIN is a decreasing function of x12, then the root )(

12
X
INa  

of the following transcendental equation 
 

  0012 12
 INxcINW  .           (11.17) 

 
represents such a dimension of the ellipsoidal inclusion along the axis x12 
 x1x2 (see Figure 11.3), which defines a limit state (i.e., a critical state) 
for the intercrystalline or transcrystalline inclusion crack formation in the 
plane x1x2 with respect to one value of the parameter 0,/2, and then 
X = IC or X = TC, respectively. Accordingly, if )(

12
)(

12
TC

IN
IC
IN aa   or 

)(
12

)(
12

TC
IN

IC
IN aa  , then the intercrystalline or transcrystalline inclusion crack 

is formed in the plane x1x2, respectively. 
 
Consequently, if the function  INININ

X
IN

X
IN aaaaa 321
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12
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12 ,,,  (X = 

IC,TC) of the variable 0,/2 exhibits the minimum )(
min

X
INa  for 

)(
min

X
IN  , which defines the limit state with respect to the formation of 

the intercrystalline inclusion crack (X = IC) or the transcrystalline inclu-
sion crack (X = TC) in the plane x1x2 for each value of the parameter 
0,/2 and at the microstructural parameters a1IN, a2IN, a3IN, vIN. 

If )(
1212

X
INaa   (X = IC,TC), then the following conditionIf )(

1212
X
INaa   

(X = IC,TC), then the following condition 
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TCICXaaW X

ININcIN ,,,0 )(
121212            (11.18) 

 
represents a transcendental equation with the variable x12 and with the root  
x12 = x0IN = x0IN(,a1IN,a2IN,a3IN,vIN), which defines a position of the crack 
tip in the ellipsoidal inclusion (see Figure 11.6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.7. The decreasing function f12IN = f12IN(x12,,a1IN,a2IN,a3IN,vIN) of the 
variable x12 0,x0IN, which defines a shape of the inclusion crack in the plane 
x12x3 (see Figure 11.3) for )(

1212
X
INaa   (X = IC,TC; see Equations (11.19), 

(11.21)), where x0IN= x0IN(,a1IN,a2IN,a3IN,vIN) defines a position of the inclusion 
crack tip, and the microstructural characteristics a1IN,a2IN,a3IN,vIN are parameters of 
this decreasing function, where a12 = O4 and x122 = O5 are given by Equations 
(1.6) and (1.9), (1.10), respectively, and a3 = O3, x0IN = O6. 
 
The decreasing function f12IN = f12IN(x12,,a1IN,a2IN,a3IN,vIN) of the va-riable 
x12 a12,x0IN and with the parameters 0,/2, a1IN, a2IN, a3IN, vIN, 
which defines a shape of the inclusion crack in the plane x12x3 (see Figure 
11.3) for )(

1212
X
INaa   (X = IC,TC), is derived as 
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The integration constant CIN = CIN(,a1IN,a2IN,a3IN,vIN) is derived as by the 
condition  
 

  0
01212  INxxINf ,            (11.20) 

 
and then we get 
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Figure 11.8. The increasing function f12IN = f12IN(x12,,a1IN,a2IN,a3IN,vIN) of the 
variable x12 x0IN,a12, which defines a shape of the inclusion crack in the plane 
x12x3 (see Figure 11.3) for )(

1212
X
INaa   (X = IC,TC; see Equations (11.19), 

(11.21)), where x0IN= x0IN(,a1IN,a2IN,a3IN,vIN) defines a position of the inclusion 
crack tip, and the microstructural characteristics a1IN,a2IN,a3IN,vIN are parameters of 
this decreasing function, where a12 = O4 and x122 = O5 are given by Equations 
(1.6) and (1.9), (1.10), respectively, and a3 = O3, x0IN = O6. 
 
This analysis is also valid provided that W12cIN is an increasing function of 
x12, then )(

1212
X
INax   represents a root of the following transcendental 

equation 
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If )(
1212

X
inaa   (X = IC,TC), then x12 =x0IN = x0IN(,a1IN,a2IN,a3IN,vIN), which 

defines a position of the crack tip in the ellipsoidal inclusion (see Figure 
11.8), represents a root of the transcendental equation (11.18) with the 
variable x12 and the parameters 0,/2, a1IN, a2IN, a3IN, vIN. 
 
