

0W

S

Extreme charge transfer in the misfit layered compound (LaSe)_{1.14}(NbSe₂)

Ondrej Šofranko

Misfit materials

Naturally layered crytals Unit cell is stabilized by electron transport from MX part to TX₂

MX = LaSe

 $TX_2 = NbSe_2$

Superconductors! (LaSe)_{1.14}(NbSe₂) 1Q1H; T_c ~ 1.2 K

 $(LaSe)_{1.14}(NbSe_2)_{2}$ 1Q2H; $T_c \sim 5 K$

Upper critical magnetic field

Bulk superconductivity is confirmed by heat capacity measurements

Iono-covalent bonds

- Bulk VdW system consisting of weakly interacting 2D layers. These 2D layers are equivalent of extremely doped NbSe₂ monolayer.
- Such extreme doping is not achievable by other means (FET, K/Na deposition ...)
- Tunable by Pb \rightarrow La substitution.
- ML NbSe₂ is non-centrosymetric system \rightarrow electron spins are locked in out-of plane direction (**Ising superconductivity**) \rightarrow H_{c2||ab} >> H_P

ADVANCEDFUNCTIONAL **MATERIALS**

Full Paper 🛛 🔂 Full Access

Misfit Layer Compounds: A Platform for Heavily Doped 2D Transition Metal Dichalcogenides

Raphaël T. Leriche, Alexandra Palacio-Morales, Marco Campetella, Cesare Tresca, Shunsuke Sasaki, Christophe Brun, François Debontridder, Pascal David, Imad Arfaoui, Ondrej Šofranko, Tomas Samuely , Geoffroy Kremer, Claude Monney, Thomas Jaouen, Laurent Cario, Matteo Calandra 🗙, Tristan Cren 🕿 ... See fewer authors 🔿

First published: 06 November 2020 | https://doi.org/10.1002/adfm.202007706

Structure and bonding 1Q1H

- Breaking @Q into Q*
- Q* surface: unstable, ordered only at N2!

Fourier transform of atomically resolved surface is similar to diffraction methods (LEED)

QuasiParticle Interference

• Electrons can be described as Bloch wavefunctions + scattering \rightarrow interference \rightarrow standing wave pattern

Surface states, QPI 1Q2H – 1Q1H

H + Q* surface band structure ARPES

 Preliminary estimate: shift ~200meV compared to 1Q2H (H surface) due to Q* "impurities" surface doping ???

Wen-Yu He, et al., Communications Physics 1, 40 (2018)

1Q2H = H 1Q1H = H + Q*

DFT bulk **1Q1H**

- 2x doping compared to 1Q2H
- NbSe₂ insulating
- LaSe conducting
- Bulk SC from heat capacity
- SC in LaSe

Surface STM & STS

Small surface superconducting gap

Bulk STM & STS

 gap consistent with transport and heat capacity

Upper critical magnetic field

Conclusions

1Q2H

- VdW crystal
- Decoupled doped NbSe₂ monolayers
 - Bulk Ising SC from noncentrosymmetric NbSe₂ → H_{c2||ab} >> H_p

1Q1H

- Ionocovalent bonds between layers
- Even higher doping → superconducting LaSe is decoupled by insulating NbSe₂ monolayers
- LaSe is centrosymmetric \rightarrow why is $H_{c2||ab} >> H_{p}$?

Acknowledgments

Thank you for your attention!