Novel Composites based on Cerium Oxide Nanoparticles and Carbon **Enterosorbents for Acute Radiation Sickness Therapy**

Institute of Experimental Physics SAS, Kosice, Slovakia V. I. Vernadskii Institute of General and Inorganic Chemistry of the NAS of Ukraine, Kyiv, Ukraine Kavetskii Institute of Experimental Pathology, Oncology & Radiobiology, NAS of Ukraine

□ the risks of large-scale radiation injury of civilian population have significantly increased

• the external ionizing radiation and radiation sickness pose the biggest danger to health -and the most severe is the damage to the hematopoietic system, gastrointestinal tract and central nervous system

oxidative stress

aging/neurodegenerative diseases

!!! the exact mechanism **is unknown**

CeO₂ nanoparticles for biomedical applications

OH.

OH

O Ovacancy

shielded 4f-electrons and low redox potential of the Ce^{4+/}Ce³⁺ redox couple (\sim 1.52 V)

attractive optical, magnetic, and chemical properties

In collaboration with team of prof. Belous (Institute of Inorganic Chemistry NAS, Ukraine)

a new CeO₂ NPs were prepared by controlled synthesis:

i) precipitation aqueous-alcoholic solutions: dd-H₂O+Isopropanol (IPA) in precisely determined ratios particles Ce1 – Ce5

ii) precipitation in a reverse microemulsion in the presence of Triton X-100 (CeO₂)

X-ray diffraction (XRD) analysis confirmed formation of fluorite Fm3m structure

XPS analysis allow to estimate the percentage of Ce³⁺ ions on the surface of CeO₂ NPs

NH₄OH in H₂O or H₂O/Isopropanol

CeO ₂ NPs	d _{TEM} [nm]	ζ- potential [mV]	w Ce ³⁺ [%]
Ce1	13.4 ± 2,3	+40.9	23
Ce2	8.0 ± 0,8	+41.5	30
Ce3	5.6 ± 0,6	+41.6	35
Ce4	$3.5 \pm 0,4$	+42	38
Ce5	2.8 ± 0,4	+42.9	44
C _ O	E C L A		20

+ 5 µM Insulin fibrils

zoom

correlation between size and Ce^{3+}/Ce^{4+} on the surface demonstrated

Bioactivity of CeO₂ NPs

Changes in the indicators of the anti-oxidant/pro-oxidant system induced by irradiation of Rats at a dose 6 Gy and after i.p. injection of CeO₂ NPs (SuperOxide Dismutase (SOD); Reduced glutathione (G-SH); Hydro Peroxides of Lipids (HPL); Malonic Dialdehyde (MDA); Ischemia-Modified Albumin (IMA); Advanced Oxidation Protein Products (AOPP)

Morphology of U87 MG cells in the presence and absence of insulin fibrils and CeO₂ NPs visualized by confocal **microscopy** (A) (presented in inverted contrast for better recognition of the distribution of CeO₂ NPs and vesicles in cells)

Distribution of lysosomes in U87 MG cells in the presence and absence of CeO₂ NPs and insulin fibrils detected using confocal fluorescence microscopy (B)

Shlapa, Yu.; Timashkov, I.; Veltruska, K.; Siposova, K.; Garcarova, I.; Musatov, A.; Solopan, S.; Kubovcikova, M.; Belous, A. Structural and Physical-Chemical Characterization of Redox Active CeO₂ Nanoparticles Synthesized by the Precipitation in the Water-Alcohol Solutions. Nanotechnology. 2021, 32, 315706 (9pp) Sarnatskaya, V.; Shlapa, Y.; Lykhova, A.; Brieieva, O.; Prokopenko, I.; Sidorenko, A.; Solopan, S.; Kolesnik, D.; Belous, A.; Nikolaev, V. Structure and biological activity of micro-nanoparticles produced from highly activated carbonic adsorbent. In Heliyon, 2021 (in press). Siposova, K.; Huntosova, V.; Garcarova, I.; Shlapa, Yu.; Timashkov, I; Belous, A.; Musatov, A. Multifunctional, Anti-oxidant and Anti-amyloidogenic Cerium Oxide Nanoparticles Prepared by Controllable Precipitation in Water-Alcohol Solutions. (to be submitted).