The increasing function f12IN = f12IN(x12,,a1IN,a2IN,a3IN,vIN) of the va-riable 
x12 x0IN,a12 and with the parameters 0,/2, a1IN, a2IN, a3IN, vIN, 
which defines a shape of the inclusion crack in the plane x12x3 (see Figure 
11.3) for )(

1212
X
INaa   (X = IC,TC), is derived as 
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The integration constant CIN = CIN(,a1IN,a2IN,a3IN,vIN) is derived as by the 
condition (11.20), and then we get 
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APPENDIX 
 
 
 

12.1 Wronskian’s method 

Wronskian’s method can be explained by the following mathematical 
example. The differential equation (6.3) with a non-zero right side is 
derived as 
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where the integration constants C1, C1, C1, are determined by the boundary 
condition (4.1)-(4.5). If g = 0 , then we get 
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If 

nn xu  , then the solutions u1n, u2n have the forms 
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The solution un of Equation (10.13) is derived as (Rektorys, 1973, 341-
345) 
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Wronskian’s determinants W2, )(

2
iW  (i = 1,2) have the forms 
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where the determinant )(

2
iW  (i = 1,2) is created from W2, i.e., the i-th 

column of W2 is replaced by the following one 
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Let f1, …, fn represent n solutions of a differential equation of the n-th rand 
with zero right-hand side (i.e., g = 0). Let the functions f1, …, fn of the 
variable x exhibit contionous derivatives to the (n-1)-th degree. The 
solution of this differential equation with a non-zero right-hand side (i.e., g 
 0) is derived as 
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Wronskian’s determinant Wn with n rows and n columns has the form 
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where )(i

nW  (i = 1,…,n) is created from Wn, i.e., the i-th column of Wn is 
replaced by the following one  
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12.2 Cramer’s rule 

The system of n linear algehraic equations is derived as 
 

 

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa






...

...
...

2211

21222121

11212111


,            (12.1) 

 
where the root xi (i = 1,…,n) is determined by Cramer’s rule (Rektorys, 
1973, 22-28) 
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The determinant Dn with n rows and n columns has the form 
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and the subdeterminant )(i

nD  is created from Dn, i.e., the i-th column of Dn 
is replaced by 
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Similarly, the subdeterminant )(

1
ij

nD   with (n-1) rows and (n-1) columns is 
created from Dn, i.e., the i-th row and the j-column are omitted. If n = 2, 
we get  
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Similarly, if n = 3, we get 
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12.3 Integrals 

The derivatives of the functions f = x, f = ln x and the constant C have the 
forms (Rektorys, 1973, 234-247) 
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The indefinite integrals of f = x and f = C are derived as 
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In case of the product f g of the function f = f(x), g = g(x), we get 
(Rektorys, 1973, 234-247) 
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  ''' fggffg  ,              (12.9) 
 
and then the integral of f g is derived as 
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With regard to Equations (6.13)-(6.15), (7.13), (7.14), the following 
integrals have the forms 
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12.4 Numerical determination 

Numerical values of the thermal and phase-transformation stresses for real 
matrix-inclusion composites include integrals and derivatives, which are 
determined by a programming language. If f = f(x), then the numerical 
value of the derivative  f/x is determined by 
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In case of the angles ,  (see Figure 1.4), the step x =  =  = 10-6 
[deg] is sufficient. 
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Let F represent a definite integral of the function f = f(,) with the 
variables ,0, /2. Let n, m be integral parts of the real numbers 
/(2), /(2), respectively. Numerical values of the definite integral F 
are determined by the following formula 
 

     
 
















2/

0 0 0

2/

0

;,



m

j

n

i

jifddfF ,  (12.22) 

 
where the step  =  = 0.1 [deg] is sufficient. The average numerical 
value f  of the function f = f(,) with the variables ,0, /2 is deter-
mined by the following formula 
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